Does Climate Change Influence Russian Agriculture? Evidence from Panel Data Analysis
Abstract
:1. Introduction
1.1. Climate Change and Performance of the Russian Agricultural Sector over Past Years
1.2. Assessing the Impact of Climatic Conditions on Agricultural Productivity in Russia
2. Materials and Methods
3. Results
4. Discussions and Conclusions
- Data set supplementation with other factors of agricultural productivity. There are unaccounted factors that might bias the estimations, such as labor, use of modified seeds or irrigation practices [22]. This is especially important for interregional comparison. For instance, the Southwestern regions of Russia are export-oriented and, consequently, may employ more agricultural practices to increase yields.
- Use of more disaggregated data for both dependent and explanatory variables. The contradictory results for croplands and combine harvesters not divided by crop type have already been discussed above. This is also true for grain yield. For instance, winter and spring wheat also differ in their response to climatic conditions [15,17].
- Using additional weather data. Although weather conditions during the coldest and warmest months of the year explain the dynamics of yields and gross harvests relatively well, models that take into account temperatures and precipitation in all seasons of the year are more accurate [23].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
(9) | (10) | (11) | (12) | |
---|---|---|---|---|
Harvests Grain | Harvests Fruit | Harvests Potato | Harvests Vegetables | |
Temp January | 15.4025 *** | 0.5579 *** | 3.7313 *** | 0.8116 ** |
(44.364) | (1.595) | (9.963) | (3.467) | |
Temp July | −51.7595 *** | 0.9495 *** | −10.8224 *** | 2.0981 |
(108.957) | (3.496) | (27.912) | (15.061) | |
Precipitation January | −2.6993 ** | −0.0035 | −0.4077 *** | −0.192 ** |
(13.413) | (0.337) | (1.519) | (0.748) | |
Precipitation July | −0.1394 | 0.0142 | 0.0721 | −0.0113 |
(4.179) | (0.111) | (0.912) | (0.372) | |
Crop land | 2.4679 *** | −0.0006 | 0.0454 | 0.088 * |
(5.135) | (0.079) | (0.669) | (0.503) | |
Mineral fertilizers | 5.8926 * | 0.0751 | 0.9139 *** | 0.9481 * |
(32.81) | (0.815) | (3.443) | (5.491) | |
Organic fertilizers | 72.5909 | −1.637 | 0.8567 | −5.0638 |
(508.942) | (16.311) | (47.994) | (55.087) | |
Harvesters | 0.0009 *** | −0.000004 | 0.0002 *** | −0.00004 |
(0.003) | (0) | (0) | (0) | |
Tractors | 38.377 ** | −0.5036 | −3.3623 | −6.8964 |
(157.477) | (5.36) | (20.293) | (44.039) | |
CO2 | 16.0717 *** | 0.096 | −4.5795 *** | −0.7724 |
(55.543) | (1.683) | (7.561) | (7.293) | |
El Niño | 191.214 *** | 0.0446 | −6.3009 | −5.565 * |
(458.572) | (15.08) | (60.121) | (30.697) | |
La Niña | 279.8807 *** | −2.6475 ** | −8.6199 | −7.4179 * |
(590.989) | (12.447) | (58.001) | (42.647) | |
Price wheat | −0.1503 | |||
(5.908) | ||||
Price oats | 1.3552 | |||
(8.536) | ||||
Price potato | −0.0037 | 0.2577 *** | 0.0634 ** | |
(0.056) | (0.427) | (0.245) | ||
Price vegetables | −0.0203 * | −0.3027 *** | −0.0805 *** | |
(0.109) | (0.437) | (0.237) | ||
Const | −7251.25 *** | −4.6897 | 2358.5331 *** | 380.3244 |
(26,086.591) | (656.768) | (3237.168) | (3300.697) | |
Observations | 1231 | 1201 | 1214 | 1214 |
R-squared | 0.31 | 0.05 | 0.21 | 0.156 |
(13) | (14) | (15) | (16) | |
---|---|---|---|---|
Harvests Grain | Harvests Fruit | Harvests Potato | Harvests Vegetables | |
D Temp January | 9.756 *** | 0.509 *** | 3.4507 *** | 1.0222 *** |
(35.503) | (1.486) | (6.961) | (2.732) | |
D Temp July | −48.3434 *** | 0.2357 | −6.2703 *** | −0.9026 * |
(113.41) | (1.725) | (12.081) | (4.795) | |
D Precipitation January | −0.0251 | −0.0004 | −0.0669 | −0.0591 ** |
(3.63) | (0.076) | (0.433) | (0.27) | |
D Precipitation July | 0.075 | 0.0034 | 0.1953 ** | −0.0632 * |
(4.061) | (0.121) | (0.76) | (0.375) | |
Crop land | 2.4734 *** | 0.0013 | 0.0491 | 0.0953 * |
(5.19) | (0.078) | (0.647) | (0.507) | |
Mineral fertilizers | 5.7554 * | 0.0698 | 0.8595 ** | 0.935 * |
(32.551) | (0.814) | (3.341) | (5.508) | |
Organic fertilizers | 66.8484 | −1.5756 | −0.1808 | −4.7257 |
(503.773) | (16.135) | (45.331) | (54.259) | |
Harvesters | 0.0007 * | −0.000006 | 0.0002 *** | −0.00001 |
(0.004) | (0) | (0.001) | (0) | |
Tractors | 36.017 ** | −0.4862 | −3.7842 * | −6.8222 |
(156.762) | (5.265) | (20.519) | (43.031) | |
CO2 | 15.2656 *** | 0.1446 | −4.1975 *** | −0.6169 |
(56.563) | (1.842) | (7.478) | (7.392) | |
El Niño | 198.654 *** | −0.6754 | −4.055 | −7.2557 ** |
(464.878) | (15.953) | (60.196) | (28.448) | |
La Niña | 350.4988 *** | −1.5857 | 0.2316 | −3.9752 |
(759.373) | (9.981) | (57.966) | (41.454) | |
Price wheat | 1.5665 ** | |||
(7.77) | ||||
Price oats | −0.6992 | |||
(10.609) | ||||
Price potato | −0.0087 | 0.1891 *** | 0.0475 * | |
(0.058) | (0.351) | (0.24) | ||
Price vegetables | −0.0233 ** | −0.2653 *** | −0.0638 *** | |
(0.097) | (0.457) | (0.224) | ||
Const | −8192.8086 *** | −12.1816 | 1947.9513 *** | 347.4659 |
(26,134.194) | (715.743) | (3263.291) | (3331.251) | |
Observations | 1230 | 1200 | 1212 | 1212 |
R-squared | 0.311 | 0.053 | 0.201 | 0.157 |
Appendix B
Model No. | Welch Robust Test for Differing Group Intercepts (F) | Heteroskedasticity LR test (χ2) | Wooldridge Test for Autocorrelation (F) |
---|---|---|---|
(1) | 24.74 *** | 930.53 *** | 17.66 *** |
(2) | 15.88 *** | 549.60 *** | 0.13 |
(3) | 23.09 *** | 476.12 *** | 3.80 * |
(4) | 76.61 *** | 764.94 *** | 24.63 *** |
(5) | 33.57 *** | 1156.22 *** | 18.97 *** |
(6) | 18.70 *** | 530.61 *** | 0.60 |
(7) | 21.76 *** | 422.06 *** | 7.38 ** |
(8) | 76.61 *** | 744.05 *** | 23.91 *** |
(9) | 78.99 *** | 3805.10 *** | 13.01 *** |
(10) | 58.60 *** | 2721.01 *** | 0.03 |
(11) | 107.86 *** | 1681.61 *** | 1.11 |
(12) | 85.41 *** | 3122.44 *** | 21.51 *** |
(13) | 85.14 *** | 3876.63 *** | 13.35 *** |
(14) | 74.32 *** | 2873.07 *** | 0.01 |
(15) | 106.93 *** | 1666.57 *** | 0.99 |
(16) | 108.49 *** | 3357.24 *** | 21.13 *** |
References
- Food and Agriculture Organization of the United Nations. Global Outlook on Climate Services in Agriculture: Investment Opportunities to Reach the Last Mile; Food & Agriculture Org.: Rome, Italy, 2021; ISBN 9789251350119. [Google Scholar]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Food and Agriculture of the United Nations. The State of Agricultural Commodity Markets 2018: Agricultural Trade, Climate Change and Food Security; Food & Agriculture Org.: Rome, Italy, 2018; ISBN 9789251305652. [Google Scholar]
- Holden, N.M.; Brereton, A.J.; Fealy, R.; Sweeney, J. Possible change in Irish climate and its impact on barley and potato yields. Agric. For. Meteorol. 2003, 116, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Saarikko, R.A. Applying a site based crop model to estimate regional yields under current and changed climates. Ecol. Modell. 2000, 131, 191–206. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Jauhiainen, L.; Hakala, K. Climate change and prolongation of growing season: Changes in regional potential for field crop production in Finland. Agric. Food Sci. 2008, 18, 171–190. [Google Scholar] [CrossRef]
- Adams, R.M.; Rosenzweig, C.; Peart, R.M.; Ritchie, J.T.; McCarl, B.A.; Glyer, J.D.; Curry, R.B.; Jones, J.W.; Boote, K.J.; Allen, L.H. Global climate change and US agriculture. Nature 1990, 345, 219–224. [Google Scholar] [CrossRef]
- Knox, P.; Griffin, M.; Sarkar, R.; Ortiz, B.V. El Niño, La Niña and Climate Impacts on Agriculture: Southeastern U.S.; United States Department of Agriculture: Washington, DC, USA, 2015.
- Brassard, J.P.; Singh, B. Effects of climate change and CO increase on potential agricultural production in Southern Québec, Canada. Clim. Res. 2007, 34, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, T.Q.; Tan, C.S.; Xue, L.; Bukovsky, M.; Qi, Z.M. Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada. Agric. Syst. 2021, 190, 103110. [Google Scholar] [CrossRef]
- Climatic Center of Rosgidromet. Report on Climatic Risks in the Russian Federation; Federal Service for Hydrometeorology and Environmental Monitoring of Russia (Roshydromet): Moscow, Russia, 2017.
- Popova, E.N.; Popov, I.O. Climatic Reasons for the Current Expansion of the Range of the Italian Locust in Russia and Neighboring Countries. Dokl. Earth Sci. 2019, 488, 1256–1258. [Google Scholar] [CrossRef]
- Popova, E.N.; Popov, I.O. Potential of Changes in Climatic Range of Colorado Potato Beetle in Russia and Neighboring Countries under Different Scenarios of Anthropogenic Impact on Climate. Izv. Ross. Akad. Nauk. Seriya Geogr. 2016, 1, 67–73. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Sirotenko, O.D.; Pavlova, V.N. Methods for assessing the impact of climate change on agricultural productivity. In Methods for Assessing the Effects of Climate Change on Physical and Biological Systems; Semenov, S.M., Ed.; Rosgidromet: Moscow, Russia, 2012; pp. 165–189. ISBN 9785904206109. (In Russian) [Google Scholar]
- Pavlova, V.N.; Calanca, P.; Karachenkova, A.A. Grain crops productivity in European Russia under climate change in recent decades. Meteorol. Hydrol. 2020, 1, 78–94. [Google Scholar]
- Tchebakova, N.M.; Chuprova, V.V.; Parfenova, E.I.; Soja, A.J.; Lysanova, G.I. Evaluating the Agroclimatic Potential of Central Siberia. In Novel Methods for Monitoring and Managing Land and Water Resources in Siberia; Mueller, L., Sheudshen, A.K., Eulenstein, F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 287–305. ISBN 9783319244099. [Google Scholar]
- Pavlova, V.N.; Sirotenko, O.D. Observed climate trends and dynamics of Russian agriculture productivity. Proc. Voeikov Main Geophys. Obs. 2012, 565, 132–151. (In Russian) [Google Scholar]
- Liefert, W.M.; Liefert, O. Russian agricultural trade and world markets. Russ. Agric. Trade World Mark. 2020, 6, 56. [Google Scholar] [CrossRef]
- Liefert, O.; Liefert, W.; Luebehusen, E. Rising Grain Exports by the Former Soviet Union Region (Outlook Report WHS-13A-01); Economic Research Service, U.S. Dept. of Agriculture: Washington, DC, USA, 2013.
- Barsukova, S. Agricultural policy in Russia. Soc. Sci. 2017, 48, 3–18. [Google Scholar] [CrossRef]
- Ksenofontov, M.Y.; Polzikov, D.A. On the Issue of the Impact of Climate Change on the Development of Russian Agriculture in the Long Term. Stud. Russ. Econ. Dev. 2020, 31, 304–311. [Google Scholar] [CrossRef]
- Ahumada, H.; Cornejo, M. Are Soybean Yields Getting a Free Ride from Climate Change? Evidence from Argentine Time Series Data. Econometrics 2021, 9, 24. [Google Scholar] [CrossRef]
- Belyaeva, M.; Bokusheva, R. Will Climate Change Benefit or Hurt Russian Grain Production? A Statistical Evidence from a Panel Approach; Discussion Paper, No. 161; Leibniz Institute of Agricultural Development in Transition Economies (IAMO): Halle (Saale), Germany, 2017. [Google Scholar]
- Pyzhev, A.I.; Gordeev, R.V.; Vaganov, E.A. Reliability and Integrity of Forest Sector Statistics—A Major Constraint to Effective Forest Policy in Russia. Sustain. Sci. Pract. Policy 2020, 13, 86. [Google Scholar] [CrossRef]
- Siptits, S.O.; Romanenko, I.A.; Evdokimova, N.E. Model Estimates of Climate Impact on Grain and Leguminous Crops Yield in the Regions of Russia. Stud. Russ. Econ. Dev. 2021, 32, 168–175. (In Russian) [Google Scholar] [CrossRef]
- Babushkina, E.A.; Belokopytova, L.V.; Zhirnova, D.F.; Shah, S.K.; Kostyakova, T.V. Climatically driven yield variability of major crops in Khakassia (South Siberia). Int. J. Biometeorol. 2018, 62, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Federal State Statistics Service of Russia Edinaya Mezhvedomstvennaya Informatsionno-Spravochnaya Systema—EMISS. (Unified Interagency Information and Statistical System. State Statistics). Available online: https://www.fedstat.ru/ (accessed on 23 September 2021).
- Federal State Statistics Service of Russia Russian Statistical Yearbook. Available online: https://rosstat.gov.ru/folder/210/document/12994 (accessed on 5 October 2021).
- US Department of Commerce; NOAA; Global Monitoring Laboratory ESRL Global Monitoring Laboratory. Available online: https://gml.noaa.gov/dv/data/index.php?category=Greenhouse%2BGases&frequency=Monthly%2BAverages&site=MLO&perpage=100 (accessed on 30 November 2021).
- Null, J. El Niño and La Niña Years and Intensities. Available online: https://ggweather.com/enso/oni.htm (accessed on 30 November 2021).
- The Food and Agriculture Organization of the United Nations Producer Prices. Available online: https://www.fao.org/faostat/en/#data/PP (accessed on 30 November 2021).
- Imai, K.; Murata, Y. Effect of Carbon Dioxide Concentration on Growth and Dry Matter Production of Crop Plants: VII. Influence of light intensity and temperature on the effect or carbon dioxide-enrichment in some C3-and C4-species. Jpn. J. Crop Sci. 1979, 48, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.B.; Dermody, O.; Klein, S.P.; Locke, A.M.; McGrath, J.M.; Paul, R.E.; Rosenthal, D.M.; Ruiz-Vera, U.M.; Siebers, M.H.; Strellner, R.; et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2016, 2, 16132. [Google Scholar] [CrossRef]
- Arif, M.A.; Verstraete, W. Methane dosage to soil and its effect on plant growth. World J. Microbiol. Biotechnol. 1995, 11, 529–535. [Google Scholar] [CrossRef]
- Wilfand: The Weather in Russia Was Affected by El Niño. Available online: https://primpress.ru/article/62025 (accessed on 30 November 2021).
- Dougherty, C. Introduction to Econometrics; Oxford University Press Inc.: New York, NY, USA, 2006; ISBN 9780199280964. [Google Scholar]
- Roberts, M.J.; Schlenker, W.; Eyer, J. Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change. Am. J. Agric. Econ. 2013, 95, 236–243. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tack, J.; Barkley, A.; Nalley, L.L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA 2015, 112, 6931–6936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalçin, M.O.; Dincer, N.G.; Demir, S. Fuzzy panel data analysis. Kuwait J. Sci. Eng. 2021, 48, 13. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA; London, UK, 2002. [Google Scholar]
- Drukker, D.M. Testing for serial correlation in linear panel-data models. Stata J. 2003, 3, 168–177. [Google Scholar] [CrossRef]
- Wiggins, V.; Poi, B. Testing for Panel-Level Heteroskedasticity and Autocorrelation. Available online: https://www.stata.com/support/faqs/statistics/panel-level-heteroskedasticity-and-autocorrelation/ (accessed on 30 December 2021).
- Stock, J.H.; Watson, M.W. Introduction to Econometrics, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2010; ISBN 9780138009007. [Google Scholar]
- Andrews, D.W.K.; Monahan, J.C. An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator. Econometrica 1992, 60, 953. [Google Scholar] [CrossRef]
- Stata: Software for Statistics and Data Science. Available online: https://www.stata.com/ (accessed on 30 November 2021).
- Attaullah, S. Asdoc: Sends Stata Output to MS Word. Available online: https://fintechprofessor.com/2018/01/31/asdoc/ (accessed on 30 November 2021).
- Lu, W.; Atkinson, D.E.; Newlands, N.K. ENSO climate risk: Predicting crop yield variability and coherence using cluster-based PCA. Modeling Earth Syst. Environ. 2017, 3, 1343–1359. [Google Scholar] [CrossRef]
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The Effect of Different Organic Fertilizers on Yield and Soil and Crop Nutrient Concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Masarirambi, M.; Hlawe, M.; Oseni, O.; Sibiya, T. Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.) ‘Veneza Roxa’. Agric. Biol. J. N. Am. 2010, 1, 1319–1324. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop Yield Gaps: Their Importance, Magnitudes, and Causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Miao, R.; Khanna, M.; Huang, H. Responsiveness of crop yield and acreage to prices and climate. Am. J. Agric. Econ. 2016, 98, 191–211. [Google Scholar] [CrossRef] [Green Version]
- Babushkina, E.A.; Belokopytova, L.V.; Shah, S.K.; Zhirnova, D.F. Past crops yield dynamics reconstruction from tree-ring chronologies in the forest-steppe zone based on low- and high-frequency components. Int. J. Biometeorol. 2018, 62, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Shvidenko, A.Z.; Nilsson, S.; Stolbovoi, V.S.; Rozhkov, V.A.; Gluck, M. Aggregated Estimation of Basic Parameters of Biological Production and the Carbon Budget of Russian Terrestrial Ecosystems: 2. Net Primary Production. Russ. J. Ecol. 2001, 32, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Bunce, J. Using FACE Systems to Screen Wheat Cultivars for Yield Increases at Elevated CO2. Agronomy 2017, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Taub, D.R.; Miller, B.; Allen, H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Glob. Chang. Biol. 2008, 14, 565–575. [Google Scholar] [CrossRef]
- Broberg, M.C.; Högy, P.; Pleijel, H. CO2-Induced Changes in Wheat Grain Composition: Meta-Analysis and Response Functions. Agronomy 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Kruchinina, V.M.; Ryzhkova, S.M. Fertilizer market in Russia: State and direction of development. Proc. VSUET 2021, 83, 375–384. [Google Scholar] [CrossRef]
- Anisimova, T.Y.; Naliukhin, A.N.; Hamitowa, S.M.; Avdeev, Y.M.; Belozerov, D.A. Responses of soil properties and crop productivity to peat-fertilizers in Russia. Int. J. Pharm. Res. Allied Sci. 2019, 8, 180–189. [Google Scholar]
- Romanenkov, V.; Belichenko, M.; Petrova, A.; Raskatova, T.; Jahn, G.; Krasilnikov, P. Soil organic carbon dynamics in long-term experiments with mineral and organic fertilizers in Russia. Geoderma Reg. 2019, 17, e00221. [Google Scholar] [CrossRef]
- Gordeev, R.V.; Pyzhev, A.I.; Yagolnitser, M.A. Drivers of Spatial Heterogeneity in the Russian Forest Sector: A Multiple Factor Analysis. For. Trees Livelihoods 2021, 12, 1635. [Google Scholar] [CrossRef]
Group | Variables | Description | Mean | Data Source |
---|---|---|---|---|
Agricultural productivity (dependent) | Yield grain | Yields of the main crops of Russian agriculture: grain, fruit and berry, potato and vegetables, tons per ha | 2.1 | Russian Federation Unified Interagency Information and Statistical System (EMISS) [27] |
Yield fruit | 5.7 | |||
Yield potato | 13.5 | |||
Yield vegetables | 20.0 | |||
Harvests grain | Gross harvests of the main crops of Russian agriculture: grain, fruit and berry, potato and vegetables, thousands of tons | 1270.8 | ||
Harvests fruit | 33.8 | |||
Harvests potato | 328.7 | |||
Harvests vegetables | 159.6 | |||
Russian climatic patterns | Temp January | Monthly average air temperature in January, °C | −11.5 | The Russian Statistical Yearbook, Rosstat [28] |
D Temp January | Deviation from normal air temperature in January, °C | 1.0 | ||
Precipitation January | Amount of precipitation in January, mm | 34.6 | ||
D Precipitation January | Ratio to normal amount of precipitation in January, % | 111.2 | ||
Temp July | Monthly average air temperature in July, °C | 19.4 | ||
D Temp July | Deviation from normal air temperature in July, °C | 1.4 | ||
Precipitation July | Amount of precipitation in July, mm | 69.8 | ||
D Precipitation July | Ratio to normal amount of precipitation in July, % | 95.8 | ||
World climatic patterns | CO2 | Mean atmospheric carbon dioxide at Mauna Loa Observatory (Waimea, HI, USA), ppm | 391.7 | Global Monitoring Laboratory of the National Oceanic and Atmospheric Administration [29] |
El Niño | El Niño events (dummy) | 0.4 | Golden Gate Weather Services [30] | |
La Niña | La Niña events (dummy) | 0.4 | ||
Technology | Harvesters | Number of combine harvesters per 1000 ha of crops (units) | 258.5 | Russian Federation Unified Interagency Information and Statistical System (EMISS) [27] |
Tractors | Number of tractors per 1000 ha of crop land (units) | 6.4 | ||
Mineral fertilizers | Mineral fertilizers applied by agricultural organizations, kg in terms of 100% of nutrients per 1 hectare of crops | 35.7 | ||
Organic fertilizers | Organic fertilizers used by agricultural enterprises, tons per 1 hectare of crops | 1.5 | ||
Crop land | Crop lands, thousands ha | 1004.6 | ||
Prices | Price oats | Producer prices in Russia, USD/tons | 110.7 | FAOSTAT [31] |
Price wheat | 142.4 | |||
Price potato | 232.9 | |||
Price vegetables | 233.4 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Yield Grain | Yield Fruit | Yield Potato | Yield Vegetables | |
Temp January | 0.0162 *** | 0.0606 *** | 0.0977 *** | 0.0756 *** |
(0.029) | (0.184) | (0.216) | (0.213) | |
Temp July | −0.0499 *** | 0.0513 | −0.3658 *** | −0.0948 * |
(0.071) | (0.31) | (0.541) | (0.558) | |
Precipitation January | −0.0024 *** | 0.0019 | −0.0106 ** | −0.0186 *** |
(0.007) | (0.046) | (0.048) | (0.054) | |
Precipitation July | −0.0003 | −0.0021 | −0.0018 | 0.0018 |
(0.004) | (0.018) | (0.02) | (0.022) | |
Crop land | 0.0007 *** | 0.0026 ** | −0.0004 | −0.001 |
(0.002) | (0.011) | (0.012) | (0.017) | |
Mineral fertilizers | 0.0108 *** | 0.0174 ** | 0.0288 *** | 0.0328 ** |
(0.026) | (0.076) | (0.081) | (0.164) | |
Organic fertilizers | 0.1385 *** | −0.074 | 0.1439 | −0.4272 ** |
(0.321) | (1.403) | (1.202) | (2.099) | |
Harvesters | −0.000001 *** | −0.000005 *** | 0.000005 *** | 0.00001 *** |
(0) | (0) | (0) | (0) | |
Tractors | 0.0026 | 0.0389 | 0.0971 * | −0.0747 |
(0.095) | (0.608) | (0.556) | (1.081) | |
CO2 | 0.0116 *** | 0.0914 *** | 0.1151 *** | 0.1451 *** |
(0.028) | (0.181) | (0.149) | (0.248) | |
El Niño | 0.103 *** | −0.0258 | 0.0173 | −0.4281 ** |
(0.223) | (1.256) | (1.287) | (1.78) | |
La Niña | 0.1267 *** | −0.3133 ** | 0.0215 | −0.3262 |
(0.325) | (1.318) | (1.402) | (2.362) | |
Price wheat | 0.0001 | |||
(0.005) | ||||
Price oats | 0.0004 | |||
(0.006) | ||||
Price potato | 0.0025 *** | 0.008 *** | 0.0079 *** | |
(0.008) | (0.009) | (0.013) | ||
Price vegetables | −0.0007 | −0.0078 *** | −0.0047 *** | |
(0.009) | (0.01) | (0.012) | ||
Const | −2.7251 ** | −34.1663 *** | −24.2807 *** | −32.5473 *** |
(12.261) | (72.367) | (60.093) | (105.415) | |
Observations | 1223 | 1200 | 1214 | 1214 |
R-squared | 0.537 | 0.283 | 0.484 | 0.429 |
(5) | (6) | (7) | (8) | |
---|---|---|---|---|
Yield Grain | Yield Fruit | Yield Potato | Yield Vegetables | |
D Temp January | 0.0072 *** | 0.0843 *** | 0.1143 *** | 0.0629 *** |
(0.02) | (0.134) | (0.164) | (0.153) | |
D Temp July | −0.0422 *** | 0.0065 | −0.1963 *** | −0.0674 ** |
(0.055) | (0.185) | (0.268) | (0.287) | |
D Precipitation January | −0.0001 | −0.0005 | −0.002 * | −0.0045 *** |
(0.002) | (0.012) | (0.011) | (0.017) | |
D Precipitation July | −0.0002 | −0.001 | 0.0035 ** | 0.0025 |
(0.003) | (0.014) | (0.016) | (0.019) | |
Crop land | 0.0007 *** | 0.0027 ** | −0.0005 | −0.0009 |
(0.002) | (0.011) | (0.012) | (0.017) | |
Mineral fertilizers | 0.0107 *** | 0.0163 ** | 0.0271 *** | 0.032 * |
(0.027) | (0.076) | (0.071) | (0.163) | |
Organic fertilizers | 0.1346 *** | −0.0657 | 0.1186 | −0.4309 ** |
(0.318) | (1.371) | (1.203) | (2.089) | |
Harvesters | −0.000001 *** | −0.000005 *** | 0.000005 *** | 0.00001 *** |
(0) | (0) | (0) | (0) | |
Tractors | 0.0004 | 0.0419 | 0.0861 * | −0.0817 |
(0.095) | (0.581) | (0.515) | (1.056) | |
CO2 | 0.0105 *** | 0.1014 *** | 0.1287 *** | 0.151 *** |
(0.03) | (0.187) | (0.149) | (0.248) | |
El Niño | 0.11 *** | −0.081 | 0.1047 | −0.424 ** |
(0.223) | (1.284) | (1.328) | (1.827) | |
La Niña | 0.1848 *** | −0.1508 | 0.2926 ** | −0.1801 |
(0.34) | (1.276) | (1.379) | (2.26) | |
Price wheat | 0.002 *** | |||
(0.006) | ||||
Price oats | −0.0019 *** | |||
(0.007) | ||||
Price potato | 0.0017 ** | 0.006 *** | 0.0066 *** | |
(0.008) | (0.008) | (0.013) | ||
Price vegetables | −0.0009 | −0.0067 *** | −0.0043 *** | |
(0.009) | (0.011) | (0.014) | ||
Const | −3.5163 *** | −37.7165 *** | −37.8716 *** | −37.6349 *** |
(12.595) | (75.309) | (61.279) | (106.598) | |
Observations | 1222 | 1198 | 1212 | 1212 |
R-squared | 0.53 | 0.3 | 0.472 | 0.429 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordeev, R.V.; Pyzhev, A.I.; Zander, E.V. Does Climate Change Influence Russian Agriculture? Evidence from Panel Data Analysis. Sustainability 2022, 14, 718. https://doi.org/10.3390/su14020718
Gordeev RV, Pyzhev AI, Zander EV. Does Climate Change Influence Russian Agriculture? Evidence from Panel Data Analysis. Sustainability. 2022; 14(2):718. https://doi.org/10.3390/su14020718
Chicago/Turabian StyleGordeev, Roman V., Anton I. Pyzhev, and Evgeniya V. Zander. 2022. "Does Climate Change Influence Russian Agriculture? Evidence from Panel Data Analysis" Sustainability 14, no. 2: 718. https://doi.org/10.3390/su14020718
APA StyleGordeev, R. V., Pyzhev, A. I., & Zander, E. V. (2022). Does Climate Change Influence Russian Agriculture? Evidence from Panel Data Analysis. Sustainability, 14(2), 718. https://doi.org/10.3390/su14020718