Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water
Abstract
:1. Introduction
2. The Campanian Ignimbrite: Brief Geological, Mineralogical and Exploitation Overview
3. Materials and Methods
4. Results and Discussion
4.1. Thermal Behavior and Spectral Features
4.2. Technological Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misaelides, P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 2011, 144, 15–18. [Google Scholar] [CrossRef]
- Bowman, R.S. Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Mater. 2003, 61, 43–56. [Google Scholar] [CrossRef]
- Reeve, P.J.; Fallowfield, H.J. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 2018, 205, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Italian Council of Ministers. Recovery and Resilience Plan; European Parliamentary Research Service(EPRS): Brussels, Belgium, 2021.
- Vacchi, M.; Siligardi, C.; Demaria, F.; González-Sánchez, R.; Settembre-Blundo, D. Technological Sustainability or Sustainable Technology? A Multidimensional Vision of Sustainability in Manufacturing. Sustainability 2021, 13, 9942. [Google Scholar] [CrossRef]
- Cavalieri, A.; Reis, J.; Amorim, M. Circular economy and internet of things: Mapping science of case studies in manufacturing industry. Sustainability 2021, 13, 3299. [Google Scholar] [CrossRef]
- Murmura, F.; Bravi, L.; Santos, G. Sustainable process and product innovation in the eyewear sector: The role of industry 4.0 enabling technologies. Sustainability 2021, 13, 365. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sepúlveda, P.; Manquián-Cerda, K.; Ramírez-Tagle, R.; Rubio, M.A.; Bolan, N.; Sarkar, B.; Arancibia-Miranda, N. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 2019, 373, 810–819. [Google Scholar] [CrossRef]
- Serri, C.; de Gennaro, B.; Catalanotti, L.; Cappelletti, P.; Langella, A.; Mercurio, M.; Mayol, L.; Biondi, M. Surfactant-modified phillipsite and chabazite as novel excipients for pharmaceutical applications? Microporous Mesoporous Mater. 2016, 224, 143–148. [Google Scholar] [CrossRef]
- de Gennaro, B.; Catalanotti, L.; Cappelletti, P.; Langella, A.; Mercurio, M.; Serri, C.; Biondi, M.; Mayol, L. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study. Colloids Surfaces B Biointerfaces 2015, 130, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Izzo, F.; Mercurio, M.; de Gennaro, B.; Aprea, P.; Cappelletti, P.; Daković, A.; Germinario, C.; Grifa, C.; Smiljanic, D.; Langella, A. Surface modified natural zeolites (SMNZs) as nanocomposite versatile materials for health and environment. Colloids Surfaces B Biointerfaces 2019, 182, 110380. [Google Scholar] [CrossRef] [PubMed]
- Langella, A.; Bish, D.L.; Cappelletti, P.; Cerri, G.; Colella, A.; de Gennaro, R.; Graziano, S.F.; Perrotta, A.; Scarpati, C.; de Gennaro, M. New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Appl. Clay Sci. 2013, 72, 55–73. [Google Scholar] [CrossRef]
- Esposito, S.; Marocco, A.; Dell’Agli, G.; De Gennaro, B.; Pansini, M. Relationships between the water content of zeolites and their cation population. Microporous Mesoporous Mater. 2015, 202, 36–43. [Google Scholar] [CrossRef]
- Colella, C.; Pansini, M. Lead removal from wastewaters using chabazite tuff. ACS Symp. Ser. 1988, 368, 500–510. [Google Scholar]
- Cerri, G.; Farina, M.; Brundu, A.; Daković, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Özen Karsli, S.; Göncüoğlu, M.; Liguori, B.; de Gennaro, B.; Cappelletti, P.; Gatta, G.; Iucolano, F.; Colella, C. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement-and lime-based binders. Constr. Build. Mater. 2016, 105, 46–61. [Google Scholar] [CrossRef]
- Basile, A.; Cacciola, G.; Colella, C.; Mercadante, L.; Pansini, M. Thermal conductivity of natural zeolite-PTFE composites. Heat Recover. Syst. CHP 1992, 12, 497–503. [Google Scholar] [CrossRef]
- Campania Region. PRAE (Regional Plan of the Exploiting Activities in Campania Region); Campania Region: Campania, Italy, 2006.
- Scarpati, C.; Sparice, D.; Perrotta, A. A crystal concentration method for calculating ignimbrite volume from distal ash-fall deposits and a reappraisal of the magnitude of the Campanian Ignimbrite. J. Volcanol. Geotherm. Res. 2014, 280, 67–75. [Google Scholar] [CrossRef]
- Cappelletti, P.; Colella, A.; Langella, A.; Mercurio, M.; Catalanotti, L.; Monetti, V.; De Gennaro, B. Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations Part 1. Mineralogical and technological characterization of some industrial zeolite-rich rocks. Microporous Mesoporous Mater. 2017, 250, 232–244. [Google Scholar] [CrossRef]
- Cristofoletti, R.; Dressman, J.B. Dissolution methods to increasing discriminatory power of in vitro dissolution testing for ibuprofen free acid and its salts. J. Pharm. Sci. 2017, 106, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names. Can. Mineral. 1997, 35, 1571–1606. [Google Scholar] [CrossRef]
- Byrappa, K.; Kumar, B.V.S. Characterization of zeolites by infrared spectroscopy. Asian J. Chem. 2007, 19, 4933–4935. [Google Scholar] [CrossRef]
- Karge, H.G. Characterization by IR spectroscopy. In Verified Syntheses of Zeolitic Materials; John Wiley Sons Inc.: New York, NY, USA, 2001; pp. 69–71. [Google Scholar] [CrossRef]
- Mozgawa, W.; Król, M.; Barczyk, K. FT-IR studies of zeolites from different structural groups. Chem. Nauk. 2011, 1, 667–674. [Google Scholar]
- Barczyk, K.; Mozgawa, W.; Król, M. Studies of anions sorption on natural zeolites. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2014, 133, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Krajišnik, D.; Daković, A.; Malenović, A.; Kragović, M.; Milić, J. Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers. Clay Miner. 2015, 50, 11–22. [Google Scholar] [CrossRef]
- Krajišnik, D.; Daković, A.; Malenović, A.; Milojević, M.; Dondur, V.; Milić, J. Cationic surfactants-modified natural zeolites: Potential excipients for anti-inflammatory drugs. In Proceedings of the 3rd Croatian–Slovenian Symposium on Zeolites, Trogir, Croatia, 16–17 September 2010; pp. 23–26. [Google Scholar]
- Wray, P.S.; Clarke, G.S.; Kazarian, S.G. Application of FTIR spectroscopic imaging to study the effects of modifying the pH microenvironment on the dissolution of ibuprofen from HPMC matrices. J. Pharm. Sci. 2011, 100, 4745–4755. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. the Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 252, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Sips, R. Combined form of Langmuir and Freundlich equations. J. Chem. Phys 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Toth, J. State equations of the solid-gas interface layers. Acta Chim Acad Sci Hungar 1971, 69, 311–328. [Google Scholar]
- Li, Z.; Anghel, I.; Bowman, R.S. Sorption of Oxyanions By Surfactant-Modified Zeolite. J. Dispers. Sci. Technol. 1998, 19, 843–857. [Google Scholar] [CrossRef]
- Li, Z.; Jones, H.K.; Bowman, R.S.; Helferich, R. Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron. Environ. Sci. Technol. 1999, 33, 4326–4330. [Google Scholar] [CrossRef]
- Krajišnik, D.; Milojević, M.; Malenović, A.; Daković, A.; Ibrić, S.; Savić, S.; Dondur, V.; Matijašević, S.; Radulović, A.; Daniels, R.; et al. Cationic surfactants-modified natural zeolites: Improvement of the excipients functionality. Drug Dev. Ind. Pharm. 2010, 36, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bowman, R.S. Sorption of chromate and PCE by surfactant-modified clay minerals. Environ. Eng. Sci. 1998, 15, 237–245. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, R.S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997, 31, 2407–2412. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, R.S. Regeneration of surfactant-modified zeolite after saturation with chromate and perchloroethylene. Water Res. 2001, 35, 322–326. [Google Scholar] [CrossRef]
- Janićijević, J.; Krajišnik, D.; Čalija, B.; Vasiljević, B.N.; Dobričić, V.; Daković, A.; Antonijević, M.D.; Milić, J. Modified local diatomite as potential functional drug carrier—A model study for diclofenac sodium. Int. J. Pharm. 2015, 496, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Sauvé, S.; Desrosiers, M. A review of what is an emerging contaminant. Chem. Cent. J. 2014, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, M.; Eljarrat, E.; Lopez De Alda, M.J.; Barceló, D. Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Anal. Bioanal. Chem. 2004, 378, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Tiedeken, E.J.; Tahar, A.; McHugh, B.; Rowan, N.J. Monitoring, sources, receptors, and control measures for three European Union watch list substances of emerging concern in receiving waters—A 20 year systematic review. Sci. Total Environ. 2017, 574, 1140–1163. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.D.; Sans, C.; Esplugas, S.; Dezotti, M. Ozonation of NSAID: A Biodegradability and Toxicity Study. Ozone Sci. Eng. 2010, 32, 91–98. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Fu, J.; Lazaridis, N.K.; Bikiaris, D.N.; Matis, K.A. New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J. Mol. Liq. 2015, 209, 87–93. [Google Scholar] [CrossRef]
- Horcajada, P.; Márquez-Alvarez, C.; Rámila, A.; Pérez-Pariente, J.; Vallet-Regí, M. Controlled release of Ibuprofen from dealuminated faujasites. Solid State Sci. 2006, 8, 1459–1465. [Google Scholar] [CrossRef]
- Smiljanić, D.; Daković, A.; Obradović, M.; Ožegović, M.; Izzo, F.; Germinario, C.; de Gennaro, B. Application of Surfactant Modified Natural Zeolites for the Removal of Salicylic Acid—A Contaminant of Emerging Concern. Materials 2021, 14, 7728. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Pasquino, R.; Di Domenico, M.; Izzo, F.; Gaudino, D.; Vanzanella, V.; Grizzuti, N.; de Gennaro, B. Rheology-sensitive response of zeolite-supported anti-inflammatory drug systems. Colloids Surfaces B Biointerfaces 2016, 146, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Krajišnik, D.; Daković, A.; Milojević, M.; Malenović, A.; Kragović, M.; Bogdanović, D.B.; Dondur, V.; Milić, J. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloids Surfaces B Biointerfaces 2011, 83, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Krajišnik, D.; Daković, A.; Malenović, A.; Milojević-Rakić, M.; Dondur, V.; Radulović, Ž.; Milić, J. Investigation of adsorption and release of diclofenac sodium by modified zeolites composites. Appl. Clay Sci. 2013, 83–84, 322–326. [Google Scholar] [CrossRef]
- Jevtić, S.; Grujić, S.; Hrenović, J.; Rajić, N. Surfactant-modified clinoptilolite as a salicylate carrier, salicylate kinetic release and its antibacterial activity. Microporous Mesoporous Mater. 2012, 159, 30–35. [Google Scholar] [CrossRef]
- Choi, J.; Shin, W.S. Removal of Salicylic and Ibuprofen by Hexadecyltrimethylammonium-Modified Montmorillonite and Zeolite. Minerals 2020, 10, 898. [Google Scholar] [CrossRef]
- Rakić, V.; Rajić, N.; Daković, A.; Auroux, A. The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous Mesoporous Mater. 2013, 166, 185–194. [Google Scholar] [CrossRef]
Starting Material | T < 550 °C | 550 °C < T < 1050 °C | L.O.I (%) | ||||
---|---|---|---|---|---|---|---|
ΔW (%) | DSC a (°C) | EGA | ΔW (%) | DSC a,b (°C) | EGA | ||
CHA_SM | 12.6 | 169 ÷ 244 | H2O | 0.8 | 906 b | - | 13.4 |
SMNZs | T < 200 °C | 200 °C < T < 1050 °C | L.O.I (%) | ||||
ΔW (%) | DSC a (°C) | EGA | ΔW (%) | DSC a,b (°C) | EGA | ||
CHA_CPC | 6.2 | 123 ÷ 179 | 13.6 | 7.4 | 251 b ÷ 332 b ÷ 497 b ÷ 937 b | CO2 + CH3 + CH2 + H2O + CO tr | 13.6 |
CHA_BKC | 8.3 | 156 | 15.6 | 7.3 | 212 b ÷ 279 b ÷ 382 b ÷ 506 b ÷ 943 b | CO2 + CH3 + CH2 + H2O + CO tr | 15.6 |
CHA_SM | CHA_CPC | CHA_CPC + IBU | CHA_BKC | CHA_BKC + IBU | Tentative Vibrational Assignments | Chemical Phase |
---|---|---|---|---|---|---|
3409 w | 3406 w | 3428 w | 3388 w | 3415 w | O–H stretching | water |
2954 sh | 2953 vw | 2955 sh | 2953 vw | C–H stretching | Surfactant/IBU | |
2916 w | 2921 w | 2922 vw | 2921 w | C–H stretching | Surfactant/IBU | |
2850 w | 2851 w | 2852 vw | 2852 w | C–H stretching | Surfactant/IBU | |
1637 w | 1636 w | 1636 w | 1638 w | 1635 w | O–H bending | water |
1576 vw | 1574 vw | Asymmetric stretching in carboxylate ion | IBU | |||
1489 vw | 1489 vw | 1485 vw | 1489 vw | C−H bending | Surfactant/IBU | |
1470 vw | 1466 vw | 1470 vw | 1466 vw | C−H bending | Surfactant/IBU | |
1381 vw | 1381 vw | Symmetric stretching in carboxylate ion | IBU | |||
999 vs | 995 vs | 992 vs | 993 vs | 993 vs | T–O asymmetric stretching | Silicates |
765 vw | 777 w | 777 w | 769 w | 776 w | T–O–T asymmetric stretching | Silicates |
723 vw | 719 w | 721 w | 726 w | 720 w | T–O–T symmetric stretching | Silicates |
628 w | 603 w | 599 w | 625 w | 599 w | T–O–T bending | Silicates |
516 w | 515 vw | 519 vw | 516 w | 517 vw | T–O–T bending | Silicates |
461 w | 454 w | T–O–T bending | Silicates | |||
408 w | 421 w | 424 w | 408 vw | 422 w | T–O–T bending | Silicates |
Sample | Mathematical Model | Parameters | Goodness-of-Fit | |||||
---|---|---|---|---|---|---|---|---|
K (L∙mg−1) | n | Smax (mg∙g−1) | Smax (mEq∙g−1) | R2 | AIC | BIC | ||
CHA_CPC | Langmuir | 0.01 | 28.3 | 0.124 | 0.969 | 30.27 | 30.17 | |
Sips | 0.012 | 1.55 | 25.4 | 0.111 | 0.979 | 29.39 | 29.23 | |
Toth | 0.006 | 2.95 | 24.4 | 0.107 | 0.985 | 27.26 | 27.1 | |
CHA_BKC | Langmuir | 0.004 | 19.8 | 0.087 | 0.969 | 24.07 | 23.96 | |
Sips | 0.007 | 2.2 | 15.38 | 0.067 | 0.998 | 8.23 | 8.07 | |
Toth | 0.003 | 5.59 | 14.86 | 0.065 | 0.998 | 6.05 | 5.88 |
Sample | Mathematical Model | Parameters | Goodness-of-Fit | |||||
---|---|---|---|---|---|---|---|---|
K1 (min−1) | K2 (g∙mg−1∙min−1) | Q0 (mg∙g−1) | Q0 (mEq∙g−1) | R2 | AIC | BIC | ||
CHA_CPC | Pseudo-first order | 0.244 | 24.39 | 0.11 | 0.992 | 24.17 | 24.78 | |
Pseudo-second order | 0.100 | 24.51 | 0.11 | 0.993 | 23.77 | 24.57 | ||
CHA_BKC | Pseudo-first order | 0.425 | 13.32 | 0.06 | 0.981 | 21.48 | 22.28 | |
Pseudo-second order | 0.107 | 13.46 | 0.06 | 0.981 | 21.38 | 22.18 |
ID Sample | Description | Adsorbent Minerals | Drug | Surfactant | Smax | Reference |
---|---|---|---|---|---|---|
CHA_SM | Campanian Ignimbrite (Lithified Yellow Tuff) from San Mango sul Calore (southern Italy) | Cbz (71.2 wt.%), Php (5.2 wt.%) | IBU | CPC | 24.5 mg/g | Present study |
IBU | BKC | 13.5 mg/g | Present study | |||
DCF | CPC | 21.3 mg/g | [10] | |||
PHI_SAV | Neapolitan Yellow Tuff from Savanelli quarry (southern Italy) | Cbz (4.5 wt.%), Php (69.6 wt.%) | IBU | CPC | 19.3 mg/g | [12] |
IBU | CPC | 22 mg/g | [54] | |||
IBU | BKC | 20.9 mg/g | [12] | |||
IBU | HDTMA-Cl | 26.4 mg/g | [12] | |||
IBU | HDTMA-Br | 27.9 mg/g | [12] | |||
DCF | CPC | 65 mg/g | [54] | |||
DCF | CPC | 45.1 mg/g | [10] | |||
PHIL75 | Phillipsite-rich rock from Campania Region (commercialized by Italiana Zeoliti—CBKC Group) | Cbz (4.0 wt.%), Php (44.0 wt.%), Sme (11 wt.%) | IBU | CPC | 17.9 mg/g | [52] * |
IBU | ARQ | 4.8 mg/g | [52] * | |||
DCF | CPC | 30 mg/g | [52] * | |||
DCF | ARQ | 19.9 mg/g | [52] * | |||
KET | CPC | 12.5 mg/g | [52] * | |||
KET | ARQ | 10.9 mg/g | [52] * | |||
NAP | CPC | 17.9 mg/g | [52] * | |||
NAP | ARQ | 4.8 mg/g | [52] * | |||
SA | CPC | 10.0 mg/g | [52] * | |||
SA | ARQ | 4.4 mg/g | [52] * | |||
CLI_SK | Clinoptilolite-rich rock from Nižný Hrabovec deposit (East-Slovakia basin) | Cpt (55.7 wt.%) | IBU | CPC | 16.9 mg/g | [12] |
IBU | BKC | 15.0 mg/g | [12] | |||
IBU | HDTMA-Cl | 22.5 mg/g | [12] | |||
IBU | HDTMA-Br | 25.9 mg/g | [12] | |||
DCF | CPC | 49.0 mg/g | [10] | |||
CLI_CA | Clinoptilolite-rich rock from California, USA (commercialized by St. Cloud Mining Company) | Cpt (80.0 wt.%) | DCF | CPC | 40.3 mg/g | [11] |
ZVB | Clinoptilolite-rich tuff from the Zlatokop mine (Vranjska Banja, Serbia) | Cpt (80 wt.%) | IBU | BKC | 13.1 mg/g | [29] |
DCF | CPC | 42.9 mg/g | [55] | |||
DCF | HDTMA-Br | 54.1 mg/g | [56] | |||
DDEA | BKC | 37.3 mg/g | [29] | |||
NZ-BKC | Clinoptilolite-rich tuff from the Zlatokop mine (Vranjska Banja, Serbia) | Cpt (73 wt.%) | SA | BKC | 19.0 mg/g | [57] |
IZ_CLI | Clinoptilolite-rich tuff from Eskişehir (Turkey) | Cpt (79.0 wt.%) | IBU | CPC | 19.7 mg/g | [52] * |
IBU | ARQ | 12.5 mg/g | [52] * | |||
DCF | CPC | 35 mg/g | [52] * | |||
DCF | ARQ | 23.3 mg/g | [52] * | |||
KET | CPC | 13.6 mg/g | [52] * | |||
KET | ARQ | 9.3 mg/g | [52] * | |||
NAP | CPC | 16.1 mg/g | [52] * | |||
NAP | ARQ | 7.7 mg/g | [52] * | |||
SA | CPC | 11.0 mg/g | [52] * | |||
SA | ARQ | 8.5 mg/g | [52] * | |||
HZ | Commercial zeolite (Wangpyo Chemical Co., Pohang, Korea) | n.a. | IBU | HDTMA-Cl | 13.6 mg/g | [58] |
SA | HDTMA-Cl | 3.3 mg/g | [58] | |||
HM | Montomorillonite-KSF (Aldrich Chemical Co., Munich, Germany) | Mnt | IBU | HDTMA-Cl | 13.5 mg/g | [58] |
SA | HDTMA-Cl | 5.9 mg/g | [58] | |||
OM | Bentonite obtained from Šipovo deposit (Bosnia) | Mnt (90 wt.%) | SA | ODMBA | 3.2 mg/g | [59] |
OK | Kaolin from a plant for production of quartz sand in Rgotina (Serbia) | Kln | SA | ODMBA | 4.8 mg/g | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzo, F.; Langella, A.; de Gennaro, B.; Germinario, C.; Grifa, C.; Rispoli, C.; Mercurio, M. Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water. Sustainability 2022, 14, 725. https://doi.org/10.3390/su14020725
Izzo F, Langella A, de Gennaro B, Germinario C, Grifa C, Rispoli C, Mercurio M. Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water. Sustainability. 2022; 14(2):725. https://doi.org/10.3390/su14020725
Chicago/Turabian StyleIzzo, Francesco, Alessio Langella, Bruno de Gennaro, Chiara Germinario, Celestino Grifa, Concetta Rispoli, and Mariano Mercurio. 2022. "Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water" Sustainability 14, no. 2: 725. https://doi.org/10.3390/su14020725
APA StyleIzzo, F., Langella, A., de Gennaro, B., Germinario, C., Grifa, C., Rispoli, C., & Mercurio, M. (2022). Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water. Sustainability, 14(2), 725. https://doi.org/10.3390/su14020725