The Stability and Suitability of the Bhasan Char Island as an Accommodation for the Forcibly Displaced Myanmar Nationals (FDMN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Satellite Image
2.3. Description of the Satellite Datasets
2.4. Satellite Image Analysis
2.5. DSAS Analysis
2.6. Seismic Data Analysis
2.7. Groundwater Quantity and Quality Analysis
3. Results
3.1. Spatiotemporal Morphological and Aerial Dynamics
3.2. Erosion-Accretion
3.3. Shifting of the Island Depocenter
3.4. Shoreline Dynamics
3.5. Geological Stability of the Island
3.6. Impacts of Cyclonic Events on the Island
3.7. Groundwater Availability and Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNHCR. Joint Government of Bangladesh-UNHCR Population map as of 15 March 2020. The United Nations High Commissioner for Refugees (UNHCR). Available online: https://data2.unhcr.org/en/documents/details/74675 (accessed on 28 February 2020).
- ICJ. Application of the Convention on the Prevention and Punishment of the Crime of Genocide (The Gambia v. Myanmar); Universitas Estudiantes, Pontifical Xavierian University: Bogotá, Colombia, 2020; Volume 21, pp. 257–266. [Google Scholar]
- Zaman, S.; Sammonds, P.; Ahmed, B.; Rahman, T. Disaster risk reduction in conflict contexts: Lessons learned from the lived experiences of Rohingya refugees in Cox’s bazar, Bangladesh. Int. J. Disaster Risk Reduct. 2020, 50, 101694. [Google Scholar] [CrossRef]
- Morelli, J. Environmental sustainability: A definition for environmental professionals. J. Environ. Sustain. 2011, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Vega-Azamar, R.E.; Glaus, M.; Hausler, R.; Oropeza-García, N.A.; Romero-López, R. An emergy analysis for urban environmental sustainability assessment, the Island of Montreal, Canada. Landsc. Urban Plan. 2013, 118, 18–28. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, Y.; Deng, Y. Island ecosystem evaluation and sustainable development strategies: A case study of the Zhoushan Archipelago. Glob. Ecol. Conserv. 2011, 28, e01603. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Hou, Y.; Zhao, Y.; Xue, X. Spatiotemporal evolution of island ecological quality under different urban densities: A comparative analysis of Xiamen and Kinmen Islands, southeast China. Ecol. Indic. 2021, 124, 107438. [Google Scholar] [CrossRef]
- Kench, P.S.; McLean, R.F.; Brander, R.W.; Nichol, S.L.; Smithers, S.G.; Ford, M.R.; Aslam, M. Geological effects of tsunami on mid-ocean atoll islands: The Maldives before and after the Sumatran tsunami. Geology 2006, 343, 177–180. [Google Scholar] [CrossRef]
- Salvini, R.; Francioni, M.; Riccucci, S.; Fantozzi, P.L.; Bonciani, F.; Mancini, S. Stability analysis of “GrottadelleFelci” Cliff (Capri Island, Italy): Structural, engineering–geological, photogrammetric surveys and laser scanning. Bull. Eng. Geol. Environ. 2011, 70, 549–557. [Google Scholar] [CrossRef]
- Perkins, A.; Hamnett, S.; Pullen, S.; Zito, R.; Trebilcock, D. Transport, housing and urban form: The life cycle energy consumption and emissions of city centre apartments compared with suburban dwellings. Urban Policy Res. 2009, 27, 377–396. [Google Scholar] [CrossRef]
- Aedla, R.; Dwarakish, G.S.; Reddy, D.V. Automatic shoreline detection and change detection analysis of netravati-gurpurrivermouth using histogram equalization and adaptive thresholding techniques. Aquat. Procedia 2015, 4, 563–570. [Google Scholar] [CrossRef]
- Nandi, S.; Ghosh, M.; Kundu, A.; Dutta, D.; Baksi, M. Shoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India). J. Coast. Conserv. 2016, 20, 61–80. [Google Scholar] [CrossRef]
- Farhan, A.R.; Lim, S. Resilience assessment on coastline changes and urban settlements: A case study in Seribu Islands, Indonesia. Ocean. Coast. Manag. 2011, 54, 391–400. [Google Scholar] [CrossRef]
- Adger, W. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Morris, P.; Therivel, R. Methods of Environmental Impact Assessment; Taylor & Francis: Oxfordshire, UK, 2001; Volume 2. [Google Scholar]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Brown, B. Coastal Systems and Low-Lying Areas; University of Wollongong: Wollongong, Australia, 2007. [Google Scholar]
- Karim, M.F.; Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Change 2008, 18, 490–500. [Google Scholar] [CrossRef]
- Shibly, A.M.; Takewaka, S. Morphological changes along Bangladesh coast derived from satellite images. Proc. Coast. Eng. 2012, 3, 41–45. [Google Scholar]
- Werle, D.; Martin, T.C.; Hasan, K. Flood and coastal zone monitoring in Bangladesh with RadarsatScanSAR: Technical experience and institutional challenges. Johns Hopkins APL Tech. Dig. 2000, 21, 148–154. [Google Scholar]
- Yu, W.; Alam, M.; Hassan, A.; Khan, A.S.; Ruane, A.; Rosenzweig, C.; Thurlow, J. Climate Change Risks and Food Security in Bangladesh; Routledge: Oxfordshire, UK, 2010. [Google Scholar]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Van De Giesen, G. Earth’s surface water change over the past 30 years. Nat. Clim. Change 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, A.D.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Törnqvist, T.E. Global-scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef]
- Brammer, H. Bangladesh’s dynamic coastal regions and sea-level rise. Clim. Risk Manag. 2014, 1, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Hossain, K.T.; Salauddin, M.; Tanim, I.A. Assessment of the dynamics of coastal island in Bangladesh using geospatial techniques: Domar Char. Journal of the Asiatic Society of Bangladesh. Science 2016, 42, 219–228. [Google Scholar]
- Sarwar, M.G.M.; Woodroffe, C.D. Rates of shoreline change along the coast of Bangladesh. J. Coast. Conserv. 2013, 17, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Bagli, S.; Soille, P. Morphological automatic extraction of Pan-European coastline from Landsat ETM+ images. In Proceedings of the International Symposium on GIS and Computer Cartography for Coastal Zone Management, Geneva, Switzerland, 5–9 October 2003; pp. 256–269. [Google Scholar]
- Genz, A.S.; Fletcher, C.H.; Dunn, R.A.; Frazer, L.N.; Rooney, J.J. The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. J. Coast. Res. 2007, 23, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Tirkey, N.; Biradar, R.S.; Pikle, M.; Charatkar, S. A study onshore line changes of Mumbai coast using remote sensing and GIS. J. Indian Soc. Remote Sens. 2005, 33, 85–91. [Google Scholar] [CrossRef]
- Bouchahma, B.; Yan, W. Automatic measurement of shoreline change on Djerba Island of Tunisia. J. Comput. Inf. Sci. 2012, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Z.; Zhang, H.-G.; Fu, B.; Shi, A. Analysis on the coastline change and erosion-accretion evolution of the Pearl River estuary, China, based on remote sensing images and nautical charts. J. Appl. Remote Sens. 2013, 7, 073519. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Dewidar, K.M.; Frihy, O.E. Automated techniques for quantification of beach change rates using Landsat series along the North-eastern Nile delta, Egypt. J. Oceanogr. Mar. Sci. 2010, 2, 28–39. [Google Scholar]
- Mujabar, S.; Chandrasekar, N. A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. J. Geo. Spat. Inf. Sci. 2011, 14, 282–293. [Google Scholar]
- Ramalingam, G.; Renganathan, M. Coastal geomorphology and its evolution—a case study in Agniar basin, Tamilnadu. Indian J. Geomorph. 1998, 3, 146–156. [Google Scholar]
- Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A. Estimation of shoreline position and change from airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Kaliraj, S.; Chandrasekar, N.; Magesh, N.S. Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology. Environ. Earth Sci. 2014, 71, 4523–4542. [Google Scholar] [CrossRef]
- Kabuth, A.K.; Kroon, A.; Pedersen, J.B. Multidecadal shoreline changes in Denmark. J. Coast. Res. 2014, 30, 714–728. [Google Scholar]
- Thi, V.T.; Xuan, A.T.T.; Nguyen, H.P.; Dahdouh-Guebas, F.; Koedam, N. Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences 2014, 11, 3781. [Google Scholar]
- Salauddin, M.; Hossain, K.T.; Tanim, I.A.; Kabir, M.A.; Saddam, M.H. Modeling Spatio-Temporal Shoreline Shifting of a Coastal Island in Bangladesh Using Geospatial Techniques and DSAS Extension. In Annals of Valahia University of Targoviste, Geographical Series; Valahia University of Targoviste: Târgoviște, Romania, 2018; Volume 18, pp. 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.A.; Salauddin, M.; Hossain, K.T.; Tanim, I.A.; Saddam, M.M.H.; Ahmad, A.U. Assessing the shoreline dynamics of Hatiya Island of Meghna estuary in Bangladesh using multiband satellite imageries and hydro-meteorological data. Reg. Stud. Mar. Sci. 2020, 35, 101167. [Google Scholar] [CrossRef]
- Islam, M.A.; Hossain, M.S.; Murshed, S. Assessment of Coastal Vulnerability Due to Sea Level Change at Bhola Island, Bangladesh: Using Geospatial Techniques. J. Indian Soc. Remote Sens. 2015, 43, 625–637. [Google Scholar] [CrossRef]
- Emran, A.; Rob, M.A.; Kabir, M.H.; Islam, M.N. Modeling spatio-temporal shoreline and areal dynamics of coastal island using geospatial technique. Modeling Earth Syst. Environ. 2016, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Sunny, M.J.M.; Rahman, M.A.; Matin, M.A. Affordable electricity for Bhashan Char from renewable energy. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE); IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Bremner, L. Sedimentary logics and the Rohingya refugee camps in Bangladesh. Political Geogr. 2020, 77, 102109. [Google Scholar] [CrossRef]
- Matin, N.; Raju, K.A.H.; Rahman, M.A. Analysis of Wave Characteristics along the Coast of Bangladesh Using a Coupled Wave-Hydrodynamic Delft3D Model of the Bay of Bengal. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 527, p. 012013. [Google Scholar]
- Milliman, J.D.; Syvitski, J.P. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Cowper-Smith, Y. The Bhasan Char Relocation Project–Implications for Rohingya Refugees in Bangladesh. Relief Web 2020. Available online: https://reliefweb.int/report/bangladesh/bhasan-char-relocation-project-implications-rohingya-refugees-bangladesh (accessed on 24 April 2020).
- Islam, M.A.; Hossain, M.S.; Hasan, T.; Murshed, S. Shoreline changes along the Kutubdia Island, southeast Bangladesh using digital shoreline analysis system. Bangladesh J. Sci. Res. 2014, 27, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.S.; Santra, A.; Mitra, D. Change detection analysis of the shoreline using Toposheet and Satellite Image: A case study of the coastal stretch of Mandarmani-Shankarpur, West Bengal, India. Int. J. Geomat. Geosci. 2013, 3, 425. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; US Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Crowell, M.; Douglas, B.C.; Leatherman, S.P. On forecasting future U.S. Shoreline positions: A test of algorithms. J. Coast. Res. 1997, 13, 1245–1255. [Google Scholar] [CrossRef]
- Alam, M.S.; Uddin, K. A study of morphological changes in the coastal areas and offshore islands of Bangladesh using remote sensing. Am. J. Geogr. Inf. Syst. 2013, 2, 15–18. [Google Scholar]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Aslam, M.; Kench, P.S. Reef Island dynamics and mechanisms of change in Huvadhoo Atoll, Republic of Maldives, Indian Ocean. Anthropocene 2017, 18, 57–68. [Google Scholar] [CrossRef]
- Goodbred, S.L., Jr.; Kuehl, S.A. Floodplain processes in the Bengal Basin and the storage of Ganges–Brahmaputra Riversediment: An accretion study using 137Cs and 210Pb geochronology. Sediment. Geol. 1998, 121, 239–258. [Google Scholar] [CrossRef]
- Sarker, M.H.; Akter, J.; Ferdous, R.; Noor, F. Sediment dispersal processes and management in coping with climate change in the Meghna Estuary, Bangladesh. In Proceedings of the Workshop on Sediment Problems and Sediment Management in Asian River Basins; IAHS: Hyderabad, India, 2011; pp. 203–218, Publication 349. [Google Scholar]
- Hossain, S. Assessment of Sediment Movement Pattern Along Nearshore Coastal Water of Cox’s Bazar; Bangladesh University of Engineering and Technology: Dhaka, Bangladesh, 2015. [Google Scholar]
- Brammer, H. Can Bangladesh be Protected from Floods? University Press Limited (UPL): Dhaka, Bangladesh, 2004. [Google Scholar]
- CEGIS. Impacts of Climate Change on the Morphological Processes of the Main Rivers and Meghna Estuary of Bangladesh; Asian Development Bank (ADB): Manila, Philippines, 2010; pp. 1–123. [Google Scholar]
- Steckler, M.S.; Akhter, S.H.; Seeber, L.; Bilham, R.G.; Kogan, M.G.; Masson, F.; Maurin, T.; Mondal, D.; Agostinetti, N.P.; Rangin, C.; et al. GPS velocities and structure across the Burma accretionary prism and shillong anticline in Bangladesh. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2012; Volume 2012, p. T51F-2667. [Google Scholar]
- Haque, U.; Hashizume, M.; Kolivras, K.N.; Overgaard, H.J.; Das, B.; Yamamoto, T. Reduced death rates from cyclones in Bangladesh: What more needs to be done? Bull. World Health Organ. 2012, 90, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S. Biological aspects of the coastal and marine environment of Bangladesh. Ocean. Coast. Manag. 2001, 44, 261–282. [Google Scholar] [CrossRef]
- Iftekhar, M.S. Conservation and management of the Bangladesh coastal ecosystem: Overview of an integrated approach. In Natural Resources Forum; Blackwell Publishing Ltd: Oxford, UK, 2006; Volume 30, pp. 230–237. [Google Scholar]
Date of Occurrence | Nature of Phenomenon | Landfall Area | Maximum Wind Speed in km/hour | Tidal Surge Height in ft. |
---|---|---|---|---|
19 May 2004 | Cyclonic Storm | Teknaf-Akyab Coast | 65–90 | 2–4 |
15 November 2007 | Severe Cyclonic Storm with core of hurricane winds (SIDR) | Khulna-Barisal Coast near Baleshwar River | 223 | 15–20 |
25 May 2009 | Cyclonic Storm (AILA) | West Bengal-Khulna Coast near Sagar Island | 70–90 | 4–6 |
16 May 2013 | Cyclonic Storm (MAHASEN) | Noakhali-Chittagong Coast | 100 | - |
30 July 2015 | Cyclonic Storm (KOMEN) | Chittagong-Cox’s Bazar | 65 | 5–7 |
21 May 2016 | Cyclonic Storm (ROANU) | Barisal-Chittagong Coast near Patenga | 128 | 4–5 |
30 May 2017 | Severe Cyclonic Storm (MORA) | Chittagong-Cox’s Bazar Coast near Kutubdia | 146 | - |
4 May 2019 | Cyclonic Storm (FANI) | Khulna and adjoining southwestern coast | 215 | 4–5 |
9 November 2019 | Cyclonic Storm (BULBUL) | West Bengal-Khulna | 150–160 | 5–7 |
20 May 2020 | Severe Cyclonic Storm (AMPHAN) | West Bengal-Khulna | 240 | 15 |
Sensor Platform | Sensor | Acquisition Date | Spatial Resolution | Cloud Cover |
---|---|---|---|---|
Landsat 5 | TM | 20 November 2003 | 30 m | Cloud Free |
Landsat 5 | TM | 24 December 2004 | 30 m | 3% |
Landsat 5 | TM | 10 February 2005 | 30 m | 2% |
Landsat 5 | TM | 13 February 2006 | 30 m | Cloud Free |
Landsat 5 | TM | 16 February 2007 | 30 m | 1% |
Landsat 5 | TM | 7 April 2008 | 30 m | 1% |
Landsat 5 | TM | 5 February 2009 | 30 m | Cloud Free |
Landsat 5 | TM | 8 February 2010 | 30 m | 2% |
Landsat 5 | TM | 11 February 2011 | 30 m | Cloud Free |
Landsat 7 | ETM+ | 6 February 2012 | 30 m | 1% |
Landsat 8 | OLI | 1 December 2013 | 30 m | 2% |
Landsat 8 | OLI | 19 February 2014 | 30 m | Cloud Free |
Landsat 8 | OLI | 10 March 2015 | 30 m | 1% |
Landsat 8 | OLI | 8 January 2016 | 30 m | 2% |
Landsat 8 | OLI | 11 February 2017 | 30 m | Cloud Free |
Landsat 8 | OLI | 13 January 2018 | 30 m | Cloud Free |
Landsat 8 | OLI | 1 February 2019 | 30 m | Cloud Free |
Landsat 8 | OLI | 4 February 2020 | 30 m | Cloud Free |
Year | Area (sq. km) | Area Gain (sq. km) |
---|---|---|
2020 | 79.80 | 0.61 |
2019 | 79.19 | 6.37 |
2018 | 72.83 | 0.62 |
2017 | 72.21 | 7.36 |
2016 | 64.85 | 13.43 |
2015 | 51.42 | 2.23 |
2014 | 49.19 | 1.66 |
2013 | 47.53 | −11.80 |
2012 | 59.33 | −24.72 |
2011 | 84.05 | 32.92 |
2010 | 51.13 | 16.45 |
2009 | 34.69 | −46.43 |
2008 | 81.12 | 22.15 |
2007 | 58.97 | −35.90 |
2006 | 94.86 | −24.89 |
2005 | 119.75 | 68.00 |
2004 | 51.75 | 40.35 |
2003 | 11.40 | - |
2003–2020 | 68.40 |
Duration | Erosion (sq. km) | Accretion (sq. km) | Common Land (sq. km) |
---|---|---|---|
2003–2006 | 5.33 | 88.80 | 6.07 |
2006–2009 | 60.18 | 0 | 34.69 |
2009–2012 | 3.11 | 27.75 | 31.58 |
2012–2015 | 15.17 | 7.81 | 7.81 |
2015–2018 | 4.74 | 26.52 | 47.23 |
2018–2020 | 2.40 | 9.73 | 71.35 |
Year | Shoreline Length (km) | Shoreline Gain/Loss (km) |
---|---|---|
2020 | 55.23 | 2.23 |
2019 | 52.99 | 4.28 |
2018 | 48.71 | 4.27 |
2017 | 44.44 | 3.90 |
2016 | 40.54 | 4.67 |
2015 | 35.87 | 0.23 |
2014 | 35.64 | −1.07 |
2013 | 36.71 | −13.48 |
2012 | 50.19 | −17.46 |
2011 | 67.65 | 15.48 |
2010 | 52.16 | 26.85 |
2009 | 25.32 | −53.55 |
2008 | 78.87 | 16.26 |
2007 | 62.61 | −13.48 |
2006 | 76.09 | 3.89 |
2005 | 72.19 | 23.34 |
2004 | 48.85 | 32.88 |
2003 | 15.97 | - |
2003–2020 | 39.25 |
Assessed Parameters | Unit | Results | Bangladesh Standard for Drinking Water (ECR’97) | WHO Guideline for Drinking Water, 2004 | Method | Data Source |
---|---|---|---|---|---|---|
Physical | ||||||
pH | - | 7.32 | 6.5–8.5 | 6.5–8.5 | Electrometric (pH meter) | Bangladesh Navy |
Total Hardness (EDTA) as CaCO3 | mg/L | 121.2 | 200–500 | <500 | EDTA Titrimetric | |
Total Dissolved Solids (TDS) | mg/L | 425.0 | 1000 | <1000 | Electrical Conductivity | |
Chemical | ||||||
Chloride | mg/L | 85.83 | 150–600 | <250 | Argentometric | Bangladesh Navy |
Iron | mg/L | <0.1 | 0.3–1.0 | <0.3 | FAAS | |
Arsenic | ppb | <1.0 | 50.0 | 10.0 | HGAAS | |
Biochemical | ||||||
Salmonella sp. | - | Absent | - | Absent | Culture | Bangladesh Navy |
Thermotolerant Escherichia coli | CFU/100 mL | 0 | 0 | 0 | Membrane Filtration | |
Shigella spp. | - | Absent | - | Absent | Culture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazi, M.Y.; Kamal, A.S.M.M.; Uddin, M.N.; Bhuiyan, M.A.H.; Rahman, M.Z. The Stability and Suitability of the Bhasan Char Island as an Accommodation for the Forcibly Displaced Myanmar Nationals (FDMN). Sustainability 2022, 14, 747. https://doi.org/10.3390/su14020747
Gazi MY, Kamal ASMM, Uddin MN, Bhuiyan MAH, Rahman MZ. The Stability and Suitability of the Bhasan Char Island as an Accommodation for the Forcibly Displaced Myanmar Nationals (FDMN). Sustainability. 2022; 14(2):747. https://doi.org/10.3390/su14020747
Chicago/Turabian StyleGazi, Md. Yousuf, A. S. M. Maksud Kamal, Md. Nazim Uddin, Md. Anwar Hossain Bhuiyan, and Md. Zillur Rahman. 2022. "The Stability and Suitability of the Bhasan Char Island as an Accommodation for the Forcibly Displaced Myanmar Nationals (FDMN)" Sustainability 14, no. 2: 747. https://doi.org/10.3390/su14020747
APA StyleGazi, M. Y., Kamal, A. S. M. M., Uddin, M. N., Bhuiyan, M. A. H., & Rahman, M. Z. (2022). The Stability and Suitability of the Bhasan Char Island as an Accommodation for the Forcibly Displaced Myanmar Nationals (FDMN). Sustainability, 14(2), 747. https://doi.org/10.3390/su14020747