Travel-Related Influencer Content on Instagram: How Social Media Fuels Wanderlust and How to Mitigate the Effect
Abstract
:1. Introduction
2. Theoretical Background and Derivation of Hypotheses
2.1. Exposure to Travel-Related Content and the Intention to Visit a Tourist Destination
2.2. The Mediating Role of Benign Envy
2.3. The Moderating Role of Online Social Identity
2.4. The Moderating Mediation Role of Pro-Environmental Attitude
3. Methodology
3.1. Measurement Scales
3.2. Data Collection
4. Data Analysis and Results
4.1. Sample Characteristics
4.2. Assessment of the Measurement Model
4.3. Testing the Structural Equation Model
4.4. Discussion
5. Conclusions, Limitations and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 2019, 571, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.; Vignati, E. Fossil CO2 Emissions of All World Countries-2020 Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-21515-8. [Google Scholar]
- UNWTO/UNEP/WMO. Climate Change and Tourism: Responding to Global Challenges; World Tourism Organization, United Nations Environment Programme, World Meteorological Organization: Paris, France; Madrid, Spain, 2008; ISBN 978-92-844-1234-1. [Google Scholar]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522–528. [Google Scholar] [CrossRef]
- UNWTO/ITF. Transport-Related CO2 Emissions of the Tourism Sector—Modelling Results; World Tourism Organization: Madrid, Spain, 2019; ISBN 9789284416660. [Google Scholar]
- UNEP. Emissions Gap Report 2020; United Nations Environment Programme: Nairobi, Kenia, 2020; ISBN 978-92-807-3812-4. [Google Scholar]
- Gössling, S.; Humpe, A. The global scale, distribution and growth of aviation: Implications for climate change. Glob. Environ. Change Hum. Policy Dimens. 2020, 65, 102194. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Jansom, A.; Pongsakornrungsilp, S. How Instagram Influencers Affect the Value Perception of Thai Millennial Followers and Purchasing Intention of Luxury Fashion for Sustainable Marketing. Sustainability 2021, 13, 8572. [Google Scholar] [CrossRef]
- Wu, L.; Li, J.; Qi, J.; Kong, D.; Li, X. The Role of Opinion Leaders in the Sustainable Development of Corporate-Led Consumer Advice Networks: Evidence from a Chinese Travel Content Community. Sustainability 2021, 13, 11128. [Google Scholar] [CrossRef]
- Berne-Manero, C.; Marzo-Navarro, M. Exploring How Influencer and Relationship Marketing Serve Corporate Sustainability. Sustainability 2020, 12, 4392. [Google Scholar] [CrossRef]
- Gretzel, U. Influencer Marketing in Travel and Tourism. In Advances in Social Media for Travel, Tourism and Hospitality: New Perspectives, Practice and Cases; Sigala, M., Gretzel, U., Eds.; Routledge Taylor & Francis Group: London, UK; New York, NY, USA, 2018; pp. 147–156. ISBN 978-1-472-46920-5. [Google Scholar]
- Lou, C.; Yuan, S. Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. J. Interact. Advert. 2019, 19, 58–73. [Google Scholar] [CrossRef]
- IMH. The State of Influencer Marketing 2021: Benchmark Report. Available online: https://influencermarketinghub.com/ebooks/influencer_marketing_benchmark_report_2021.pdf (accessed on 30 September 2021).
- Gössling, S. Celebrities, air travel, and social norms. Ann. Tour. Res. 2019, 79, 102775. [Google Scholar] [CrossRef]
- Shuqair, S.; Cragg, P. The immediate impact of Instagram posts on changing the viewers’ perceptions towards travel destinations. Asia Pac. J. Adv. Bus. Soc. Stud. 2017, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kathuria, S.; Tandon, U.; Ertz, M.; Bansal, H. Social vacation: Proposition of a model to understand tourists’ usage of social media for travel planning. Technol. Soc. 2020, 63, 101438. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, A.; Gupta, S. Impact of social media on tourist decision making process. Int. J. Acad. Res. Dev. 2018, 4, 29–48. [Google Scholar]
- Liu, H.; Wu, L.; Li, X. Social media envy: How experience sharing on social networking sites drives millennials’ aspirational tourism consumption. J. Travel Res. 2019, 58, 355–369. [Google Scholar] [CrossRef]
- Latif, K.; Malik, M.Y.; Pitafi, A.H.; Kanwal, S.; Latif, Z. If you travel, I travel: Testing a model of when and how travel-related content exposure on Facebook triggers the intention to visit a tourist destination. Sage Open 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Block, J.; Kuckertz, A. Seven principles of effective replication studies: Strengthening the evidence base of management research. Manag. Rev. Q 2018, 68, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Festinger, L. A Theory of Social Comparison Processes. Hum. Relat. 1954, 7, 117–140. [Google Scholar] [CrossRef]
- Doran, R.; Larsen, S.; Wolff, K. Different but Similar: Social Comparison of Travel Motives Among Tourists. Int. J. Tour. Res. 2015, 17, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Wills, T.A. Downward comparison principles in social psychology. Psychol. Bull. 1981, 90, 245–271. [Google Scholar] [CrossRef]
- Wood, J.V. Theory and Research Concerning Social Comparisons of Personal Attributes. Am. Psychol. Assoc. 1989, 106, 231–248. [Google Scholar] [CrossRef]
- Tajfel, H.; Turner, J.C. An integrative theory of intergroup conflict. In The Social Psychology of Intergroup Relations; Austin, W.G., Worchel, S., Eds.; Brooks/Cole: Monterey, CA, USA, 1979; pp. 33–47. ISBN 0818502789. [Google Scholar]
- Scheepers, D.; Ellemers, N. Social Identity Theory. In Social Psychology in Action; Sassenberg, K., Vliek, M.L., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 129–143. ISBN 978-3-030-13787-8. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Processes 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Vogel, E.A.; Rose, J.P.; Roberts, L.R.; Eckles, K. Social comparison, social media, and self-esteem. Psychol. Pop. Media Cult. 2014, 3, 206–222. [Google Scholar] [CrossRef]
- Verduyn, P.; Gugushvili, N.; Massar, K.; Täht, K.; Kross, E. Social comparison on social networking sites. Curr. Opin. Psychol. 2020, 36, 32–37. [Google Scholar] [CrossRef]
- Kerr, G.; Lewis, C.; Burgess, L. Bragging rights and destination marketing: A tourism bragging rights model. J. Hosp. Tour. Manag. 2012, 19, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Renjith, S.; Sreekumar, A.; Jathavedan, M. An extensive study on the evolution of context-aware personalized travel recommender systems. Inf. Processing Manag. 2020, 57, 1–19. [Google Scholar] [CrossRef]
- McEvoy, J. Facebook Internal Research Found Instagram Can Be Very Harmful To Young Girls, Report Says. Available online: https://www.forbes.com/sites/jemimamcevoy/2021/09/14/facebook-internal-research-found-instagram-can-be-very-harmful-to-young-girls-report-says/ (accessed on 20 October 2021).
- Hu, Y.-T.; Liu, Q.-Q. Passive social network site use and adolescent materialism: Upward social comparison as a mediator. Soc. Behav. Pers. 2020, 48, 1–8. [Google Scholar] [CrossRef]
- Burnell, K.; George, M.J.; Vollet, J.W.; Ehrenreich, S.E.; Underwood, M.K. Passive social networking site use and well-being: The mediating roles of social comparison and the fear of missing out. Cyberpsychology 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Appel, M.; Marker, C.; Gnambs, T. Are Social Media Ruining Our Lives? A Review of Meta-Analytic Evidence. Rev. Gen. Psychol. 2020, 24, 60–74. [Google Scholar] [CrossRef]
- Yoon, S.; Kleinman, M.; Mertz, J.; Brannick, M. Is social network site usage related to depression? A meta-analysis of Facebook-depression relations. J. Affect. Disord. 2019, 248, 65–72. [Google Scholar] [CrossRef]
- Van de Ven, N.; Zeelenberg, M.; Pieters, R. Leveling up and down: The experiences of benign and malicious envy. Emotion 2009, 9, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Belk, R. Benign envy. AMS Rev. 2011, 1, 117–134. [Google Scholar] [CrossRef]
- Van de Ven, N.; Zeelenberg, M.; Pieters, R. Appraisal patterns of envy and related emotions. Motiv. Emot. 2012, 36, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, P.; Kunda, Z. Superstars and me: Predicting the impact of role models on the self. J. Personal. Soc. Psychol. 1997, 73, 91–103. [Google Scholar] [CrossRef]
- Meier, A.; Schäfer, S. Positive Side of Social Comparison on Social Network Sites: How Envy Can Drive Inspiration on Instagram. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 411–417. [Google Scholar] [CrossRef]
- Lim, M.; Yang, Y. Upward social comparison and Facebook users’ grandiosity. OIR 2019, 43, 635–652. [Google Scholar] [CrossRef]
- Turner, J.C.; Oakes, P.J. The significance of the social identity concept for social psychology with reference to individualism, interactionism and social influence. Br. J. Soc. Psychol. 1986, 25, 237–252. [Google Scholar] [CrossRef]
- Kim, H.-W.; Zheng, J.R.; Gupta, S. Examining knowledge contribution from the perspective of an online identity in blogging communities. Comput. Hum. Behav. 2011, 27, 1760–1770. [Google Scholar] [CrossRef]
- Pegg, K.J.; O’Donnell, A.W.; Lala, G.; Barber, B.L. The role of online social identity in the relationship between alcohol-related content on social networking sites and adolescent alcohol use. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Dann, G.M. Anomie, ego-enhancement and tourism. Ann. Tour. Res. 1977, 4, 184–194. [Google Scholar] [CrossRef]
- Crompton, J.L. Motivations for pleasure vacation. Ann. Tour. Res. 1979, 6, 408–424. [Google Scholar] [CrossRef]
- Iso-Ahola, S.E. Toward a social psychological theory of tourism motivation: A rejoinder. Ann. Tour. Res. 1982, 9, 256–262. [Google Scholar] [CrossRef]
- Fodness, D. Measuring tourist motivation. Ann. Tour. Res. 1994, 21, 555–581. [Google Scholar] [CrossRef]
- Chiambaretto, P.; Mayenc, E.; Chappert, H.; Engsig, J.; Fernandez, A.-S.; Le Roy, F. Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame. J. Air Transp. Manag. 2021, 93, 102049. [Google Scholar] [CrossRef]
- Hinds, J.; Sparks, P. Engaging with the natural environment: The role of affective connection and identity. J. Environ. Psychol. 2008, 28, 109–120. [Google Scholar] [CrossRef]
- Bissing-Olson, M.J.; Iyer, A.; Fielding, K.S.; Zacher, H. Relationships between daily affect and pro-environmental behavior at work: The moderating role of pro-environmental attitude. J. Organiz. Behav. 2013, 34, 156–175. [Google Scholar] [CrossRef]
- Andersson, L.; Shivarajan, S.; Blau, G. Enacting Ecological Sustainability in the MNC: A Test of an Adapted Value-Belief-Norm Framework. J. Bus. Ethics 2005, 59, 295–305. [Google Scholar] [CrossRef]
- Carty, M. Gen Z Asserts Itself as Travel’s Next Big Opportunity. In Megatrends-Defining Travel in 2020; Rafat Ali, Ed.; Skift Research: New York, NY, USA, 2020; pp. 26–29. [Google Scholar]
- WYSE Travel Confederation. New Horizons IV: A Global Study of the Youth and Student Traveller; WYSE Travel Confederation: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Alcock, I.; White, M.P.; Taylor, T.; Coldwell, D.F.; Gribble, M.O.; Evans, K.L.; Corner, A.; Vardoulakis, S.; Fleming, L.E. ‘Green’ on the ground but not in the air: Pro-environmental attitudes are related to household behaviours but not discretionary air travel. Glob. Environ. Change Hum. Policy Dimens. 2017, 42, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Hares, A.; Dickinson, J.; Wilkes, K. Climate change and the air travel decisions of UK tourists. J. Transp. Geogr. 2010, 18, 466–473. [Google Scholar] [CrossRef]
- Craighead, C.W.; Ketchen, D.J.; Dunn, K.S.; Hult, G.T.M. Addressing Common Method Variance: Guidelines for Survey Research on Information Technology, Operations, and Supply Chain Management. IEEE Trans. Eng. Manag. 2011, 58, 578–588. [Google Scholar] [CrossRef]
- Hajli, N.; Wang, Y.; Tajvidi, M. Travel envy on social networking sites. Ann. Tour. Res. 2018, 73, 184–189. [Google Scholar] [CrossRef]
- Thornton, A.; Evans, L.; Bunt, K.; Simon, A.; King, S.; Webster, T. Climate Change and Transport Choices: Segmentation Model-A Framework for Reducing CO2 Emissions from Personal Travel; TNS-BMRB: London, UK, 2011. Available online: https://webarchive.nationalarchives.gov.uk/20181112102849/https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/49971/climate-change-transport-choices-full.pdf (accessed on 29 September 2021).
- Wright, K.B. Researching Internet-Based Populations: Advantages and Disadvantages of Online Survey Research, Online Questionnaire Authoring Software Packages, and Web Survey Services. J. Comput. Mediat. Commun. 2005, 10, JCMC1034. [Google Scholar] [CrossRef]
- Perrin, A.; Anderson, M. Share of U.S. Adults Using Social Media, Including Facebook, Is Mostly Unchanged Since 2018. Available online: https://www.pewresearch.org/fact-tank/2019/04/10/share-of-u-s-adults-using-social-media-including-facebook-is-mostly-unchanged-since-2018/ (accessed on 20 July 2021).
- Meade, A.W.; Craig, S.B. Identifying careless responses in survey data. Psychol. Methods 2012, 17, 437–455. [Google Scholar] [CrossRef] [Green Version]
- Sehl, K. Instagram Demographics in 2021: Important User Stats for Marketers. Available online: https://blog.hootsuite.com/instagram-demographics/ (accessed on 20 October 2021).
- Kemp, S. Digital 2021: Germany. Available online: https://datareportal.com/reports/digital-2021-germany (accessed on 22 September 2021).
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Reinartz, W.; Haenlein, M.; Henseler, J. An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int. J. Res. Mark. 2009, 26, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Ringle, C.M.; Sarstedt, M.; Straub, D.W. Editor’s Comments: A Critical Look at the Use of PLS-SEM in “MIS Quarterly”. MIS Q. 2012, 36, iii–xiv. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-J.; Van Witteloostuijn, A.; Eden, L. From the Editors: Common method variance in international business research. J. Int. Bus. Stud. 2010, 41, 178–184. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Money, A.H.; Samouel, P.; Page, M. Research Methods for Business; John Wiley & Sons, Inc.: Chichester, UK, 2007; ISBN 9780470034040. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Mngmnt Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Peng, D.X.; Lai, F. Using partial least squares in operations management research: A practical guideline and summary of past research. J. Oper. Manag. 2012, 30, 467–480. [Google Scholar] [CrossRef]
- Henseler, J.; Chin, W.W. A Comparison of Approaches for the Analysis of Interaction Effects Between Latent Variables Using Partial Least Squares Path Modeling. Struct. Equ. Modeling A Multidiscip. J. 2010, 17, 82–109. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE: Los Angeles, CA, USA; London, UK; New Delhi, India; Singapore; Washington, DC, USA; Melbourne, Australia, 2017; ISBN 148337744X. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM). Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Krasnova, H.; Widjaja, T.; Buxmann, P.; Wenninger, H.; Benbasat, I. Research note—Why following friends can hurt you: An exploratory investigation of the effects of envy on social networking sites among college-age users. Inf. Syst. Res. 2015, 26, 585–605. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, B.; Park, S. Understanding the Behavioral Consequences of Upward Social Comparison on Social Networking Sites: The Mediating Role of Emotions. Sustainability 2021, 13, 5781. [Google Scholar] [CrossRef]
- Su, W.; Han, X.; Yu, H.; Wu, Y.; Potenza, M.N. Do men become addicted to internet gaming and women to social media? A meta-analysis examining gender-related differences in specific internet addiction. Comput. Hum. Behav. 2020, 113, 106480. [Google Scholar] [CrossRef]
- McIntyre, K.P.; Eisenstadt, D. Social Comparison as a Self-regulatory Measuring Stick. Self Identity 2011, 10, 137–151. [Google Scholar] [CrossRef]
- Li, Y. Upward social comparison and depression in social network settings. INTR 2019, 29, 46–59. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Hu, Q.; Wang, P.; Lei, L.; Jiang, S. Upward social comparison on mobile social media and depression: The mediating role of envy and the moderating role of marital quality. J. Affect. Disord. 2020, 270, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Popper, K.; Notturno, M.A. The Myth of the Framework; Routledge: London, UK; New York, NY, USA, 2014; ISBN 978-11-3597-473-2. [Google Scholar]
- Brettel, M.; Reich, J.-C.; Gavilanes, J.M.; Flatten, T.C. What Drives Advertising Success on Facebook? An Advertising-Effectiveness Model. JAR 2015, 55, 162–175. [Google Scholar] [CrossRef]
- Price, R. Instagram Reportedly Generated $20 Billion in Ad Revenue in 2019—Even More Than YouTube. Available online: https://www.businessinsider.com/instagram-20-billion-ad-revenue-2019-report-2020-2 (accessed on 28 October 2021).
- Marzouki, M.; Froger, G.; Ballet, J. Ecotourism versus Mass Tourism. A Comparison of Environmental Impacts Based on Ecological Footprint Analysis. Sustainability 2012, 4, 123–140. [Google Scholar] [CrossRef] [Green Version]
Construct | Item(s) | Source(s) |
---|---|---|
Travel-related content exposure (EXP) |
| [20,46] |
Benign envy (BE) |
| [19] |
Intention to visit a destination (INT) |
| [59] |
Online social identity (OSI) |
| [46] |
Pro-environmental attitude (PEA) |
| [57,60] |
Age | n (%) | Monthly Income (Euro) | n (%) | Gender | n (%) |
---|---|---|---|---|---|
<18 | 14 (5.7%) | <800 | 139 (56.3%) | Male | 70 (28.3%) |
18–22 | 58 (23.5%) | 800–1199 | 44 (17.8%) | Female | 177 (71.7%) |
23–27 | 140 (56.7%) | 1200–1599 | 21 (8.5%) | Diverse | 0 (0%) |
28–32 | 26 (10.5%) | 1600–1999 | 13 (5.3%) | ||
>32 | 9 (3.6%) | >2000 | 30 (12.1%) |
Number of Followers | n (%) | Number of Accounts Followed | n (%) | Daily Time on Instagram | n (%) |
---|---|---|---|---|---|
≤50 | 14 (5.7%) | ≤50 | 139 (56.3%) | <2 h | 158 (64.0%) |
51–150 | 58 (23.5%) | 51–150 | 44 (17.8%) | 2–4 h | 78 (31.6%) |
151–250 | 140 (56.7%) | 151–250 | 21 (8.5%) | 4–6 h | 8 (3.2%) |
251–350 | 26 (10.5%) | 251–350 | 13 (5.3%) | >6 h | 3 (1.2%) |
>351 | 9 (3.6%) | >351 | 30 (12.1%) |
Construct | EXP | BE | OSI | PEA | INT |
---|---|---|---|---|---|
EXP | − | 1.025 | − | − | 1.180 |
BE | − | − | − | − | 1.428 |
OSI | − | − | − | − | 1.267 |
OSI*EXP | − | − | − | − | 1.038 |
PEA | − | 1.251 | − | − | − |
PEA*EXP | − | 1.228 | − | − | − |
INT | − | − | − | − | − |
Construct | CA | Rho_A | CR | AVE | EXP | BE | OSI | OSI*EXP | PEA | PEA*EXP | INT |
---|---|---|---|---|---|---|---|---|---|---|---|
EXP | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||||
BE | 0.853 | 0.860 | 0.900 | 0.694 | 0.374 | 0.833 | |||||
OSI | 0.800 | 0.880 | 0.881 | 0.716 | 0.172 | 0.451 | 0.846 | ||||
OSI*EXP | 0.808 | 1.000 | 0.798 | 0.575 | −0.071 | 0.112 | 0.138 | 0.759 | |||
PEA | 0.862 | 0.884 | 0.894 | 0.549 | −0.156 | −0.271 | −0.381 | −0.255 | 0.741 | ||
PEA*EXP | 0.864 | 1.000 | 0.895 | 0.552 | −0.078 | −0.327 | −0.322 | −0.331 | 0.431 | 0.743 | |
INT | 0.917 | 0.926 | 0.960 | 0.924 | 0.256 | 0.691 | 0.510 | 0.058 | −0.252 | −0.273 | 0.961 |
Construct | EXP | BE | OSI | OSI*EXP | PEA | PEA*EXP | INT |
---|---|---|---|---|---|---|---|
EXP1 | 1.000 | 0.374 | 0.172 | −0.071 | −0.156 | −0.078 | 0.256 |
BE1 | 0.290 | 0.823 | 0.381 | 0.081 | −0.243 | −0.275 | 0.546 |
BE2 | 0.324 | 0.811 | 0.402 | 0.029 | −0.246 | −0.243 | 0.572 |
BE3 | 0.320 | 0.820 | 0.270 | 0.087 | −0.182 | −0.253 | 0.493 |
BE3 | 0.313 | 0.875 | 0.433 | 0.165 | −0.229 | −0.314 | 0.671 |
OSI1 | 0.184 | 0.436 | 0.922 | 0.113 | −0.350 | −0.292 | 0.514 |
OSI2 | 0.135 | 0.401 | 0.927 | 0.108 | −0.360 | −0.299 | 0.465 |
OSI3 | 0.105 | 0.288 | 0.662 | 0.153 | −0.246 | −0.224 | 0.268 |
OSI1*EXP1 | −0.039 | 0.124 | 0.094 | 0.732 | −0.291 | −0.404 | 0.033 |
OSI2*EXP1 | −0.118 | 0.053 | 0.078 | 0.598 | −0.310 | −0.388 | −0.017 |
OSI3*EXP1 | −0.105 | 0.063 | 0.129 | 0.913 | −0.212 | −0.249 | 0.041 |
PEA1 | −0.040 | −0.162 | −0.280 | −0.207 | 0.753 | 0.261 | −0.174 |
PEA2 | −0.043 | −0.209 | −0.333 | −0.161 | 0.757 | 0.274 | −0.233 |
PEA3 | −0.150 | −0.207 | −0.336 | −0.239 | 0.854 | 0.339 | −0.211 |
PEA4 | −0.148 | −0.167 | −0.139 | −0.244 | 0.599 | 0.298 | −0.124 |
PEA5 | −0.109 | −0.156 | −0.327 | −0.200 | 0.694 | 0.319 | −0.179 |
PEA6 | −0.133 | −0.280 | −0.308 | −0.159 | 0.787 | 0.398 | −0.218 |
PEA7 | −0.188 | −0.174 | −0.232 | −0.143 | 0.716 | 0.314 | −0.140 |
PEA1*EXP1 | −0.053 | −0.177 | −0.217 | −0.210 | 0.338 | 0.733 | −0.213 |
PEA2*EXP1 | −0.089 | −0.281 | −0.234 | −0.219 | 0.263 | 0.777 | −0.197 |
PEA3*EXP1 | −0.050 | −0.269 | −0.197 | −0.260 | 0.292 | 0.758 | −0.227 |
PEA4*EXP1 | −0.061 | −0.303 | −0.315 | −0.289 | 0.367 | 0.879 | −0.244 |
PEA5*EXP1 | −0.006 | −0.157 | −0.227 | −0.116 | 0.322 | 0.580 | −0.136 |
PEA6*EXP1 | −0.078 | −0.283 | −0.249 | −0.304 | 0.345 | 0.735 | −0.212 |
PEA7*EXP1 | −0.037 | −0.138 | −0.242 | −0.310 | 0.384 | 0.706 | −0.160 |
INT1 | 0.233 | 0.700 | 0.515 | 0.076 | −0.264 | −0.284 | 0.965 |
INT2 | 0.262 | 0.623 | 0.463 | 0.033 | −0.217 | −0.237 | 0.957 |
Construct | EXP | BE | OSI | OSI*EXP | PEA | PEA*EXP | INT |
---|---|---|---|---|---|---|---|
EXP | |||||||
BE | 0.405 | ||||||
OSI | 0.187 | 0.532 | |||||
OSI*EXP | 0.114 | 0.114 | 0.160 | ||||
PEA | 0.169 | 0.304 | 0.448 | 0.385 | |||
PEA*EXP | 0.077 | 0.358 | 0.388 | 0.484 | 0.509 | ||
INT | 0.269 | 0.772 | 0.573 | 0.062 | 0.276 | 0.299 |
Path | Stand. β | Standard Deviation | t-Value | p-Value |
---|---|---|---|---|
EXP → INT | −0.008 | 0.050 | 0.167 | 0.867 |
EXP → BE | 0.337 | 0.057 | 5.956 | <0.000 * |
BE → INT | 0.584 | 0.052 | 11.205 | <0.000 * |
OSI → INT | 0.254 | 0.053 | 4.821 | <0.000 * |
EXP*OSI → INT | −0.041 | 0.064 | 0.635 | 0.525 |
PEA → BE | −0.108 | 0.059 | 1.852 | 0.064 |
EXP*PEA → BE | −0.250 | 0.052 | 4.802 | <0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asdecker, B. Travel-Related Influencer Content on Instagram: How Social Media Fuels Wanderlust and How to Mitigate the Effect. Sustainability 2022, 14, 855. https://doi.org/10.3390/su14020855
Asdecker B. Travel-Related Influencer Content on Instagram: How Social Media Fuels Wanderlust and How to Mitigate the Effect. Sustainability. 2022; 14(2):855. https://doi.org/10.3390/su14020855
Chicago/Turabian StyleAsdecker, Björn. 2022. "Travel-Related Influencer Content on Instagram: How Social Media Fuels Wanderlust and How to Mitigate the Effect" Sustainability 14, no. 2: 855. https://doi.org/10.3390/su14020855
APA StyleAsdecker, B. (2022). Travel-Related Influencer Content on Instagram: How Social Media Fuels Wanderlust and How to Mitigate the Effect. Sustainability, 14(2), 855. https://doi.org/10.3390/su14020855