Development of Novel Transparent Radiation Shielding Glasses by BaO Doping in Waste Soda Lime Silica (SLS) Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glasses Preparation
2.2. Physical Properties
2.3. Radiation Shielding Features: Theoretical Approach
3. Radiation Shielding Features: Experimental Approach
4. Results and Discussion
4.1. Structural Properties
4.2. Physical Properties
4.3. Attenuation of Gamma Rays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, P.; Singh, D.; Singh, T. Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 2016, 307, 364–376. [Google Scholar] [CrossRef]
- Yasaka, P.; Pattanaboonmee, N.; Kim, H.; Limkitjaroenporn, P.; Kaewkhao, J. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 2014, 68, 4–9. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Kothan, S.; Kedkaew, C.; Kaewkhao, J. The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 2020, 172, 108791. [Google Scholar] [CrossRef]
- Dong, M.; Sayyed, M.; Lakshminarayana, G.; Ersundu, M.Ç.; Ersundu, A.; Nayar, P.; Mahdi, M. Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non-Cryst. Solids 2017, 468, 12–16. [Google Scholar] [CrossRef]
- D’Souza, A.N.; Prabhu, N.S.; Sharmila, K.; Sayyed, M.; Somshekarappa, H.; Lakshminarayana, G.; Mandal, S.; Kamath, S.D. Role of Bi2O3 in altering the structural, optical, mechanical, radiation shielding and thermoluminescence properties of heavy metal oxide borosilicate glasses. J. Non-Cryst. Solids 2020, 542, 120136. [Google Scholar] [CrossRef]
- Kurudirek, M.; Chutithanapanon, N.; Laopaiboon, R.; Yenchai, C.; Bootjomchai, C. Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 2018, 745, 355–364. [Google Scholar] [CrossRef]
- Bootjomchai, C.; Laopaiboon, J.; Yenchai, C.; Laopaiboon, R. Gamma-ray shielding and structural properties of barium–bismuth–borosilicate glasses. Radiat. Phys. Chem. 2012, 81, 785–790. [Google Scholar] [CrossRef]
- Sanz, O.; Haro-Poniatowski, E.; Gonzalo, J.; Navarro, J.F. Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J. Non-Cryst. Solids 2006, 352, 761–768. [Google Scholar] [CrossRef]
- Kurtulus, R.; Kavas, T. Investigation on the physical properties, shielding parameters, glass formation ability, and cost analysis for waste soda-lime-silica (SLS) glass containing SrO. Radiat. Phys. Chem. 2020, 176, 109090. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Kumar, A.; Yang, H.; Sayyed, M.; Liu, S.; Bu, E. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 2018, 344, 602–614. [Google Scholar] [CrossRef]
- Almasri, K.A.; Matori, K.A.; Zaid, M.H.M. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses. Results Phys. 2017, 7, 2242–2247. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, R.; Sayyed, M.; Rashad, M.; Singh, M.; Ali, A.M. Physical, structural, optical and gamma ray shielding behavior of (20+x) PbO–10 BaO–10 Na2O–10 MgO–(50-x) B2O3 glasses. Phys. B Condens. Matter 2019, 552, 110–118. [Google Scholar] [CrossRef]
- Pawar, P.; Munishwar, S.; Gautam, S.; Gedam, R. Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. J. Lumin. 2017, 183, 79–88. [Google Scholar] [CrossRef]
- Pawar, P.; Munishwar, S.; Gedam, R. Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties. Solid State Sci. 2017, 64, 41–50. [Google Scholar] [CrossRef]
- Ichoja, A.; Hashim, S.; Ghoshal, S.; Hashim, I.; Omar, R. Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J. Rare Earths 2018, 36, 1264–1271. [Google Scholar] [CrossRef]
- Mhareb, M.; Hashim, S.; Ghoshal, S.; Alajerami, Y.; Bqoor, M.; Hamdan, A.; Saleh, M.; Karim, M.A. Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 2016, 177, 366–372. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Liu, S.; Yang, H.; Li, Z.; Sayyed, M.; Agar, O. Using iron concentrate in Liaoning Province, China, to prepare material for X-Ray shielding. J. Clean. Prod. 2019, 210, 653–659. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 2016, 318, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Issa, S.A. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 2016, 120, 33–37. [Google Scholar] [CrossRef]
- Şakar, E.; Özpolat, Ö.F.; Alım, B.; Sayyed, M.; Kurudirek, M. Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, S.; Xue, X.; Feng, X.; Sayyed, M.; Khandaker, M.U.; Bradley, D. The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021, 188, 109601. [Google Scholar] [CrossRef]
- Sayyed, M.; Elmahroug, Y.; Elbashir, B.; Issa, S.A. Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 2017, 28, 4064–4074. [Google Scholar] [CrossRef]
- Kavaz, E.; Tekin, H.; Yorgun, N.Y.; Özdemir, Ö.; Sayyed, M. Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: Experimental and Monte Carlo study. Radiat. Phys. Chem. 2019, 162, 187–193. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P. Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 2017, 137, 72–77. [Google Scholar] [CrossRef]
- Barbi, S.; Mugoni, C.; Montorsi, M.; Affatigato, M.; Gatto, C.; Siligardi, C. Structural and optical properties of cerium oxide doped barium bismuth borate glasses. J. Non-Cryst. Solids 2018, 499, 183–188. [Google Scholar] [CrossRef]
- Kurtulus, R.; Kavas, T.; Akkurt, I.; Gunoglu, K. An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3-and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. 2020, 46, 21120–21127. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, K.; Anand, V. Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nucl. Eng. Des. 2015, 285, 31–38. [Google Scholar] [CrossRef]
- Saeed, A.; Elbashar, Y.; El Khameesy, S. A novel barium borate glasses for optical applications. Silicon 2018, 10, 569–574. [Google Scholar] [CrossRef]
- Waly, E.S.A.; Fusco, M.A.; Bourham, M.A. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 2016, 96, 26–30. [Google Scholar] [CrossRef]
- Kaewkhao, J.; Limsuwan, P. Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2010, 619, 295–297. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao, J.; Kedkaew, C.; Chewpraditkul, W.; Pokaipisit, A.; Limsuwan, P. Study on interaction of Bi2O3, PbO and BaO in silicate glass system at 662 keV for development of gamma-rays shielding materials. Prog. Nucl. Sci. Technol. 2011, 1, 106–109. [Google Scholar] [CrossRef]
- Bagheri, R.; Adeli, R. Gamma-ray shielding properties of phosphate glasses containing Bi2O3, PbO, and BaO in different rates. Radiat. Phys. Chem. 2020, 174, 108918. [Google Scholar] [CrossRef]
Plate | Atomic Number (Z) | Thickness (mm) | Purity (%) | Energy (keV) |
---|---|---|---|---|
Niobium (Nb) | 41 | 0.14 | 99.8 | 16.61 |
Molybdenum (Mo) | 42 | 0.11 | 99.9 | 17.74 |
Palladium (Pd) | 46 | 0.1 | 99.9 | 21.17 |
Tin (Sn) | 50 | 0.28 | 99.999 | 25.27 |
Measurement | Ba1 | Ba2 | Ba3 | Ba4 | Ba5 |
---|---|---|---|---|---|
Molecular weight (g) | 149.59 | 149.63 | 149.67 | 149.71 | 149.74 |
Density (g/cm3) | 5.157 ± 0.001 | 5.161 ± 0.004 | 5.221 ± 0.004 | 5.249 ± 0.001 | 5.256 ± 0.01 |
Molar volume (cm3/mole) | 29.01 | 28.99 | 28.67 | 28.52 | 28.49 |
Oxygen packing density, (g-atom/L) | 72.01 | 71.67 | 72.11 | 72.09 | 71.77 |
Ba-ion concentration ( ion/cm3) | 2.08 | 4.15 | 6.30 | 8.45 | 10.57 |
Internuclear distance (Å) | 16.89 | 13.40 | 11.66 | 10.58 | 9.82 |
Polaron radius (Å) | 6.80 | 5.40 | 4.70 | 4.26 | 3.96 |
Field strength ( cm2) | 1.21 | 1.92 | 2.54 | 3.08 | 3.58 |
Samples | at 59.54 keV | at 662 keV | at 1333 keV |
---|---|---|---|
Ba1 | 2.0011 ± 0.06 | 0.0621 ± 0.005 | 0.0473 ± 0.005 |
Ba2 | 2.0037 ± 0.09 | 0.0624 ± 0.008 | 0.0476 ± 0.007 |
Ba3 | 2.0540 ± 0.08 | 0.0616 ± 0.004 | 0.0469 ± 0.0054 |
Ba4 | 2.0997 ± 0.05 | 0.0618 ± 0.009 | 0.0471 ± 0.013 |
Ba5 | 2.1248 ± 0.12 | 0.0612 ± 0.007 | 0.0467 ± 0.0054 |
Sample | 59.54 keV HVL | MFP | Zeff | Neff | 662 keV HVL | MFP | Zeff | Neff | 1333 keV HVL | MFP | Zeff | Neff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ba1 | 0.0672 | 0.0969 | 63.66 | 8.808 | 2.1643 | 3.1230 | 24.30 | 3.405 | 2.8389 | 4.0966 | 20.83 | 2.9019 |
Ba2 | 0.0670 | 0.0967 | 63.43 | 8.616 | 2.1523 | 3.1057 | 24.37 | 3.405 | 2.8210 | 4.0707 | 20.90 | 2.9018 |
Ba3 | 0.0646 | 0.0932 | 63.20 | 8.431 | 2.1549 | 3.1096 | 24.43 | 3.405 | 2.8299 | 4.0836 | 20.98 | 2.9017 |
Ba4 | 0.0629 | 0.0907 | 62.98 | 8.252 | 2.1378 | 3.0848 | 24.49 | 3.405 | 2.8033 | 4.0452 | 21.05 | 2.9015 |
Ba5 | 0.0621 | 0.0896 | 62.77 | 8.079 | 2.1549 | 3.1096 | 24.55 | 3.404 | 2.8210 | 4.0707 | 21.12 | 2.9014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazaalah, T.H.; Mustafa, I.S.; Sayyed, M.I.; Abdul Rahman, A.; Mohd Zaid, M.H.; Hisam, R.; Izwan Abdul Malik, M.F.; Seth Ezra, N.; Salah Naeem, H.; Che Khalib, N. Development of Novel Transparent Radiation Shielding Glasses by BaO Doping in Waste Soda Lime Silica (SLS) Glass. Sustainability 2022, 14, 937. https://doi.org/10.3390/su14020937
Khazaalah TH, Mustafa IS, Sayyed MI, Abdul Rahman A, Mohd Zaid MH, Hisam R, Izwan Abdul Malik MF, Seth Ezra N, Salah Naeem H, Che Khalib N. Development of Novel Transparent Radiation Shielding Glasses by BaO Doping in Waste Soda Lime Silica (SLS) Glass. Sustainability. 2022; 14(2):937. https://doi.org/10.3390/su14020937
Chicago/Turabian StyleKhazaalah, Thair Hussein, Iskandar Shahrim Mustafa, M. I. Sayyed, Azhar Abdul Rahman, Mohd Hafiz Mohd Zaid, Rosdiyana Hisam, Muhammad Fadhirul Izwan Abdul Malik, Nabasu Seth Ezra, Hayder Salah Naeem, and Nuridayanti Che Khalib. 2022. "Development of Novel Transparent Radiation Shielding Glasses by BaO Doping in Waste Soda Lime Silica (SLS) Glass" Sustainability 14, no. 2: 937. https://doi.org/10.3390/su14020937
APA StyleKhazaalah, T. H., Mustafa, I. S., Sayyed, M. I., Abdul Rahman, A., Mohd Zaid, M. H., Hisam, R., Izwan Abdul Malik, M. F., Seth Ezra, N., Salah Naeem, H., & Che Khalib, N. (2022). Development of Novel Transparent Radiation Shielding Glasses by BaO Doping in Waste Soda Lime Silica (SLS) Glass. Sustainability, 14(2), 937. https://doi.org/10.3390/su14020937