Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh
Abstract
:1. Introduction
- (i)
- Oxygen deficiency due to dissolved organic matters.
- (ii)
- The formation of algae blooms is due to the accumulation of organic nutrients, such as nitrogen and phosphorus, creating high biomass in the surface water.
- (iii)
- The unmanaged handling of residues from aquaculture causes severe problems for human health, flora and fauna, ecosystems, and economic development.
2. Site Description and Data Collection
2.1. Study Area
2.2. Aquaculture Scenario in Western Delta Region
2.3. Questionnaire and Quantitative Survey
2.4. Land Use and Land Cover
2.5. Climate Change
3. Impact of Intensive Aquaculture on Environment
3.1. Water Quality Characteristics
3.2. Aquaculture Pond Subsoil Characteristics
3.2.1. Physicochemical Characteristics
3.2.2. Geotechnical Properties
3.2.3. Aquaculture Sludge Leachate and Clay Interaction
4. Future Thrust Area and Sustainable Development
4.1. Ideal Engineered Aquaculture Pond
4.2. Cost Analysis of an Ideal Engineered Aquaculture Pond
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
S. No. | Location | Latitude (N) | Longitude (E) | Designation/ Sample Id |
---|---|---|---|---|
1 | Kalla | 16.5283° | 81.4087° | V1 |
2 | Kallakuru | 16.5283° | 81.3832° | V2 |
3 | Kallavapudi | 16.4620° | 81.3881° | V3 |
4 | Dodanapudi | 16.5245° | 81.3870° | V4 |
5 | Elurupadu | 16.5187° | 81.3468° | V5 |
6 | Juvalapalem | 16.5190° | 81.3695° | V6 |
7 | Sessali | 16.5296° | 81.4334° | V7 |
8 | Pedhaamiram | 16.5443° | 81.4903° | V8 |
9 | Chinnaamiram | 16.5291° | 81.4911° | V9 |
10 | Bhimavaram | 16.4851° | 81.4883° | V10 |
11 | Annakoderu | 16.4840° | 81.4825° | V11 |
12 | Vempa | 16.4421° | 81.5750° | V12 |
13 | Chilukuru | 16.6232° | 80.4354° | V13 |
14 | Kolamuru | 16.6329° | 81.4589° | V14 |
15 | Undi | 16.5864° | 81.4636° | V15 |
16 | Yendagandi | 16.6433° | 81.5336° | V16 |
17 | Akividu | 16.5823° | 81.3784° | V17 |
18 | Cherkumilli | 17.0711° | 81.6109° | V18 |
19 | Kolleru | 16.6629° | 81.3372° | V19 |
20 | Pedakapavaram | 16.6434° | 81.4306° | V20 |
21 | Chinakapavaram | 16.6348° | 81.4162° | V21 |
22 | Palakoderu | 16.5862° | 81.5480° | V22 |
23 | Mogallu | 16.6036° | 81.5638° | V23 |
24 | Vissakoderu | 16.5511° | 81.5665° | V24 |
25 | Attili | 16.6885° | 81.6037° | V25 |
26 | Manchili | 16.6565° | 81.6062° | V26 |
27 | Aravalli | 16.6316° | 81.6049° | V27 |
28 | Eduru | 16.6458° | 81.5689° | V28 |
29 | Ganapavaram | 16.6994° | 81.4635° | V29 |
30 | Kesavaram | 16.6810° | 81.5439° | V30 |
31 | Pippara | 16.7109° | 81.5418° | V31 |
32 | Kasipadu | 16.7361° | 81.5514° | V32 |
33 | Ardhavaram | 16.6889° | 81.5061° | V33 |
34 | Eluru | 16.7107° | 81.0952° | V34 |
35 | Kokkirailanka | 16.6382° | 81.2354° | V35 |
36 | Komadavole | 16.7117° | 81.1258° | V36 |
37 | Chataparru | 16.6966° | 81.1665° | V37 |
38 | Chebrolu | 16.8289° | 81.3922° | V38 |
39 | Unguturu | 16.8230° | 81.4238° | V39 |
40 | Denduluru | 16.7609° | 81.1665° | V40 |
References
- Chofqi, A.; Younsi, A.; Mania, J.; Mudry, J.; Veron, A. Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco). J. Afr. Earth Sci. 2004, 39, 509–516. [Google Scholar] [CrossRef]
- Sunil, B.M.; Shrihari, S.; Nayak, S. Soil-leachate interaction and their effects on hydraulic conductivity and compaction characteristics. In Proceedings of the 12th International Conference on Computer Methods and Advances in Geomechanics, Goa, India, 1–6 October 2008; Volume 3, pp. 2380–2386. [Google Scholar]
- Datta, M. Geotechnology for environmental control at waste disposal sites. Indian Geotech. J. 2012, 42, 1–36. [Google Scholar] [CrossRef]
- Jayanthi, M.; Thirumurthy, S.; Muralidhar, M.; Ravichandran, P. Impact of shrimp aquaculture development on important ecosystems in India. Glob. Environ. Chang. 2018, 52, 10–21. [Google Scholar] [CrossRef]
- Jayanthi, M.; Thirumurthy, S.; Samynathan, M.; Manimaran, K.; Duraisamy, M.; Muralidhar, M. Assessment of land and water ecosystems capability to support aquaculture expansion in climate-vulnerable regions using analytical hierarchy process based geospatial analysis. J. Environ. Manag. 2020, 270, 110952. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals; IGO: Perth, Australia, 2018; p. 210. ISBN 978-92-5-130562-1. [Google Scholar]
- Ahmed, M.; Lorica, M.H. Improving developing country food security through aquaculture development—Lessons from Asia. Food Policy 2002, 27, 125–141. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Wu, Y.; Song, K. Source, Treatment, and Disposal of Aquaculture Solid Waste: A Review. J. Environ. Eng. 2021, 147, 03120012. [Google Scholar] [CrossRef]
- Cao, L.; Wang, W.; Yang, Y.; Yang, C.; Yuan, Z.; Xiong, S.; Diana, J. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ. Sci. Pollut. Res.-Int. 2007, 14, 452–462. [Google Scholar]
- Islam, M.; Yasmin, R. Impact of aquaculture and contemporary environmental issues in Bangladesh. Int. J. Fish. Aquat. Stud. 2017, 5, 100–107. [Google Scholar]
- Phillips, M. The Use of Chemicals in Carp and Shrimp Aquaculture in Bangladesh, Cambodia, Lao PDR, Nepal, Pakistan, Sri Lanka and Viet Nam; Southeast Asian Fisheries Development Center: Bangkok, Thailand, 2000. [Google Scholar]
- Paez-Osuna, F. The environmental impact of shrimp aquaculture: A global perspective. Environ. Pollut. 2001, 112, 229–231. [Google Scholar] [CrossRef]
- Lai, W.W.P.; Lin, Y.C.; Wang, Y.H.; Guo, Y.L.; Lin, A.Y.C. Occurrence of emerging contaminants in aquaculture waters: Cross-contamination between aquaculture systems and surrounding waters. Water Air Soil Pollut. 2018, 229, 249. [Google Scholar] [CrossRef]
- Islam, M.S.; Khan, S.; Tanaka, M. Waste loading in shrimp and fish processing effluents: Potential source of hazards to the coastal and nearshore environments. Mar. Pollut. Bull. 2004, 49, 103–110. [Google Scholar] [CrossRef]
- Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.C.; Van Den Brink, P.J. Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: A critical review. Rev. Aquac. 2012, 4, 75–93. [Google Scholar] [CrossRef]
- Jayanthi, M.; Nila Rekha, P.; Kavitha, N.; Ravichandran, P. Assessment of impact of aquaculture on Kolleru Lake (India) using remote sensing and Geographical Information System. Aquac. Res. 2006, 37, 1617–1626. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Groll, M. Mapping of major land-use changes in the Kolleru Lake freshwater ecosystem by using landsat satellite images in google earth engine. Water 2020, 12, 2493. [Google Scholar] [CrossRef]
- Jana, B.B.; Jana, S. The potential and sustainability of aquaculture in India. J. Appl. Aquac. 2003, 13, 283–316. [Google Scholar] [CrossRef]
- Piedrahita, R.H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Eng, C.T.; Paw, J.N.; Guarin, F.Y. The environmental impact of aquaculture and the effects of pollution on coastal aquaculture development in Southeast Asia. Mar. Pollut. Bull. 1989, 20, 335–343. [Google Scholar]
- Nhu, T.T.; Schaubroeck, T.; Henriksson, P.J.; Bosma, R.; Sorgeloos, P.; Dewulf, J. Environmental impact of non-certified versus certified (ASC) intensive Pangasius aquaculture in Vietnam, a comparison based on a statistically supported LCA. Environ. Pollut. 2016, 219, 156–165. [Google Scholar] [CrossRef]
- Bhavsar, D.O.; Pandya, H.A.; Jasrai, Y.T. Aquaculture and Environmental Pollution: A Review Work. Int. J. Sci. Res. Sci. Eng. Technol. 2016, 2, 40–45. [Google Scholar]
- Páez-Osuna, F.; Guerrero-Galván, S.R.; Ruiz-Fernández, A.C. The environmental impact of shrimp aquaculture and the coastal pollution in Mexico. Mar. Pollut. Bull. 1998, 36, 65–75. [Google Scholar] [CrossRef]
- Abdullah, A.N.; Myers, B.; Stacey, N.; Zander, K.K.; Garnett, S.T. The impact of the expansion of shrimp aquaculture on livelihoods in coastal Bangladesh. Environ. Dev. Sustain. 2017, 19, 2093–2114. [Google Scholar] [CrossRef]
- Szuster, B.W. A review of shrimp farming in central Thailand and its environmental implications. In Shrimp Culture: Economics and Trade; Leung, P.S., Engle, C., Eds.; John Wiley & Sons: Oxford, UK, 2006; pp. 155–164. [Google Scholar]
- Adusumilli, R.; Laxmi, S.B. Potential of the system of rice intensification for systemic improvement in rice production and water use: The case of Andhra Pradesh, India. Paddy Water Environ. 2011, 9, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Government of Andhra Pradesh report on “Fish and prawn production in Andhra Pradesh”. Available online: https://westgodavari.ap.gov.in/fisheries (accessed on 1 January 2021).
- Jayanthi, M.; Ravisankar, T.; Nagaraj, G.; Thirumurthy, S.; Muralidhar, M.; Saraswathy, R. Is aquaculture abandonment a threat to sustainable coastal resource use?—A case study of Andhra Pradesh, India, with options for reuse. Land Use Policy 2019, 86, 54–66. [Google Scholar]
- Chuphal, N.; Sardar, P.; Sahu, N.P.; Shamna, N.; Harikrishna, V.; Maiti, M.K.; Mannur, V.S.; Jana, P.; Paul, M.; Krishna, G. Effects of graded dietary lipid levels on growth, feed utilization, body composition and metabolism in juvenile white leg shrimp, Penaeus vannamei (Boone, 1931) reared in inland saline water of 10 g/L salinity. Aquac. Nutr. 2021, 27, 1811–1824. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Pradhan, B. Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google Earth Engine—The case study of Kolleru Lake, South India. Geocarto Int. 2022, 1–17. [Google Scholar] [CrossRef]
- Robb, D.H.; MacLeod, M.; Hasan, M.R.; Soto, D. Greenhouse Gas Emissions from Aquaculture: A Life Cycle Assessment of Three Asian Systems; FAO Fisheries and Aquaculture Technical Paper No. 609; FAO: Rome, Italy, 2017. [Google Scholar]
- IS 10500:2012; Specifications for Drinking Water. Bureau of Indian Standards: New Delhi, India, 2012.
- Alfiansah, Y.R.; Hassenrück, C.; Kunzmann, A.; Taslihan, A.; Harder, J.; Gärdes, A. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Front. Microbiol. 2018, 9, 2457. [Google Scholar] [CrossRef] [Green Version]
- Azis, H.Y.; Tresnati, J.; Tuwo, A. Seaweed Gracilaria changii as a bioremediator agent for ammonia, nitrite and nitrate in controlled tanks of Whiteleg Shrimp Litopenaeus vannamei. In IOP Conference Series Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 564, p. 012059. [Google Scholar]
- Chatla, D.; Padmavathi, P.; Srinu, G. Wastewater treatment techniques for sustainable aquaculture. In Waste Management as Economic Industry towards Circular Economy; Springer: Singapore, 2020; pp. 159–166. [Google Scholar]
- Iber, B.T.; Kasan, N.A. Recent advances in Shrimp aquaculture wastewater management. Heliyon 2021, 7, e08283. [Google Scholar] [CrossRef]
- Yuan, J.; Xiang, J.; Liu, D.; Kang, H.; He, T.; Kim, S.; Ding, W. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat. Clim. Chang. 2019, 9, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Khodary, S.M.; Elwakil, A.Z.; Fujii, M.; Tawfik, A. Effect of hazardous industrial solid waste landfill leachate on the geotechnical properties of clay. Arab. J. Geosci. 2020, 13, 706. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1983; Volume 9, pp. 149–157. [Google Scholar]
- Yu, H.; Huang, X.; Ning, J.; Zhu, B.; Cheng, Y. Effect of cation exchange capacity of soil on stabilized soil strength. Soils Found. 2014, 54, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Lilly, A.; Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Probabilistic approach to the identification of input variables to estimate hydraulic conductivity. Soil Sci. Soc. Am. J. 2008, 72, 16–24. [Google Scholar] [CrossRef] [Green Version]
- García-Gutiérrez, C.; Pachepsky, Y.; Martín, M.Á. Saturated hydraulic conductivity and textural heterogeneity of soils. Hydrol. Earth Syst. Sci. 2018, 22, 3923–3932. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.W. Geotextiles in agriculture and aquaculture. In Geotextiles; Woodhead Publishing: Sawston, UK, 2016; pp. 511–530. [Google Scholar]
- Antonucci, F.; Costa, C. Precision aquaculture: A short review on engineering innovations. Aquac. Int. 2020, 28, 41–57. [Google Scholar] [CrossRef]
- Prapti, D.R.; Mohamed Shariff, A.R.; Che Man, H.; Ramli, N.M.; Perumal, T.; Shariff, M. Internet of Things (IoT)-based aquaculture: An overview of IoT application on water quality monitoring. Rev. Aquac. 2022, 14, 979–992. [Google Scholar] [CrossRef]
- Xiao, R.; Wei, Y.; An, D.; Li, D.; Ta, X.; Wu, Y.; Ren, Q. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. Rev. Aquac. 2019, 11, 863–895. [Google Scholar] [CrossRef]
- Yogev, U.; Vogler, M.; Nir, O.; Londong, J.; Gross, A. Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer. Sci. Total Environ. 2020, 722, 137949. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Das, R.R.; Sarkar, S.; Saranya, C.; Esakkiraj, P.; Aravind, R.; Saraswathy, R.; Panigrahi, A. Co-culture of Indian white shrimp, Penaeus indicus and seaweed, Gracilaria tenuistipitata in amended biofloc and recirculating aquaculture system (RAS). Aquaculture 2022, 548, 737432. [Google Scholar] [CrossRef]
Description | Intensity of Aquaculture Practice (Penaeus Vannamei) | ||
---|---|---|---|
Traditional | Moderate or Semi-Intensive | Severe or Intensive | |
Area of pond (acre) | 2–5 or < | 5–10 | 10–20 or < |
Depth of water level in the pond (m) | 1–1.5 | 1–3 | 1.5–4 |
Seed density (no./acre) | 10,000–20,000 or < | 20,000–60,000 or < | 40,000–100,000 or < |
Feed per acre (kgs) | 600–850 | 1600–1700 | 2100–2200 |
Survival rate (months) | 2–3 or < | 1–3 or < | 1–3 or < |
No. of crops per year | 4 or < | 3–4 or < | 3–4 or < |
Aeration sets per acre | 1–2 or < | 2–4 or < | 4–5 |
Production per acre per crop (tons) | 1–2 or < | 1–5 or < | 4–8 or < |
Lime used per acre per crop (kgs) | 5–10 or < | 5–25 or < | 10–50 or < |
Potassium/magnesium/calcium chlorides used per acre per crop (kgs) | 1–5 or < | 5–10 or < | 5–25 or < |
No. of times chemicals used per crop | 2–4 or < | 2–6 or < | 4–8 or < |
No. of times probiotics used per crop | 1–3 or < | 2–8 or < | 4–12 or < |
No. of times disinfectants used per crop | 1–2 or < | 1–4 or < | 2–6 or < |
Salinity range (ppm) | 0–4 | 4–6 or < | 5–9 or < |
Water exchange per year | 3–5 or < | 3–5 or < | 2–3 |
Environmental impact | Moderate | High | Relative |
Sustainability concerns | Moderate | Low | Relatively low |
Sample Id | pH | TDS (ppm) | EC (µs/cm) | Salinity (ppt) | T.A. (ppm) | PO4 (ppm) | DO (ppm) | BOD5 (ppm) | NH3 (ppm) | NO2 (ppm) | NO3 (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|
V1 (a) | 8.2 | 360 | 320 | 5 | 84 | Nil | 4.0 | 12.6 | 6.14 | 0.04 | 61.21 |
V1 (b) | 8.7 | 850 | 1055 | 14 | 215 | Nil | 4.0 | 12.6 | 2.20 | 0.04 | 61.21 |
V2 (a) | 8.5 | 6200 | 8900 | 8 | 180 | Nil | 5.9 | 10.6 | 1.48 | 2.18 | 79.07 |
V2 (b) | 8.2 | 180 | 230 | 10 | 84 | Nil | 5.3 | 12.6 | 2.20 | 0.04 | 91.21 |
V3 (a) | 9.4 | 3240 | 4500 | 8 | 140 | Nil | 3.5 | 14.2 | 4.15 | 0.85 | 68.08 |
V3 (b) | 8.1 | 540 | 1400 | 7 | 320 | Nil | 5.5 | 13.6 | 5.30 | 1.20 | 64.62 |
V4 (a) | 8.8 | 420 | 451 | 4 | 160 | Nil | 4.6 | 12.8 | 1.5 | 0.03 | 42.38 |
V4 (b) | 8.4 | 2340 | 5675 | 2 | 180 | Nil | 3.5 | 11.4 | 0.60 | 0.48 | 66.60 |
V5 (a) | 7.8 | 180 | 465 | 0 | 160 | 0.30 | 5.0 | 3.6 | 1.24 | 0.05 | 51.4 |
V5 (b) | 7.4 | 320 | 580 | 0 | 180 | 0.1 | 4.6 | 2.8 | 1.50 | 0.33 | 44.38 |
V7 (a) | 8.3 | 2400 | 8350 | 2 | 260 | Nil | 4.5 | 11 | 2.55 | 1.26 | 24.48 |
V7 (b) | 8.7 | 4200 | 58,000 | 8 | 430 | Nil | 5.5 | 12.4 | 3.15 | 0.17 | 14.16 |
V8 (a) | 8.2 | 7240 | 11,200 | 6 | 232 | 0.1 | 5.8 | 10.6 | 3.47 | 0.92 | 28.84 |
V8 (b) | 9.4 | 760 | 1154 | 5 | 400 | Nil | 5.0 | 12.4 | 5.02 | 1.24 | 35.15 |
V9 (a) | 8.6 | 530 | 890 | 4 | 310 | 0.15 | 6.0 | 11 | 1.15 | 0.88 | 10.6 |
V9 (b) | 7.6 | 8700 | 53,000 | 4 | 132 | 0.3 | 9.2 | 11.3 | 4.4 | 0.06 | 12.51 |
V10 (a) | 8.5 | 4140 | 760 | 4 | 210 | 0.15 | 2.0 | 15 | 2.62 | 0.08 | 12.51 |
V10 (b) | 8.5 | 1200 | 8000 | 11 | 245 | Nil | 4.5 | 3.4 | 2.4 | 0.45 | 21.6 |
V19 (a) | 8.4 | 250 | 460 | 7 | 195 | Nil | 5.5 | 12.6 | 0.48 | 0.07 | 20.2 |
V19 (b) | 7.4 | 520 | 850 | 2 | 170 | Nil | 4.9 | 0.6 | 0.97 | 0.04 | 5.75 |
V27 (a) | 8.2 | 1100 | 2180 | 11 | 300 | Nil | 5.3 | 2.8 | 5.09 | 1.29 | 6.15 |
V27 (b) | 7.8 | 1500 | 2200 | 2 | 170 | 0.4 | 5.5 | 2.8 | 1.08 | 0.05 | 13.1 |
V28 (a) | 8.4 | 450 | 780 | 4 | 170 | Nil | 4.0 | 15 | 0.18 | 1.24 | 4.66 |
V28 (b) | 8.4 | 3200 | 6500 | 8 | 170 | Nil | 5.5 | 4.5 | 1.66 | 2.16 | 5.45 |
V34 (a) | 8.3 | 2300 | 3400 | 4 | 160 | 0.3 | 7.3 | 5.3 | 1.23 | 0.33 | 4.53 |
V34 (b) | 8.4 | 3400 | 5450 | 0 | 315 | Nil | 5.5 | 11.6 | 1.85 | 1.44 | 11.6 |
V35 (a) | 8.2 | 8000 | 12,000 | 8 | 280 | Nil | 3.3 | 10.4 | 1.24 | 0.05 | 7.15 |
V35 (b) | 7.8 | 3600 | 52,000 | 13 | 170 | Nil | 5.0 | 5.3 | 0.54 | 2.18 | 19.07 |
V39 (a) | 8.5 | 5000 | 10,080 | 9 | 185 | 0.43 | 3.0 | 14.5 | 1.23 | 0.33 | 4.53 |
V39 (b) | 8.5 | 8200 | 11,800 | 10 | 500 | Nil | 5.3 | 2.8 | 5.59 | 2.39 | 29.32 |
Parameter | Current Study | Alfiansah et al. [34] | Azis et al. [35] |
---|---|---|---|
NH3 | 0.18–6.14 mg/L | 0.37–0.60 mg/L | 0.01–0.18 mg/L |
NO2 | 0.04–2.39 mg/L | 0.20–0.33 mg/L | 0.37–0.44 mg/L |
NO3 | 1.21–91.21 mg/L | 0.18–0.21 mg/L | 1.69–1.96 mg/L |
Zone | Village | pH | EC (µs/cm) | TOC (%) | TN (kg/acre) | P (kg/acre) | K (kg/acre) | S (kg/acre) | Na (ppm) |
---|---|---|---|---|---|---|---|---|---|
Intensive (III) | V1 | 8.2 | 5.1 | 1.45 | 116 | 507 | 570 | 245 | 238 |
V2 | 8.0 | 2.2 | 2.28 | 1077 | 472 | 432 | 230 | 215 | |
V3 | 7.7 | 2.5 | 3.98 | 125 | 491 | 848 | 218 | 178 | |
V4 | 7.5 | 5.4 | 3.72 | 32 | 484 | 564 | 156 | 165 | |
V5 | 7.4 | 2.3 | 2.99 | 118 | 490 | 388 | 165 | 182 | |
Semi-intensive (II) | V7 | 7.2 | 2.7 | 2.22 | 188 | 377 | 375 | 154 | 174 |
V8 | 7.2 | 2.4 | 1.12 | 85 | 257 | 415 | 145 | 163 | |
V9 | 7.8 | 1.8 | 1.18 | 102 | 186 | 345 | 205 | 162 | |
V10 | 7.7 | 0.7 | 1.45 | 78 | 154 | 386 | 88 | 125 | |
V19 | 7.6 | 1.9 | 1.85 | 84 | 132 | 243 | 106 | 128 | |
Traditional (I) | V27 | 7.6 | 2.6 | 0.84 | 95 | 195 | 334 | 115 | 134 |
V28 | 7.6 | 2.3 | 0.74 | 68 | 88 | 355 | 125 | 185 | |
V34 | 7.4 | 1.8 | 0.84 | 76 | 85 | 245 | 155 | 215 | |
V35 | 7.0 | 1.3 | 1.05 | 82 | 157 | 175 | 145 | 113 | |
V39 | 7.4 | 1.7 | 1.16 | 82 | 165 | 235 | 165 | 151 |
Zone | Sample Id | Liquid Limit, LL (%) | Plastic Limit, PL (%) | Plasticity Index, PI (%) | FSI (%) | Hydraulic Conductivity (cm/sec) |
---|---|---|---|---|---|---|
Intensive (III) | V1 | 65 | 21 | 44 | 85 | 3.2 × 10−5 |
V2 | 60 | 24 | 36 | 80 | 5.1 × 10−5 | |
V3 | 68 | 20.5 | 47.5 | 75 | 6.8 × 10−6 | |
V4 | 44 | 18 | 26 | 55 | 5.5 × 10−5 | |
V5 | 54 | 21.5 | 32.5 | 85 | 3.6 × 10−5 | |
Semi-intensive (II) | V7 | 62 | 32.5 | 29.5 | 75 | 2.8 × 10−6 |
V8 | 64 | 33 | 31 | 55 | 5.6 × 10−7 | |
V9 | 84 | 33.5 | 50.5 | 130 | 6.9 × 10−7 | |
V10 | 64 | 19.5 | 44.5 | 80 | 4.4 × 10−6 | |
V19 | 84 | 29 | 55 | 120 | 4.5 × 10−6 | |
Traditional (I) | V27 | 80 | 30 | 50 | 105 | 4.2 × 10−7 |
V28 | 89 | 31 | 58 | 130 | 4.6 × 10−6 | |
V34 | 82 | 32 | 50 | 114 | 5.0 × 10−6 | |
V35 | 76 | 34 | 42 | 145 | 5.5 × 10−7 | |
V39 | 88 | 25 | 63 | 136 | 4.4 × 10−7 |
Condition | Plasticity Index, % | CEC, mEq/100 g | Ammonia, mEq/100 g | Potassium, mEq/100 g | Sodium, mEq/100 g | Calcium, mEq/100 g |
---|---|---|---|---|---|---|
Clay with no leachate exposure | 59 | 52.55 | 0.04 | 3.27 | 0.22 | 31.35 |
Clay with zone-III aquaculture leachate exposure | 54 | 42.67 | 18.35 | 15.44 | 7.45 | 40.18 |
Clay with zone-II aquaculture leachate exposure | 51 | 34.82 | 39.54 | 24.17 | 32.88 | 42.15 |
Clay with zone-I aquaculture leachate exposure | 43 | 26.44 | 52.44 | 42.87 | 51.14 | 44.27 |
Stage-I: Community Awareness | Stage-II: Training Program | Stage-III: Technical Support | Stage-IV: Sustainable Engineered Aquaculture Ponds |
---|---|---|---|
Regular awareness camps with farmers | Workshops to understand the negative impact of aquaculture on the environment | Sensor network using IoT tools to monitor pollution levels | Ecological balance |
Interactive discussions between government agencies | Training programs to assess the water quality in ponds | Geosynthetic materials to control the seepage of contaminant waters | Environmental sustainability |
Awareness programs to community-based organizations with technical teams | Workshops on the proper utilization of feed, chemicals, minerals, and disinfectants in aquaculture ponds | Recirculating aquaculture systems (RASs) to purify aquaculture-contaminated water before reuse | Climate change adaptation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagaraju, T.V.; Malegole, S.B.; Chaudhary, B.; Ravindran, G. Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh. Sustainability 2022, 14, 13035. https://doi.org/10.3390/su142013035
Nagaraju TV, Malegole SB, Chaudhary B, Ravindran G. Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh. Sustainability. 2022; 14(20):13035. https://doi.org/10.3390/su142013035
Chicago/Turabian StyleNagaraju, T. Vamsi, Sunil B. Malegole, Babloo Chaudhary, and Gobinath Ravindran. 2022. "Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh" Sustainability 14, no. 20: 13035. https://doi.org/10.3390/su142013035
APA StyleNagaraju, T. V., Malegole, S. B., Chaudhary, B., & Ravindran, G. (2022). Assessment of Environmental Impact of Aquaculture Ponds in the Western Delta Region of Andhra Pradesh. Sustainability, 14(20), 13035. https://doi.org/10.3390/su142013035