Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
3. Methods
3.1. MOP-PLUS-InVEST (MPI) Coupling Model
3.2. LULC Quality Optimization by MOP
3.2.1. Scenario Design and Objective Optimization
- (1)
- The BAU scenario is the creation of a baseline state of LULC based on the historical trend without the interference of additional factors. The Markov model was used to anticipate the land demand under the BAU scenario.
- (2)
- EDP is an ecological priority development scenario, which focuses on protecting the ecological environment and restore ecosystem functions. In short, the EDP scenario aims to maximize ecosystem service valuation (ESV), which is calculated in Equation (1).
- (3)
- The EEB scenario represents the ecological environment and social economy development in a balanced manner, which aims to coordinate the improvement of economic benefits and the improvement of ecological functions by adjusting land use planning. The socio-economic benefits provided by LULC are calculated as shown in Equation (2).
3.2.2. Constraint Conditions
- (1)
- The area constraint, means that the area is greater than zero, and the sum is equal to the area of study area.
- (2)
- Population constraint, means that the number of people of built-up should be controlled within the target population.
- (3)
- Forest cover constraint. According to the land use plans in BTH from 2016 to 2035, the forest cover in study area will reach more than 45% in 2030. Forest cover was calculated with the ecological green equivalent method, which refers to the photosynthesis per unit area of forest land as a green equivalent and has been shown to measure the ecological function of terrestrial ecosystems [34]. According to Li et al., the weighting coefficients for cropland, grassland, and forest are 0.46, 0.49, and 1, respectively [45]. The constraint of forest cover can be expressed as:
- (4)
- Cropland area constraint, means that for ensuring national and regional food security, the food production of cropland should meet regional demand:In addition, on the basis of preserving high-quality cropland, implementing the project of returning farmland to forest and grassland in low-yielding areas is the main measure to manage cropland. In this study, the permanent basic farmland area (67,601 km2) was set as minimum, and the arable land area in 2020 (104,477.76 km2) was set as maximum:
- (5)
- Forest land area constraint. According to the Master Plan for the Major Projects for the Protection and Restoration of National Key Ecosystems (2021–2035) issued by the Chinese government in 2020, a strategic ecological protection pattern named “two screens and three belts” is proposed, to promote the construction of the northern sand control belt system. Therefore, the forest area was set to grow faster than the BAU scenario (42,160.91 km2) in the next decade. In summary, the constraint on the area of forest land can be expressed as:
- (6)
- Grassland area constraint. The grassland has been relatively stable since 2000, and the interconversion of grassland, cropland, and forest, occurs frequently, reserving a part of space for landscape diversity and urban construction. In this study, the grassland area in 2020 (38,126.48 km2) was used as the basis, and the area change was controlled within 5%, which can be expressed as:
- (7)
- Built-up area constraint. According to the government plan, the construction land area per capita in BTH will be about 130 m2 in 2030. At the same time, the growth of construction land will be strictly restrained in the future and its expansion will slow down. Thus, the built-up land was designed to be smaller than the built-up land area under the BAU scenario (33,240.51 km2):
- (8)
- Water and wetland area constraint. Water and wetland are important ecological lands. At present, the local government has introduced policies such as returning farmland to wetlands, which will reduce the rate of degradation of water and wetland and rebuild ecological land in some nature reserves. So, the area of water and wetland under the BAU scenario was used as the lower limit and the average value in 2000–2020 was used as the upper limit:
- (9)
- Bare land area constraint. The pre-construction of the Xiong’an New Area in Hebei and the abandonment of a large amount of old industrial and mining land have increased the area. Considering that the bare land may be reclaimed in the future, the area in 2020 and 2000 were used as the upper and lower limits:
- (10)
- Key ecological function constraint. In the latest ecological protection strategy, water conservation and soil preservation functions are given priority attention. The service values of “hydrological regulation” and “soil conservation” and total ESV in 2030 should be higher than those in 2020:
3.3. LULC Spatial Simulation by PLUS
3.3.1. Driving Factors
3.3.2. Transfer Rule
3.3.3. Neighborhood Weights
3.3.4. Space Restriction
3.4. CS Evolution Quick Prospect by InVEST
4. Results
4.1. Spatial-Temporal Characteristics of LULC
4.2. Dynamic Simulation of CS at Patch Scale
4.3. Evolution Prospect of CS at Regional Scale
5. Discussion
5.1. MPI Coupling Model
5.2. Evolution of LULC and CS
5.3. Potential Ecological Threat
5.4. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernandez, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. [Google Scholar] [CrossRef]
- Snaebjornsdottir, S.O.; Sigfusson, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, Z.; Ouyang, Z. Vegetation carbon storage and density of forest ecosystems in China. Chin. J. Appl. 2001, 12, 13–16. [Google Scholar] [CrossRef]
- Garcia, R.A.; Cabeza, M.; Rahbek, C.; Araújo, M.B. Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science 2014, 344, 1247579. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; Jiang, L.; He, J.-S. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evans, J.P.; Wang, G. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 2015, 5, 470–474. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [Green Version]
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar] [CrossRef]
- Ghafoor, G.Z.; Sharif, F.; Shahid, M.G.; Shahzad, L.; Rasheed, R.; Khan, A.U.H. Assessing the impact of land use land cover change on regulatory ecosystem services of subtropical scrub forest, Soan Valley Pakistan. Sci. Rep. 2022, 12, 10052. [Google Scholar] [CrossRef]
- Xie, X.; Sun, B.; Zhou, H.; Li, P.; Li, A. Organic carbon density and storage in soils of China and spatial analysis. Acta Pedol. Sin. 2004, 41, 35–43. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Mallapaty, S. How China Could Be Carbon Neutral by Mid-Century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Mirici, M.E.; Berberoglu, S.; Akin, A.; Satir, O. Land Use/Cover Change Modelling in a Mediterranean Rural Landscape Using Multi-Layer Perceptron and Markov Chain (mlp-Mc). Appl. Ecol. Environ. Res. 2018, 16, 467–486. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, H.; Li, P.; Li, N.; Fang, J. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci. China Life Sci. 2013, 56, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, R.; Ding, H.; Fu, Y. Fine-Scale Improved Carbon Bookkeeping Model Using Landsat Time Series for Subtropical Forest, Southern China. Remote Sens. 2022, 14, 753. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Mao, F.; Zhou, G.; Li, X.; Xu, X.; Ge, H.; Cui, L.; Liu, Y.; Zhu, D.; Li, Y. Estimating and Analyzing the Spatiotemporal Pattern of Aboveground Carbon in Bamboo Forest by Combining Remote Sensing Data and Improved BIOME-BGC Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2282–2295. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Ji, Y.; Bai, Y. Spatiotemporal dynamic simulation of grassland carbon storage in China. Sci. China-Earth Sci. 2016, 59, 1946–1958. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Liang, X.; Shi, H.; Ou, J. Simulating the Change of Terrestrial Carbon Storage in China Based on the FLUS-InVEST Model. Tropicalgeography 2019, 39, 397–409. [Google Scholar] [CrossRef]
- González-García, A.; Palomo, I.; González, J.A.; López, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Jin, H.; Han, Y.; Kang, S.; Liu, J.; Cai, H.; Hu, T.; Yang, G.; Yu, H.; et al. Spatio-Temporal Patterns of Carbon Storage Derived Using the InVEST Model in Heilongjiang Province, Northeast China. Front. Earth Sci. 2022, 10, 846456. [Google Scholar] [CrossRef]
- Adelisardou, F.; Zhao, W.; Chow, R.; Mederly, P.; Minkina, T.; Schou, J.S. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. 2021, 19, 5929–5944. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, J.; Li, C.; Ge, Y.; Han, Z. Progress on Geographic Cellular Automata Model. Sci. Geogr. Sin. 2016, 36, 1190–1196. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Cui, Y.; Zheng, H.; Zhu, L. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Liu, P.; Hong, Y.; Zhang, Y.; Mai, K. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2017, 31, 2452–2479. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: A case study in three gorges reservoir area of Chongqing, China. Environ. Sci. Pollut. Res. 2019, 26, 20669–20688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Scenario simulation of land system change in the Beijing-Tianjin-Hebei region. Land Use Policy 2020, 96, 104677. [Google Scholar] [CrossRef]
- Wu, A.; Zhang, J.; Zhao, Y.; Shen, H.; Guo, X. Simulation and Optimization of Supply and Demand Pattern of Multiobjective Ecosystem Services—A Case Study of the Beijing-Tianjin-Hebei Region. Sustainability 2022, 14, 2658. [Google Scholar] [CrossRef]
- Wu, J.; Jin, X.; Feng, Z.; Chen, T.; Wang, C.; Feng, D.; Lv, J. Relationship of Ecosystem Services in the Beijing–Tianjin–Hebei Region Based on the Production Possibility Frontier. Land 2021, 10, 881. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y.; Liang, X.; Yao, Y.; Ma, T.; Guan, Q. Simulating urban expansion by incorporating an integrated gravitational field model into a demand-driven random forest-cellular automata model. Cities 2021, 109, 103044. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 2020, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Global Soil Organic Carbon Sequestration Potential Map (GSOCseq v1.1) Technical Report; FAO: Rome, Italy, 2022. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, C.; Xiao, Y.; Lu, C. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Yanfang, L.; Dongping, M.; Jianyu, Y. Optimization of land use structure based on ecological GREEN equivalent. Geo-Spat. Inf. Sci. 2002, 5, 60–67. [Google Scholar] [CrossRef]
- Xin, L.; Wang, J.; Wang, L. Prospect of per capita grain demand driven by dietary structure change in China. Resour. Sci. 2015, 37, 1347–1356. [Google Scholar]
- Li, Z.; Liu, S.; Sun, R.; Sun, W. Identifying the temporal-spatial pattern evolution of the multiple cropping index in the Huang-Huai-Hai region. Acta Ecol. Sin. 2018, 38, 4454–4460. [Google Scholar] [CrossRef]
- Yu, L.; Gu, F.; Huang, M.; Tao, B.; Hao, M.; Wang, Z. Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems. Sustainability 2020, 12, 2849. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Lv, C.; Liu, W.; Yang, C.; Fan, D.; Wang, Z.; Guan, Q. Understanding Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Adedeji, O.H.; Elegbede, I.O. Chapter 12—Mapping and Modeling Ecosystem Services in Petroleum-Producing Areas in Nigeria. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem; Ndimele, P.E., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 159–175. ISBN 978-0-12-809399-3. [Google Scholar]
- Shah, M.A.R.; Renaud, F.G.; Anderson, C.C.; Wild, A.; Domeneghetti, A.; Polderman, A.; Votsis, A.; Pulvirenti, B.; Basu, B.; Thomson, C.; et al. A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions. Int. J. Disaster Risk Reduct. 2020, 50, 101728. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Dang, A.N.; Jackson, B.M.; Benavidez, R.; Tomscha, S.A. Review of ecosystem service assessments: Pathways for policy integration in Southeast Asia. Ecosyst. Serv. 2021, 49, 101266. [Google Scholar] [CrossRef]
- Taffarello, D.; Calijuri, M.D.C.; Viani, R.A.G.; Marengo, J.A.; Mendiondo, E.M. Hydrological services in the Atlantic Forest, Brazil: An ecosystem-based adaptation using ecohydrological monitoring. Clim. Serv. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Ma, T.; Li, X.; Bai, J.; Ding, S.; Zhou, F.; Cui, B. Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Sci. Total Environ. 2019, 655, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Zhang, L.; Hu, T.; Hao, Y. Temporal and spatial changes and trade-offs analysis of urban wetland ecosystem services: A case study of Xixi wetland in Hangzhou. J. Beijing Norm. Univ. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, F. Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China. Sustainability 2022, 14, 4773. [Google Scholar] [CrossRef]
- Teng, Y.; Yan, Y.; Guo, W.; Li, K.; Zhao, C. Analysis of Spatiao-temporal Variation of Ecological Environment in Mining City Based on Remote Sensing Ecology Index. Met. Mine 2022, 2022, 1–16. [Google Scholar]
Category | Data Attribute | Time | Resolution | Source and Process |
---|---|---|---|---|
LULC | Land use and land cover | 2000, 2010, 2020 | 30 m | GlobeLand30 (path/row:49/35, 49/40, 50/35, 50/40) |
Carbon Density | Aboveground and belowground biomass carbon density | - | 300 m | Temporally consistent and harmonized global maps form Spawn’s research |
Topsoil organic carbon density | - | 1 km | GSOCmap (v1.5.0) from FAO | |
Natural drivers | Elevation, Slope | - | 30 m | ASTER GDEM V3 from NASA (https://search.earthdata.nasa.gov/search?q=%20C1711961296-LPCLOUD, accessed on 20 May 2022), Slope data is calculated by ArcGIS |
Temperature and Precipitation | 2000 | 0.5′ | WorldClim v2.0 | |
Soil types | - | - | DSMW dataset from FAO | |
Socio-economic drivers | Population and GDP distribution | 2015 | 1 km | China’s GDP and Population spatial distribution km grid dataset, from RESDC |
Accessibility drivers | Distance to government residences, waters, highway, railway, primary way | 2015 | - | OpenStreetMap dataset, calculated in ArcGIS |
Ecological conservation areas | Soil, water, windbreak and sand fixation functional area | 2020 | - | Boundary data of nature reserves in China, from RESDC |
Statistical data | Yearbook, National Farm Product Cost-benefit Survey | 2000–2020 | - | Website of NBSC |
Policy Planning Document | Planning for ecological protection, agricultural construction and national space | 2016–2035 | - | Website of Ministry of Natural Resources |
Factors | Cropland | Forest | Grassland | Wetland | Water | Built-Up | Bare Land |
---|---|---|---|---|---|---|---|
Elevation | 0.127 | 0.088 | 0.132 | 0.100 | 0.109 | 0.142 | 0.068 |
Slope | 0.090 | 0.168 | 0.116 | 0.023 | 0.168 | 0.088 | 0.041 |
Temperature | 0.094 | 0.095 | 0.090 | 0.316 | 0.059 | 0.091 | 0.094 |
Precipitation | 0.101 | 0.143 | 0.102 | 0.037 | 0.036 | 0.051 | 0.038 |
Soil type | 0.085 | 0.013 | 0.014 | 0.047 | 0.032 | 0.011 | 0.095 |
GDP | 0.072 | 0.080 | 0.099 | 0.088 | 0.071 | 0.075 | 0.169 |
Population | 0.096 | 0.093 | 0.078 | 0.084 | 0.118 | 0.123 | 0.209 |
Dist. government | 0.069 | 0.057 | 0.068 | 0.043 | 0.032 | 0.087 | 0.064 |
Dist. water | 0.057 | 0.059 | 0.072 | 0.074 | 0.249 | 0.091 | 0.093 |
Dist. railway | 0.072 | 0.067 | 0.089 | 0.061 | 0.038 | 0.069 | 0.053 |
Dist. highway | 0.073 | 0.068 | 0.058 | 0.053 | 0.043 | 0.069 | 0.035 |
Dist. main road | 0.065 | 0.069 | 0.082 | 0.073 | 0.044 | 0.103 | 0.041 |
Land Use Types | Cropland | Forest | Grassland | Wetland | Water | Built-Up | Bare Land |
---|---|---|---|---|---|---|---|
2000 | 116,307.69 | 41,704.91 | 37,877.92 | 663.81 | 3970.40 | 14,920.37 | 71.26 |
2010 | 112,590.41 | 42,053.62 | 38,566.72 | 843.55 | 3785.50 | 17,655.77 | 74.22 |
2020 | 104,477.76 | 42,173.93 | 38,126.48 | 603.85 | 3762.59 | 26,207.06 | 232.3 |
BAU | 97,972.17 | 42,153.18 | 37,656.82 | 444.7 | 3497.71 | 32,973.74 | 187.17 |
EDP | 95,219.96 | 53,542.90 | 35,770.75 | 671.81 | 3463.27 | 26,072.76 | 144.04 |
EEB | 96,704.18 | 46,130.64 | 39,542.89 | 671.75 | 3463.27 | 28,183.91 | 188.85 |
Land Use Types | Cropland | Forest | Grassland | Wetland | Water | Built-Up | Bare Land |
---|---|---|---|---|---|---|---|
Aboveground carbon density | 2348.01 | 9983.16 | 4622.73 | 1311.80 | 783.92 | 1370.08 | 4035.54 |
Belowground carbon density | 1462.40 | 6885.94 | 4867.36 | 3140.96 | 967.33 | 2238.91 | 4036.65 |
Topsoil organic carbon density | 3948.14 | 5739.06 | 4909.30 | 4181.36 | 3897.12 | 3803.45 | 5227.20 |
CS (Tg) | Cropland | Forest | Grassland | Wetland | Water | Built-Up | Bare Area | Total |
---|---|---|---|---|---|---|---|---|
2000 | 902.38 | 942.87 | 545.42 | 5.73 | 22.43 | 110.60 | 0.95 | 2530.37 |
2010 | 873.54 | 950.76 | 555.34 | 7.28 | 21.38 | 130.87 | 0.99 | 2540.16 |
2020 | 810.60 | 953.48 | 549.00 | 5.21 | 21.25 | 194.26 | 3.09 | 2536.88 |
BAU | 760.12 | 953.01 | 542.24 | 3.84 | 19.76 | 244.42 | 2.49 | 2525.86 |
EDP | 738.77 | 1210.51 | 515.08 | 5.80 | 19.56 | 193.26 | 1.92 | 2684.89 |
EEB | 750.28 | 1042.93 | 569.39 | 5.80 | 19.56 | 208.91 | 2.51 | 2599.39 |
2000–2010 | −28.84 | 7.88 | 9.92 | 1.55 | −1.04 | 20.28 | 0.04 | 9.78 |
2010–2020 | −62.94 | 2.72 | −6.34 | −2.07 | −0.13 | 63.39 | 2.10 | −3.27 |
BAU | −50.47 | −0.47 | −6.76 | −1.37 | −1.50 | 50.16 | −0.60 | −11.02 |
EDP | −71.83 | 257.03 | −33.92 | 0.59 | −1.69 | −1.00 | −1.17 | 148.01 |
EEB | −60.31 | 89.45 | 20.40 | 0.59 | −1.69 | 14.65 | −0.58 | 62.51 |
CS/Tg | Change of CS/Tg | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2010 | 2020 | BAU | EDP | EEB | 2000–2010 | 2010–2020 | BAU | EDP | EEB | |
Beijing | 243.79 | 244.38 | 243.12 | 252.66 | 247.96 | 0.06 | 0.59 | −1.08 | 8.46 | 3.76 |
Tianjin | 91.10 | 91.78 | 90.53 | 91.94 | 91.25 | −0.19 | 0.67 | −0.45 | 0.96 | 0.27 |
Shijiazhuang | 159.69 | 158.75 | 158.35 | 168.32 | 165.55 | −0.18 | −0.94 | −0.35 | 9.62 | 6.85 |
Tangshan | 116.97 | 117.76 | 115.02 | 125.50 | 120.53 | 0.49 | 0.77 | −0.71 | 9.77 | 4.81 |
Qinhuangdao | 96.58 | 99.98 | 98.83 | 115.52 | 107.06 | 0.06 | 3.39 | −0.26 | 16.44 | 7.98 |
Handan | 112.83 | 112.61 | 112.13 | 117.34 | 114.95 | −0.23 | −0.22 | −0.33 | 4.87 | 2.49 |
Xingtai | 110.55 | 110.18 | 109.87 | 120.02 | 117.70 | −0.04 | −0.37 | −0.28 | 9.87 | 7.55 |
Baoding | 290.17 | 288.35 | 288.00 | 302.45 | 298.21 | −0.09 | −1.82 | −0.32 | 14.14 | 9.90 |
Zhangjiakou | 465.05 | 459.32 | 458.63 | 481.57 | 467.82 | 8.70 | −5.73 | −0.59 | 22.35 | 8.60 |
Chengde | 620.06 | 620.92 | 620.40 | 677.42 | 636.50 | 1.27 | 0.86 | −0.41 | 56.62 | 15.70 |
Cangzhou | 107.33 | 106.94 | 106.11 | 106.47 | 106.39 | −0.07 | −0.39 | −0.35 | 0.01 | −0.07 |
Langfang | 49.51 | 49.59 | 49.24 | 49.67 | 49.60 | −0.44 | 0.08 | −0.34 | 0.09 | 0.02 |
Hengshui | 68.04 | 67.87 | 67.67 | 67.85 | 67.79 | −0.10 | −0.17 | −0.19 | −0.01 | −0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Teng, Y.; Yan, Y.; Zhao, C.; Zhang, W.; Ji, X. Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability 2022, 14, 13436. https://doi.org/10.3390/su142013436
Guo W, Teng Y, Yan Y, Zhao C, Zhang W, Ji X. Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability. 2022; 14(20):13436. https://doi.org/10.3390/su142013436
Chicago/Turabian StyleGuo, Wei, Yongjia Teng, Yueguan Yan, Chuanwu Zhao, Wanqiu Zhang, and Xianglin Ji. 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China" Sustainability 14, no. 20: 13436. https://doi.org/10.3390/su142013436
APA StyleGuo, W., Teng, Y., Yan, Y., Zhao, C., Zhang, W., & Ji, X. (2022). Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China. Sustainability, 14(20), 13436. https://doi.org/10.3390/su142013436