Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Policy and General Background
2.2. Chemical Industry Energy Consumption and Usage
2.3. Power Grid and Storage Solutions
3. Methodology
- 1.
- What are the main alternatives for the replacement of traditional natural gas or fossil fuel consumption in the chemical industry?
- 2.
- What are the main barriers to the implementation of the decarbonization process in the chemical industry?
- 3.
- What are the main risk factors which are tied to the substitution of natural gas or the energy decarbonization process in the chemical industry?
- Balancing energy capacity by pump storage or import/export of electrical energy is needed for decarbonization of vehicle traffic and heating and utilized completely by the existing electrical power grid and current electrical power demand; its storage capacity is therefore not available for the additional energy balancing the demand of the chemical industry;
- Renewable energy sources providing base load such as biomass, hydroelectric power, bio-gas, etc. cannot be significantly extended for use in the chemical industry; the remaining renewable energy sources comprise solar, offshore, and onshore wind power;
- Different storage capacities and loading powers are included in the scenarios; energy storage is at a large scale, and potentially necessary short-term storage for buffering fluctuations is neglected;
- If power generation exceeds process demand for the chemical industry plus the respective storage loading, power generation is reduced by switching off the respective portion of renewable power plants;
- The residual load, defined as load not covered by solar power and wind power, has to be covered by controllable power generation meaning conventional power generation;
- A total of 70% of the respective primary energy demand is consumed by large scale mostly continuous processes with continuous energy demand; (the estimate was validated by several interviews with experts from the chemical industry and represents the lower limit of estimated non-flexible power demand) the scenarios do not allow for the rest of the energy demand estimated to be covered by the existing electrical grid;
- Electrification of the energy supply for process heat, etc. results is assumed to result in a gain in efficiency so that only 75% of the respective energy is needed.
4. Quantitative Evaluation
5. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Act. | Actual |
COVID | Coronavirus Disease |
EC | European Commission |
EEA | European Environmental Agency |
EU | European Union |
GHG | Greenhouse Gas |
GW | Gigawatt |
GWh | Gigawatt-hour |
IEA | International Energy Agency |
kWh | Kilowatt-hour |
Nom. | Nominal |
PEM | Proton Exchange Membrane |
PV | Photovoltaics |
TWh | Terawatt-hour |
UN | United Nations |
US | United States (of America) |
WPL | Wind Power Land (onshore wind power) |
WPS | Wind Power Sea (offshore wind power) |
References
- Dietz, T.; Shwom, R.L.; Whitley, C.T. Climate Change and Society. Annu. Rev. Sociol. 2020, 46, 135–158. [Google Scholar] [CrossRef] [Green Version]
- Kotcher, J.; Maibach, E.; Miller, J.; Campbell, E.; Alqodmani, L.; Maiero, M.; Wyns, A. Views of health professionals on climate change and health: A multinational survey study. Lancet Planet. Health 2021, 5, e316–e323. [Google Scholar] [CrossRef]
- Publications Office of the European Union, The European Parliament and the Council of the European Union; Regulation (EU) 2021/1119; Publications Office of the European Union: Luxembourg, 2021.
- United Nations. United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1992.
- United Nations. Kyoto Protocol on the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998.
- United Nations. Paris Agreement; United Nations: New York, NY, USA, 2016; UNTC XXVII 7.d.
- Safari, A.; Das, N.; Langhelle, O.; Roy, J.; Assadi, M. Natural gas: A transition fuel for sustainable energy system transformation? Energy Sci. Eng. 2019, 7, 1075–1094. [Google Scholar] [CrossRef]
- Zeniewski, P.; McGlade, C.; Kim, T.Y.; Gould, T. The Role of Gas in Today’s Energy Transitions; Technical Report; International Energy Agency: Paris, France, 2019.
- Gürsan, C.; de Gooyert, V. The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition? Renew. Sustain. Energy Rev. 2021, 138, 110552. [Google Scholar] [CrossRef]
- Scharf, H.; Arnold, F.; Lencz, D. Future natural gas consumption in the context of decarbonization—A meta-analysis of scenarios modeling the German energy system. Energy Strategy Rev. 2021, 33, 100591. [Google Scholar] [CrossRef]
- Liadze, I.; Macchiarelli, C.; Mortimer-Lee, P.; Juanino, P.S. The Economic Costs of the Russia-Ukraine Conflict; NIESR Policy Paper 32; National Institute of Economic and Social Research: London, UK, 2022. [Google Scholar]
- Mbah, R.E.; Wasum, F. Russian-Ukraine 2022 War: A Review of the Economic Impact of Russian-Ukraine Crisis on the USA, UK, Canada, and Europe. Adv. Soc. Sci. Res. J. 2022, 9, 144–153. [Google Scholar] [CrossRef]
- Pisciotta, M.; Pilorgé, H.; Feldmann, J.; Jacobson, R.; Davids, J.; Swett, S.; Sasso, Z.; Wilcox, J. Current state of industrial heating and opportunities for decarbonization. Prog. Energy Combust. Sci. 2022, 91, 100982. [Google Scholar] [CrossRef]
- 2022 Facts and Figures of the European Chemical Industry-Profile. Available online: https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/ (accessed on 4 July 2022).
- Wesseling, J.H.; Lechtenböhmer, S.; Åhman, M.; Nilsson, L.J.; Worrell, E.; Coenen, L. The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research. Renew. Sustain. Energy Rev. 2017, 79, 1303–1313. [Google Scholar] [CrossRef]
- Griffin, P.W.; Hammond, G.P.; Norman, J.B. Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective. Appl. Energy 2018, 227, 587–602. [Google Scholar] [CrossRef]
- George, S. IEA: Most Technologies Needed to Achieve Net-Zero Aren’t Yet Mature. Available online: https://www.euractiv.com/section/energy/news/iea-most-technologies-needed-to-achieve-net-zero-arent-yet-mature (accessed on 6 July 2022).
- Tronchin, L.; Manfren, M.; Nastasi, B. Energy efficiency, demand side management and energy storage technologies—A critical analysis of possible paths of integration in the built environment. Renew. Sustain. Energy Rev. 2018, 95, 341–353. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Şeker, A.A.; Tunçel, S.; Demirbaş, E.; Gözel, T.; Hocaoğlu, M.H.; Abapour, M.; Mohammadi-Ivatloo, B. A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network. Sustainability 2022, 14, 2110. [Google Scholar] [CrossRef]
- Bruns, B.; Herrmann, F.; Polyakova, M.; Grünewald, M.; Riese, J. A systematic approach to define flexibility in chemical engineering. J. Adv. Manuf. Process. 2020, 2, e10063. [Google Scholar] [CrossRef]
- Heffron, R.; Körner, M.F.; Wagner, J.; Weibelzahl, M.; Fridgen, G. Industrial demand-side flexibility: A key element of a just energy transition and industrial development. Appl. Energy 2020, 269, 115026. [Google Scholar] [CrossRef]
- Pierri, E.; Schulze, C.; Herrmann, C.; Thiede, S. Integrated methodology to assess the energy flexibility potential in the process industry. Procedia CIRP 2020, 90, 677–682. [Google Scholar] [CrossRef]
- Luo, J.; Moncada, J.; Ramirez, A. Development of a Conceptual Framework for Evaluating the Flexibility of Future Chemical Processes. Ind. Eng. Chem. Res. 2022, 61, 3219–3232. [Google Scholar] [CrossRef]
- Edmonds, L.; Pfromm, P.; Amanor-Boadu, V.; Hill, M.; Wu, H. Green ammonia production-enabled demand flexibility in agricultural community microgrids with distributed renewables. Sustain. Energy Grids Netw. 2022, 31, 100736. [Google Scholar] [CrossRef]
- Geels, F.W. Conflicts between economic and low-carbon reorientation processes: Insights from a contextual analysis of evolving company strategies in the United Kingdom petrochemical industry (1970–2021). Energy Res. Soc. Sci. 2022, 91, 102729. [Google Scholar] [CrossRef]
- Vooradi, R.; Anne, S.B.; Tula, A.K.; Eden, M.R.; Gani, R. Energy and CO2 management for chemical and related industries: Issues, opportunities and challenges. BMC Chem. Eng. 2019, 1, 7. [Google Scholar] [CrossRef]
- Arnold, M. Eurozone inflation hits record 8.6% in June. Financial Times, 1 July 2022. [Google Scholar]
- Tamma, P. EU Leaders Agree the Economic Outlook Is Bleak, but Split over the Remedies. Available online: https://www.politico.eu/article/eu-leaders-charles-michel-ursula-von-der-leyen-emmanuel-macron-economic-outlook-eu-council-summit/ (accessed on 24 June 2022).
- The European Commision. REPowerEU Plan, 2022. SWD(2022) 230 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483 (accessed on 15 July 2022).
- Sözüer, M.; Spang, K. The Importance of Project Management in the Planning Process of Transport Infrastructure Projects in Germany. Procedia-Soc. Behav. Sci. 2014, 119, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Sinn, H.W. Buffering volatility: A study on the limits of Germany’s energy revolution. Eur. Econ. Rev. 2017, 99, 130–150. [Google Scholar] [CrossRef]
- Muttaqi, K.M.; Islam, M.R.; Sutanto, D. Future Power Distribution Grids: Integration of Renewable Energy, Energy Storage, Electric Vehicles, Superconductor, and Magnetic Bus. IEEE Trans. Appl. Supercond. 2019, 29, 3800305. [Google Scholar] [CrossRef] [Green Version]
- Parag, Y.; Sovacool, B.K. Electricity market design for the prosumer era. Nat. Energy 2016, 1, 16032. [Google Scholar] [CrossRef]
- Newbery, D.; Pollitt, M.G.; Ritz, R.A.; Strielkowski, W. Market design for a high-renewables European electricity system. Renew. Sustain. Energy Rev. 2018, 91, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Seck, G.S.; Hache, E.; Sabathier, J.; Guedes, F.; Reigstad, G.A.; Straus, J.; Wolfgang, O.; Ouassou, J.A.; Askeland, M.; Hjorth, I.; et al. Hydrogen and the decarbonization of the energy system in europe in 2050: A detailed model-based analysis. Renew. Sustain. Energy Rev. 2022, 167, 112779. [Google Scholar] [CrossRef]
- Lahrsen, I.M.; Hofmann, M.; Müller, R. Flexibility of Epichlorohydrin Production—Increasing Profitability by Demand Response for Electricity and Balancing Market. Processes 2022, 10, 761. [Google Scholar] [CrossRef]
- Ahrens, F.; Land, J.; Krumdieck, S. Decarbonization of Nitrogen Fertilizer: A Transition Engineering Desk Study for Agriculture in Germany. Sustainability 2022, 14, 8564. [Google Scholar] [CrossRef]
- Xia, R.; Overa, S.; Jiao, F. Emerging Electrochemical Processes to Decarbonize the Chemical Industry. JACS Au 2022, 2, 1054–1070. [Google Scholar] [CrossRef]
- Ausfelder, F.; Bazzanelli, A.M.; Möller, A.; Geres, R.; Kohn, A.; Lenz, S. Roadmap Chemie 2050; Technical Report; DECHEMA and FutureCamp for the VCI: Frankfurt, Germany, 2019. [Google Scholar]
- Schmidt, A.; Köster, D.; Strube, J. Climate Neutrality Concepts for the German Chemical & Pharmaceutical Industry. Processes 2022, 10, 467. [Google Scholar] [CrossRef]
- IEA. A 10-Point Plan to Reduce the European Union’s Reliance on Russian Natural Gas; Technical Report; International Energy Agency: Paris, France, 2022.
- Council of the EU. Member States Commit to Reducing Gas Demand by 15% Next Winter. Available online: https://www.consilium.europa.eu/en/press/press-releases/2022/07/26/member-states-commit-to-reducing-gas-demand-by-15-next-winter/ (accessed on 28 July 2022).
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- European Environmental Agency. EU Achieves 20-20-20 Climate Targets, 55% Emissions Cut by 2030 Reachable with More Efforts and Policies. Available online: https://www.eea.europa.eu/highlights/eu-achieves-20-20-20 (accessed on 5 July 2022).
- Perissi, I.; Jones, A. Investigating European Union Decarbonization Strategies: Evaluating the Pathway to Carbon Neutrality by 2050. Sustainability 2022, 14, 4728. [Google Scholar] [CrossRef]
- Bąk, I.; Barwińska-Małajowicz, A.; Wolska, G.; Walawender, P.; Hydzik, P. Is the European Union Making Progress on Energy Decarbonisation While Moving towards Sustainable Development? Energies 2021, 14, 3792. [Google Scholar] [CrossRef]
- European Environmental Agency. Trends and Projections in Europe 2021; Technical Report 13/2021; European Environment Agency: Copenhagen, Denmark, 2021. [CrossRef]
- Abrahams, L.S.; Samaras, C.; Griffin, W.M.; Matthews, H.S. Life Cycle Greenhouse Gas Emissions from U.S. Liquefied Natural Gas Exports: Implications for End Uses. Environ. Sci. Technol. 2015, 49, 3237–3245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, T.; Sher, G.; Zhou, J. The Economic Impacts on Germany of a Potential Russian Gas Shutoff; Working Paper WP/22/144; International Monetary Fund: Washington DC, USA, 2022. [Google Scholar]
- Ostadi, M.; Paso, K.G.; Rodriguez-Fabia, S.; Øi, L.E.; Manenti, F.; Hillestad, M. Process Integration of Green Hydrogen: Decarbonization of Chemical Industries. Energies 2020, 13, 4859. [Google Scholar] [CrossRef]
- Rajabloo, T.; De Ceuninck, W.; Van Wortswinkel, L.; Rezakazemi, M.; Aminabhavi, T. Environmental management of industrial decarbonization with focus on chemical sectors: A review. J. Environ. Manag. 2022, 302, 114055. [Google Scholar] [CrossRef]
- Axon, S.; James, D. The UN Sustainable Development Goals: How can sustainable chemistry contribute? A view from the chemical industry. Curr. Opin. Green Sustain. Chem. 2018, 13, 140–145. [Google Scholar] [CrossRef]
- Lacy, P.; Long, J.; Spindler, W. Chemical Industry Profile. In The Circular Economy Handbook: Realizing the Circular Advantage, 1st ed.; Palgrave Macmillan: London, UK, 2020; Chapter 7; pp. 109–118. [Google Scholar] [CrossRef]
- Schiffer, Z.J.; Manthiram, K. Electrification and Decarbonization of the Chemical Industry. Joule 2017, 1, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Bundestag, Bundesrat. Gesetz für den Vorrang Erneuerbarer Energien (Erneuerbare-Energien-Gesetz—EEG). In Bundesgesetzblatt; Bundesanzeiger Verlag: Bonn, Germany, 2000; Chapter I; Volume 2000, pp. 305–309. [Google Scholar]
- Salje, P. Erneuerbare-Energien-Gesetz: Gesetz für den Vorrang Erneuerbarer Energien (EEG); Kommentar; Heymanns Taschenkommentare, Heymann: Köln, Germany, 2005. [Google Scholar]
- Portman, M.E.; Duff, J.A.; Köppel, J.; Reisert, J.; Higgins, M.E. Offshore wind energy development in the exclusive economic zone: Legal and policy supports and impediments in Germany and the US. Energy Policy 2009, 37, 3596–3607. [Google Scholar] [CrossRef]
- Markard, J.; Rinscheid, A.; Widdel, L. Analyzing transitions through the lens of discourse networks: Coal phase-out in Germany. Environ. Innov. Soc. Transit. 2021, 40, 315–331. [Google Scholar] [CrossRef]
- Oei, P.Y.; Hermann, H.; Herpich, P.; Holtemöller, O.; Lünenbürger, B.; Schult, C. Coal phase-out in Germany—Implications and policies for affected regions. Energy 2020, 196, 117004. [Google Scholar] [CrossRef]
- Gaebler, S.F. Planning and Authorisation of Onshore Wind Energy Projects in Germany: Duration and Cost of the Different Steps. Synthesis of a Survey Performed by the Fachagentur Windenergie an Land-Memo, April 2015; Technical Report INIS-FR–21-1255; Deutsch-Französiches Büro für Erneuerbare Energie: Paris, France, 2015. [Google Scholar]
- Reusswig, F.; Braun, F.; Heger, I.; Ludewig, T.; Eichenauer, E.; Lass, W. Against the wind: Local opposition to the German Energiewende. Util. Policy 2016, 41, 214–227. [Google Scholar] [CrossRef]
- Joos, M.; Staffell, I. Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany. Renew. Sustain. Energy Rev. 2018, 86, 45–65. [Google Scholar] [CrossRef]
- Neukirch, M. Protests against German electricity grid extension as a new social movement? A journey into the areas of conflict. Energy Sustain. Soc. 2016, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Renn, O.; Marshall, J.P. Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”. Energy Policy 2016, 99, 224–232. [Google Scholar] [CrossRef]
- Ferguson-Cradler, G. Corporate strategy in the Anthropocene: German electricity utilities and the nuclear sudden stop. Ecol. Econ. 2022, 195, 107315. [Google Scholar] [CrossRef]
- Böringer, J.; Simons, T.J. Commoditization in Chemicals: Time for a Marketing and Sales Response; Technical Report McKinsey & Company: Düsseldorf, Germany, 2016. [Google Scholar]
- Körner, H. Optimaler Energieeinsatz in der Chemischen Industrie. Chem. Ing. Technol. 1988, 60, 511–518. [Google Scholar] [CrossRef]
- Bühler, F.; Guminski, A.; Gruber, A.; von Roon, S.; Elmegaard, B. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany. In Proceedings of the ECOS 2017: 30th International Conference on Efficiency Cost, Optimization, Simulation and Environmental Impact of Energy Systems, San Diego, CA, USA, 2–6 July 2017. [Google Scholar]
- Worrell, E.; Bernstein, L.; Roy, J.; Price, L.; Harnisch, J. Industrial energy efficiency and climate change mitigation. Energy Effic. 2009, 2, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Kiss, A.A. Rethinking Energy Use for a Sustainable Chemical Industry. Chem. Eng. Trans. 2019, 76, 13–18. [Google Scholar] [CrossRef]
- Database of the Federal Statistical Office of Germany. Available online: https://www-genesis.destatis.de/genesis/online (accessed on 10 July 2022).
- Manufacturing Energy Consumption Survey (MECS)—2018 MECS Survey Data. Available online: https://www.eia.gov/consumption/manufacturing/data/2018/#r5 (accessed on 5 July 2022).
- Uhl, A.; Schmidt, A.; Jensch, C.; Köster, D.; Strube, J. Development of Concepts for a Climate-Neutral Chemical & Pharmaceutical Industry in 2045. Processes 2022, 10, 1289. [Google Scholar] [CrossRef]
- Husarek, D.; Schmugge, J.; Niessen, S. Hydrogen supply chain scenarios for the decarbonisation of a German multi-modal energy system. Int. J. Hydrogen Energy 2021, 46, 38008–38025. [Google Scholar] [CrossRef]
- Staiß, F.; Adolf, J.; Ausfelder, F.; Erdmann, C.; Fischedick, M.; Hebling, C.; Jordan, T.; Klepper, G.; Müller, T.; Palkovits, R.; et al. Optionen für den Import Grünen Wasserstoffs nach Deutschland bis zum Jahr 2030. Transportwege–Länderbewertungen— Realisierungserfordernisse; Energiesysteme der Zukunft, Acatech— Deutsche Akademie der Technikwissenschaften: München, Germany, 2022. [Google Scholar] [CrossRef]
- Hagen, J. Economic Importance of Catalysts. In Industrial Catalysis, 3rd ed.; Hagen, J., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 2015; Chapter 17; pp. 459–462. [Google Scholar] [CrossRef]
- Reithmeier, R.; Bruckmeier, C.; Rieger, B. Conversion of CO2 via Visible Light Promoted Homogeneous Redox Catalysis. Catalysts 2012, 2, 544–571. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Brisk, M.L. Process Control: Potential Benefits and Wasted Opportunities. Aust. J. Electr. Electron. Eng. 2005, 2, 41–48. [Google Scholar] [CrossRef]
- Narciso, D.A.; Martins, F. Application of machine learning tools for energy efficiency in industry: A review. Energy Rep. 2020, 6, 1181–1199. [Google Scholar] [CrossRef]
- Jasi, A. Cracker Consortium Aims to Reduce Carbon Emissions. Available online: https://www.thechemicalengineer.com/news/cracker-consortium-aims-to-reduce-carbon-emissions/ (accessed on 16 July 2022).
- Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc. Natl. Acad. Sci. USA 2019, 116, 11187–11194. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Chemicals. 2021. Available online: https://www.iea.org/reports/chemicals (accessed on 6 July 2022).
- ACIL Allen Consulting. Chemical Industry Economic Contribution Analysis 2017–2018; Technical Report; ACIL Allen Consulting: Melbourne, Australia, 2019. [Google Scholar]
- Bradsher, K. China’s Slowdown Is a Wild Card in the Energy War With Russia. New York Times, 9 October 2022; B1. [Google Scholar]
- Krauss, C.; Stevenson, A.; Schmall, E. In Russia’s War, China and India Emerge as Financiers. New York Times, 24 June 2022; B1. [Google Scholar]
- Download Market Data. Available online: https://www.smard.de/en/downloadcenter/download-market-data (accessed on 5 July 2022).
- Vennemann, P.; Gruber, K.; Haaheim, J.; Kunsch, A.; Sistenich, H.P.; Thöni, H.R. Pumped storage plants—Status and perspectives. VGB PowerTech 2011, 91, 32. [Google Scholar]
- Dodds, P.E.; Garvey, S.D. Energy storage options to balance renewable electricity systems. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 2; pp. 13–33. [Google Scholar] [CrossRef]
- Letcher, T.M. Global warming, greenhouse gases, renewable energy, and storing energy. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 1; pp. 3–12. [Google Scholar] [CrossRef]
- Moseley, P.T.; Garche, J. Preface. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Moseley, P.T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; p. xvii. [Google Scholar] [CrossRef]
- Müsgens, F.; Ockenfels, A.; Peek, M. Economics and design of balancing power markets in Germany. Int. J. Electr. Power Energy Syst. 2014, 55, 392–401. [Google Scholar] [CrossRef]
- Hargreaves, J.J.; Jones, R.A. Long Term Energy Storage in Highly Renewable Systems. Front. Energy Res. 2020, 8, 219. [Google Scholar] [CrossRef]
- O’Shaughnessy, E.; Cruce, J.R.; Xu, K. Too much of a good thing? Global trends in the curtailment of solar PV. Sol. Energy 2020, 208, 1068–1077. [Google Scholar] [CrossRef]
- Görtz, J.; Aouad, M.; Wieprecht, S.; Terheiden, K. Assessment of pumped hydropower energy storage potential along rivers and shorelines. Renew. Sustain. Energy Rev. 2022, 165, 112027. [Google Scholar] [CrossRef]
- Hameer, S.; van Niekerk, J.L. A review of large-scale electrical energy storage. Int. J. Energy Res. 2015, 39, 1179–1195. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Hubbert, M.K. Energy from Fossil Fuels. Science 1949, 109, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, O.; Dincer, I. Development of a new ammonia-based energy storage option for grid balancing. Energy Storage 2020, 2, e145. [Google Scholar] [CrossRef]
- Sterner, M.; Specht, M. Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept. Energies 2021, 14, 6594. [Google Scholar] [CrossRef]
- Tichler, R.; Bauer, S. Power-to-Gas. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Oxford, UK, 2022; Chapter 18; pp. 595–612. [Google Scholar] [CrossRef]
- Kumar, S.S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R. Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Appl. Sci. 2021, 11, 11363. [Google Scholar] [CrossRef]
- Hodges, A.; Hoang, A.L.; Tsekouras, G.; Wagner, K.; Lee, C.Y.; Swiegers, G.F.; Wallace, G.G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nat. Commun. 2022, 13, 1304. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Ye, R. Current Status and Prospects of Gas Turbine Technology Application. J. Physi. Conf. Ser. 2021, 2108, 012009. [Google Scholar] [CrossRef]
- Felseghi, R.A.; Carcadea, E.; Raboaca, M.S.; TRUFIN, C.N.; Filote, C. Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef] [Green Version]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Fritschle, T.; Strozyk, F.; Oswald, T.; Stubbe, H.; Salamon, M. Deep geothermal energy potential at Weisweiler, Germany: Exploring subsurface mid-Palaeozoic carbonate reservoir rocks. Z. Dtsch. Ges. für Geowiss. 2021, 172, 325–338. [Google Scholar] [CrossRef]
- Rodionova, I.; Shuvalova, O.; Erokhina, E. Liberalization of electricity market in Germany. In Proceedings of the ADVED 2018—4th International Conference on Advances in Education and Social Sciencess, Istanbul, Turkey, 15–17 October 2018; pp. 446–453. [Google Scholar]
- Schiffer, H.W.; Trüby, J. A review of the German energy transition: Taking stock, looking ahead, and drawing conclusions for the Middle East and North Africa. Energy Transit. 2018, 2, 1–14. [Google Scholar] [CrossRef]
- Yusaf, T.; Goh, S.; Borserio, J.A. Potential of renewable energy alternatives in Australia. Renew. Sustain. Energy Rev. 2011, 15, 2214–2221. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.; Ouliaris, M. The renewable energy landscape in Canada: A spatial analysis. Renew. Sustain. Energy Rev. 2017, 75, 809–819. [Google Scholar] [CrossRef]
- Schädler, Y.; Renken, V.; Sorg, M.; Gerdes, L.; Gerdes, G.; Fischer, A. Power transport needs for the German power grid for a major demand coverage by wind and solar power. Energy Strategy Rev. 2021, 34, 100626. [Google Scholar] [CrossRef]
- Bundestag. Zweites Gesetz über Maßnahmen zur Beschleunigung des Netzausbaus Elektrizitätsnetze. In Bundesgesetzblatt; Bundesanzeiger Verlag: Bonn, Germany, 2013; Chapter I; Volume 2013, pp. 2543–2546. [Google Scholar]
- Kamlage, J.H.; Drewing, E.; Reinermann, J.L.; de Vries, N.; Flores, M. Fighting fruitfully? Participation and conflict in the context of electricity grid extension in Germany. Util. Policy 2020, 64, 101022. [Google Scholar] [CrossRef]
- Vorhaben des Bundesbedarfsplangesetzes. Available online: https://www.netzausbau.de/Vorhaben/uebersicht/liste/liste.html (accessed on 5 July 2022).
- Holmes, K.J.; Zeitler, E.; Kerxhalli-Kleinfield, M.; DeBoer, R. Scaling Deep Decarbonization Technologies. Earth’s Future 2021, 9, e2021EF002399. [Google Scholar] [CrossRef]
- Chermack, T.J.; Lynham, S.A. Definitions and Outcome Variables of Scenario Planning. Hum. Resour. Dev. Rev. 2002, 1, 366–383. [Google Scholar] [CrossRef]
- Zahradníčková, L.; Vacík, E. Scenarios as a Strong Support for Strategic Planning. Procedia Eng. 2014, 69, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Heijden, K. Scenarios: The Art of Strategic Conversation, 2nd ed.; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Foster, M.J. Scenario planning for small businesses. Long Range Plan. 1993, 26, 123–129. [Google Scholar] [CrossRef]
- Schoemaker, P.J.H.; Gunther, R.E. Profiting from Uncertainty; Reprint Ed.; Atria Books: New York, NY, USA, 2016. [Google Scholar]
- Fotr, J.; Špaček, M.; Souček, I.; Vacík, E. Scenarios, their concept, elaboration and application. Balt. J. Manag. 2015, 10, 73–97. [Google Scholar] [CrossRef]
- Wich-Konrad, T.; Lüke, W.; Oles, M.; Deerberg, G. Assessment of Industrial Greenhouse Gas Reduction Strategies within Consistent System Boundaries. Chem. Ing. Technol. 2020, 92, 1393–1402. [Google Scholar] [CrossRef]
- Schill, W.P. Residual load, renewable surplus generation and storage requirements in Germany. Energy Policy 2014, 73, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Traber, T.; Hegner, F.S.; Fell, H.J. An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030. Energies 2021, 14, 5230. [Google Scholar] [CrossRef]
- Ma, C.; Drauz, S.; Bolgaryn, R.; Menke, J.H.; Schäfer, F.; Dasenbrock, J.; Braun, M.; Hamann, L.; Zink, M.; Schmid, K.H.; et al. A comprehensive study for evaluation of the energy losses in distribution systems with high penetration of distributed generations. In Proceedings of the 25th International Conference on Electricity Distribution, Madrid, Spain, 3–6 June 2019. [Google Scholar] [CrossRef]
- Gas Infrastructure Europe (GIE). Aggregated Gas Storage Inventory (AGSI). Available online: https://agsi.gie.eu/ (accessed on 12 July 2022).
- Crotogino, F. 26—Large-scale hydrogen storage. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 613–632. [Google Scholar] [CrossRef]
- Shell Starts up Europe’s Largest PEM Green Hydrogen Electrolyser. Available online: https://www.shell.com/media/news-and-media-releases/2021/shell-starts-up-europes-largest-pem-green-hydrogen-electrolyser.html (accessed on 8 July 2022).
- Deutsche WindGuard GmbH, Status des Offshore-Windenergieausbaus in Deutschland—Erstes Halbjahr 2022; Technical Report; Deutsche WindGuard GmbH: Varel, Germany, 2022.
- Deutsche WindGuard GmbH, Status des Windenergieausbaus an Land in Deutschland—Erstes Halbjahr 2022; Technical Report; Deutsche WindGuard GmbH: Varel, Germany, 2022.
- Majava, A.; Vadén, T.; Toivanen, T.; Järvensivu, P.; Lähde, V.; Eronen, J.T. Sectoral low-carbon roadmaps and the role of forest biomass in Finland’s carbon neutrality 2035 target. Energy Strategy Rev. 2022, 41, 100836. [Google Scholar] [CrossRef]
- Armstrong, R.; Chiang, Y.M.; Gruenspecht, H.; Brushett, F.; Deutch, J.; Engelkemier, S.; Gençer, E.; Jaffe, R.; Joskow, P.; Mallapragada, D.; et al. The Future of Energy Storage; Technical Report; Massachusetts Institute of Technology: Cambridge, MA, USA, 2022. [Google Scholar]
Parameter | Value | Comment |
---|---|---|
Grid losses | 5% | Combined from different voltage levels [128] 1 |
Loading efficiency | 80% | Upper end of efficiency [103] 2 |
Discharging efficiency | 80% | |
⌀ Annual consumption natural gas 3 | 81.17 TWh | 70% ≅ 56.82 TWh |
⌀ Annual consumption fossil fuels 3 | 144.86 TWh | 70% ≅ 101.40 TWh |
Scenario | Parameter | Value | Comment |
---|---|---|---|
All | Nominal Power | 5, 10, 25, 50 GW | Various overall capacities |
Storage Scenario Set 1 | Storage Capacity | 100 GWh | One large gas cavern [130] |
Max. Charging Power | 1 GW | 100 large PEM electrolyzers [131] | |
Storage Scenario Set 2 | Storage Capacity | 1 TWh | Ten large gas caverns |
Max. Charging Power | 5 GW | ||
Storage Scenario Set 3 | Storage Capacity | 1 TWh | Ten large gas caverns |
Max. Charging Power | 10 GW | ||
Storage Scenario Set 4 | Storage Capacity | 5 TWh | ≈8% of German gas storage |
Max. Charging Power | 10 GW | ||
Storage Scenario Set 5 | Storage Capacity | 60 TWh | Entire German gas storage |
Max. Charging Power | 25 GW |
Capacity | Best Scenario | Nom. Energy Coverage | Act. Energy Coverage | Act. Energy Supply/Year | Nom. Energy Usage | |
---|---|---|---|---|---|---|
No Storage Scenario Set | 5 GW | 0% PV, 0% WPL, 100% WPS | 39.48% | 37.51% | 15.99 TWh | 100% |
10 GW | 0% PV, 0% WPL, 100% WPS | 78.96% | 63.33% | 27.00 TWh | 84.42% | |
25 GW | 20% PV, 0% WPL, 80% WPS | 168.51% | 82.64% | 35.24 TWh | 51.63% | |
50 GW | 20% PV, 35% WPL, 45% WPS | 272.10% | 93.03% | 39.67 TWh | 35.99% | |
Storage Scenario Set 1 | 10 GW | 0% PV, 0% WPL, 100% WPS | 78.96% | 63.38% | 27.03 TWh | 84.54% |
25 GW | 0% PV, 45% WPL, 55% WPS | 155.68% | 83.96% | 35.80 TWh | 58.32% | |
50 GW | 0% PV, 55% WPL, 45% WPS | 292.82% | 94.90% | 40.47 TWh | 35.01% | |
Storage Scenario Set 2 | 10 GW | 0% PV, 0% WPL, 100% WPS | 78.96% | 63.39% | 27.03 TWh | 84.55% |
25 GW | 0% PV, 15% WPL, 85% WPS | 183.50% | 85.58% | 36.50 TWh | 50.57% | |
50 GW | 5% PV, 95% WPL, 0% WPS | 204.19% | 95.44% | 40.70 TWh | 52.08% | |
Storage Scenario Set 3 | 10 GW | 0% PV, 0% WPL, 100% WPS | 78.96% | 63.39% | 27.03 TWh | 84.55% |
25 GW | 0% PV, 15% WPL, 85% WPS | 183.50% | 85.60% | 36.50 TWh | 50.59% | |
50 GW | 5% PV, 95% WPL, 0% WPS | 204.19% | 95.45% | 40.70 TWh | 52.09% | |
Storage Scenario Set 4 | 25 GW | 0% PV, 15% WPL, 85% WPS | 183.5% | 86.65% | 36.95 TWh | 51.58% |
50 GW | 5% PV, 95% WPL, 0% WPS | 204.19% | 96.81% | 41.28 TWh | 53.24% | |
Storage Scenario Set 5 | 25 GW | 0% PV, 20% WPL, 80% WPS | 178.86% | 93.51% | 39.88 TWh | 59.6% |
50 GW | 0% PV, 100% WPL, 0% WPS | 209.37% | 99.98% | 42.64 TWh | 54.97% |
Capacity | Best Scenario | Nom. Energy Coverage | Act. Energy Coverage | Act. Energy Supply/Year | Nom. Energy Usage | |
---|---|---|---|---|---|---|
No Storage Scenario Set | 5 GW | 0% PV, 0% WPL, 100% WPS | 22.14% | 21.03% | 15.99 TWh | 100% |
10 GW | 0% PV, 0% WPL, 100% WPS | 44.28% | 42.06% | 31.99 TWh | 100% | |
25 GW | 0% PV, 0% WPL, 100% WPS | 110.69% | 71.39% | 54.30 TWh | 67.89% | |
50 GW | 25% PV, 0% WPL, 75% WPS | 180.87% | 84.69% | 64.41 TWh | 49.29% | |
Storage Scenario Set 1 | 10 GW | 0% PV, 0% WPL, 100% WPS | 44.28% | 42.06% | 31.99 TWh | 100% |
25 GW | 0% PV, 0% WPL, 100% WPS | 110.69% | 71.45% | 54.34 TWh | 67.99% | |
50 GW | 0% PV, 65% WPL, 35% WPS | 153.79% | 85.04% | 64.67 TWh | 60.00% | |
Storage Scenario Set 2 | 10 GW | 0% PV, 0% WPL, 100% WPS | 44.28% | 42.06% | 31.99 TWh | 100% |
25 GW | 0% PV, 0% WPL, 100% WPS | 110.69% | 71.63% | 54.47 TWh | 68.26% | |
50 GW | 0% PV, 25% WPL, 75% WPS | 195.38% | 87.62% | 66.64 TWh | 48.72% | |
Storage Scenario Set 3 | 10 GW | 0% PV, 0% WPL, 100% WPS | 44.28% | 42.06% | 31.99 TWh | 100% |
25 GW | 0% PV, 0% WPL, 100% WPS | 110.69% | 71.63% | 54.48 TWh | 68.27% | |
50 GW | 0% PV, 20% WPL, 80% WPS | 200.58% | 87.69% | 66.69 TWh | 47.49% | |
Storage Scenario Set 4 | 25 GW | 0% PV, 0% WPL, 100% WPS | 110.69% | 71.71% | 54.54 TWh | 68.39% |
50 GW | 0% PV, 25% WPL, 75% WPS | 195.38% | 88.32% | 67.17 TWh | 49.34% | |
Storage Scenario Set 5 | 25 GW | 0% PV, 0% WPL, 100% WPS | 110.69% | 72.29% | 54.98 TWh | 69.30% |
50 GW | 0% PV, 25% WPL, 75% WPS | 195.38% | 93.95% | 71.45 TWh | 54.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riedel, N.H.; Špaček, M. Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry. Sustainability 2022, 14, 13520. https://doi.org/10.3390/su142013520
Riedel NH, Špaček M. Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry. Sustainability. 2022; 14(20):13520. https://doi.org/10.3390/su142013520
Chicago/Turabian StyleRiedel, Norman Hendrik, and Miroslav Špaček. 2022. "Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry" Sustainability 14, no. 20: 13520. https://doi.org/10.3390/su142013520
APA StyleRiedel, N. H., & Špaček, M. (2022). Challenges of Renewable Energy Sourcing in the Process Industries: The Example of the German Chemical Industry. Sustainability, 14(20), 13520. https://doi.org/10.3390/su142013520