Synthesis of a Novel Adsorbing Agent by Coupling Chitosan, β-Cyclodextrin, and Cerium Dioxide: Evaluation of Hexavalent Chromium Removal Efficacy from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Adsorbents
2.3. Cr(VI) Adsorption Experiments
2.4. Determination of Cr(VI) Concentration
2.5. Analysis of the % Cr(VI) Removal and of the Adsorbed Amount of Cr(VI)
2.6. Analysis of the Adsorption Isotherms
2.7. Analysis of the Adsorption Kinetics
2.8. Analysis of the Adsorption Thermodynamics
2.9. Instrumental Characterization of the Synthesized Adsorbents
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Operating Conditions in the Adsorsption of Cr(VI)
3.1.1. pH
3.1.2. Initial Cr(VI) Concentration
3.1.3. Initial Adsorbent Concentration
3.1.4. Temperature
3.1.5. Adsorption in the Optimum Conditions
3.2. Isotherm Models
3.3. Kinetics
3.4. Thermodynamics
3.5. Adsorbent Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | frequency factor of the Arrhenius equation |
AT | equilibrium binding constant [L/g] |
bT | Temkin constant [J/mol] |
C | intraparticle diffusion constant [mgCr(VI)/gadsrbent] |
C0,Cr(VI) | initial concentration of chromium [mg/L] |
Ce,t,Cr(VI) | concentration of chromium at equilibrium or any time interval [mg/L] |
Ea | activation energy (kJ/mol) |
k1 | pseudo-first-order model equilibrium rate constant [min−1] |
k2 | pseudo-second-order model rate constant [gadsorbent/mgCr(VI).min] |
KF | Freundlich constant [(mgCr(VI)/gadsorbent)∗(L/mgCr(VI))1/n] |
Kid | diffusion coefficient [(mgCr(VI)/gadsrbent).min0.5] |
KL | Langmuir constant [L/mgCr(VI)] |
m | mass of adsorbent [g] |
n | dimensional Freundlich constant |
qe,t | adsorbed amount of chromium at equilibrium or any time interval [mgCr(VI)/gadsrbent] |
qm | maximum adsorption capacity of the adsorbent [mgCr(VI)/gadsrbent] |
R | gas constant [8.314 J/mol.K] |
T | temperature [K] |
V | volume of solution [L] |
References
- Nameni, M.; Moghadam, M.R.A.; Arami, M. Adsorption of Hexavalent Chromium from Aqueous Solutions by Wheat Bran. Int. J. Environ. Sci. Technol. 2008, 5, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.C.; Bravo Gómez, M.E.; Hernández Zavala, A. Hexavalent Chromium: Regulation and Health Effects. J. Trace Elem. Med. Biol. 2021, 65, 126729. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- De, R.; Silva-Calpa, L.; Correia, T.O.F.; Netto-Ferreira, J.C.; Kuriyama, S.N.; Letichevsky, S.; de Avillez, R.R. Stable and Highly Active Zero-Valent Iron-Nickel Nanofilaments/Silica for the Hexavalent Chromium Reduction. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100332. [Google Scholar] [CrossRef]
- Castro-Rodríguez, A.; Carro-Pérez, M.E.; Iturbe-Argüelles, R.; González-Chávez, J.L. Adsorption of Hexavalent Chromium in an Industrial Site Contaminated with Chromium in Mexico. Environ. Earth Sci. 2015, 73, 175–183. [Google Scholar] [CrossRef]
- Pushkar, B.; Sevak, P.; Parab, S.; Nilkanth, N. Chromium Pollution and Its Bioremediation Mechanisms in Bacteria: A Review. J. Environ. Manag. 2021, 287, 112279. [Google Scholar] [CrossRef]
- Saha, B.; Orvig, C. Biosorbents for Hexavalent Chromium Elimination from Industrial and Municipal Effluents. Coord. Chem. Rev. 2010, 254, 2959–2972. [Google Scholar] [CrossRef]
- Yin, J.; Wu, X.; Li, S.; Li, C.; Guo, Z. Impact of Environmental Factors on Gastric Cancer: A Review of the Scientific Evidence, Human Prevention and Adaptation. J. Environ. Sci. 2020, 89, 65–79. [Google Scholar] [CrossRef]
- European Union Council Directive 98/83/ED of 3 November 1998. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31998L0083 (accessed on 22 February 2022).
- World Health Organization. WHO Guidelines for Drinking-Water Quality: Surveillance and Control of Community Supplies; World Health Organization: Geneva, Switzerland, 1997; Volume 1, pp. 104–108. [Google Scholar] [CrossRef]
- EPA 816-F-02-01 2002; Ground Water & Drinking Water—Current Drinking Water Standards. National Primary Drinking Water Regulations. USEPA U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Pradhan, D.; Sukla, L.B.; Sawyer, M.; Rahman, P.K.S.M. Recent Bioreduction of Hexavalent Chromium in Wastewater Treatment: A Review. J. Ind. Eng. Chem. 2017, 55, 1–20. [Google Scholar] [CrossRef]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P.S. A Review on Cleaner Strategies for Chromium Industrial Wastewater: Present Research and Future Perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Ri, C.; Tang, J.; Liu, F.; Lyu, H.; Li, F. Enhanced Microbial Reduction of Aqueous Hexavalent Chromium by Shewanella Oneidensis MR-1 with Biochar as Electron Shuttle. J. Environ. Sci. 2022, 113, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Dwivedi, S.K. A Review on Accessible Techniques for Removal of Hexavalent Chromium and Divalent Nickel from Industrial Wastewater: Recent Research and Future Outlook. J. Clean. Prod. 2021, 295, 126229. [Google Scholar] [CrossRef]
- Hu, H.; Xu, K. Physicochemical Technologies for HRPs and Risk Control. In High-Risk Pollutants in Wastewater; Ren, H., Zhang, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 169–207. ISBN 9780128164488. [Google Scholar]
- Gaffer, A.; Al Kahlawy, A.A.; Aman, D. Magnetic Zeolite-Natural Polymer Composite for Adsorption of Chromium (VI). Egypt J. Pet. 2017, 26, 995–999. [Google Scholar] [CrossRef]
- Lal, S.; Singhal, A.; Kumari, P. Exploring Carbonaceous Nanomaterials for Arsenic and Chromium Removal from Wastewater. J. Water Process Eng. 2020, 36, 101276. [Google Scholar] [CrossRef]
- Fang, L.; Ding, L.; Ren, W.; Hu, H.; Huang, Y.; Shao, P.; Yang, L.; Shi, H.; Ren, Z.; Han, K.; et al. High Exposure Effect of the Adsorption Site Significantly Enhanced the Adsorption Capacity and Removal Rate: A Case of Adsorption of Hexavalent Chromium by Quaternary Ammonium Polymers (QAPs). J. Hazard. Mater. 2021, 416, 125829. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, T.; Liu, X.; Zhang, W. Simultaneous Oxidation and Adsorption of As(III) from Water by Cerium Modified Chitosan Ultrafine Nanobiosorbent. J. Hazard. Mater. 2016, 308, 1–10. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Revuri, V.; Huh, K.M.; Lee, Y. kyu Polysaccharide Based Nano/Microformulation: An Effective and Versatile Oral Drug Delivery System. In Nanostructures for Oral Medicine; Andronescu, E., Mihai Grumezescu, A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 409–433. ISBN 9780323477215. [Google Scholar]
- Cortinez, D.; Palma, P.; Castro, R.; Palza, H. A Multifunctional Bi-Phasic Graphene Oxide/Chitosan Paper for Water Treatment. Sep. Purif. Technol. 2020, 235, 116181. [Google Scholar] [CrossRef]
- Aslam, M.M.A.; Den, W.; Kuo, H.-W. Removal of Hexavalent Chromium by Encapsulated Chitosan-Modified Magnetic Carbon Nanotubes: Fixed-Bed Column Study and Modelling. J. Water Process Eng. 2021, 42, 102143. [Google Scholar] [CrossRef]
- Liaw, B.S.; Chang, T.T.; Chang, H.K.; Liu, W.K.; Chen, P.Y. Fish Scale-Extracted Hydroxyapatite/Chitosan Composite Scaffolds Fabricated by Freeze Casting—An Innovative Strategy for Water Treatment. J. Hazard. Mater. 2020, 382, 121082. [Google Scholar] [CrossRef]
- Sieber, R.; Schobinger Rehberger, B.; Walther, B. Milk Lipids: Removal of Cholesterol from Dairy Products. In Encyclopedia of Dairy Sciences: Second Edition; Fuquay, J.W., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 734–740. ISBN 9780123744029. [Google Scholar]
- Qiu, P.; Wang, S.; Tian, C.; Lin, Z. Adsorption of Low-Concentration Mercury in Water by 3D Cyclodextrin/Graphene Composites: Synergistic Effect and Enhancement Mechanism. Environ. Pollut. 2019, 252, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Kurian, M. Cerium Oxide Based Materials for Water Treatment-A Review. J. Environ. Chem. Eng. 2020, 8, 104439. [Google Scholar] [CrossRef]
- Wolski, L.; Sobańska, K.; Walkowiak, A.; Akhmetova, K.; Gryboś, J.; Frankowski, M.; Ziolek, M.; Pietrzyk, P. Enhanced Adsorption and Degradation of Methylene Blue over Mixed Niobium-Cerium Oxide—Unraveling the Synergy between Nb and Ce in Advanced Oxidation Processes. J. Hazard. Mater. 2021, 415, 125665. [Google Scholar] [CrossRef] [PubMed]
- Chigondo, M.; Paumo, H.K.; Bhaumik, M.; Pillay, K.; Maity, A. Rapid High Adsorption Performance of Hydrous Cerium-Magnesium Oxides for Removal of Fluoride from Water. J. Mol. Liq. 2018, 265, 496–509. [Google Scholar] [CrossRef]
- Nurhasanah, I.; Kadarisman; Gunawan, V.; Sutanto, H. Cerium Oxide Nanoparticles Application for Rapid Adsorptive Removal of Tetracycline in Water. J. Environ. Chem. Eng. 2020, 8, 103613. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Liu, S.; Tan, X.; Ding, Y.; Zeng, G.; Zhou, Y.; Zhang, M.; Wang, S.; Zheng, B. Effective Removal of Cr(VI) Using β-Cyclodextrin-Chitosan Modified Biochars with Adsorption/Reduction Bifuctional Roles. RSC Adv. 2015, 6, 94–104. [Google Scholar] [CrossRef]
- Kameda, T.; Honda, R.; Kumagai, S.; Saito, Y.; Yoshioka, T. Adsorption of Cu2+ and Ni2+ by Tripolyphosphate-Crosslinked Chitosan-Modified Montmorillonite. J. Solid State Chem. 2019, 277, 143–148. [Google Scholar] [CrossRef]
- Zhao, F.; Sillanpää, M. Chapter 3—Cross-Linked Chitosan and β-Cyclodextrin as Functional Adsorbents in Water Treatment. In Advanced Water Treatment; Sillanpää, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–264. ISBN 978-0-12-819216-0. [Google Scholar]
- Kekes, T.; Kolliopoulos, G.; Tzia, C. Hexavalent Chromium Adsorption onto Crosslinked Chitosan and Chitosan/β-Cyclodextrin Beads: Novel Materials for Water Decontamination. J. Environ. Chem. Eng. 2021, 9, 105581. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Gao, S.; Shang, J.K. Exceptional Arsenic Adsorption Performance of Hydrous Cerium Oxide Nanoparticles: Part A. Adsorption Capacity and Mechanism. Chem. Eng. J. 2012, 185–186, 127–135. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Kajjumba, W.G.; Emik, S.; Öngen, A.; Özcan, H.K.; Aydın, S. Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. In Advanced Sorption Process Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Sahoo, T.R.; Prelot, B. Adsorption Processes for the Removal of Contaminants from Wastewater. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Bonelli, B., Freyria, F.S., Rossetti, I., Sethi, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Intraparticle Diffusion of Cr(VI) through Biomass and Magnetite Coated Biomass: A Comparative Kinetic and Diffusion Study. S. Afr. J. Chem. Eng. 2020, 32, 39–55. [Google Scholar] [CrossRef]
- Nakhli, A.; Bergaoui, M.; Aguir, C.; Khalfaoui, M.; M’henni, M.F.; Ben Lamine, A. Adsorption Thermodynamics in the Framework of the Statistical Physics Formalism: Basic Blue 41 Adsorption onto Posidonia Biomass. Desalin. Water Treat. 2016, 57, 12730–12742. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Li, T.; Wang, W.; Wang, W.; Yu, G. Novel Crosslinked Chitosan for Enhanced Adsorption of Hexavalent Chromium in Acidic Solution. Chem. Eng. J. 2018, 347, 782–790. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. [Google Scholar] [CrossRef]
- Zhao, F.; Repo, E.; Yin, D.; Chen, L.; Kalliola, S.; Tang, J.; Iakovleva, E.; Tam, K.C.; Sillanpää, M. One-Pot Synthesis of Trifunctional Chitosan-EDTA-β-Cyclodextrin Polymer for Simultaneous Removal of Metals and Organic Micropollutants. Sci. Rep. 2017, 7, 15811. [Google Scholar] [CrossRef] [Green Version]
- Rojas, G.; Silva, J.; Flores, J.A.; Rodriguez, A.; Ly, M.; Maldonado, H. Adsorption of Chromium onto Cross-Linked Chitosan. Sep. Purif. Technol. 2005, 44, 31–36. [Google Scholar] [CrossRef]
- Zhu, T.; Huang, W.; Zhang, L.; Gao, J.; Zhang, W. Adsorption of Cr(VI) on Cerium Immobilized Cross-Linked Chitosan Composite in Single System and Coexisted with Orange II in Binary System. Int. J. Biol. Macromol. 2017, 103, 605–612. [Google Scholar] [CrossRef]
- Hevira, L.; Zilfa; Rahmayeni; Ighalo, J.O.; Zein, R. Biosorption of Indigo Carmine from Aqueous Solution by Terminalia Catappa Shell. J. Environ. Chem. Eng. 2020, 8, 104290. [Google Scholar] [CrossRef]
- Hallajiqomi, M.; Eisazadeh, H. Adsorption of Manganese Ion Using Polyaniline and It’s Nanocomposite: Kinetics and Isotherm Studies. J. Ind. Eng. Chem. 2017, 55, 191–197. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.H. Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel onto Sylopute. J. Chem. Thermodyn. 2019, 130, 104–113. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.S.T.; Almeida, I.L.S.; Rezende, H.C.; Marcionilio, S.M.L.O.; Léon, J.J.L.; de Matos, T.N. Elucidation of Mechanism Involved in Adsorption of Pb(II) onto Lobeira Fruit (Solanum lycocarpum) Using Langmuir, Freundlich and Temkin Isotherms. Microchem. J. 2018, 137, 348–354. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Rodríguez-López, M.I.; Fortea, M.I.; Lucas-Abellán, C.; Mercader-Ros, M.T.; López-Miranda, S.; Gómez-López, V.M.; Semeraro, P.; Cosma, P.; Fini, P.; et al. Adsorption Properties of β- and Hydroxypropyl-β-Cyclodextrins Cross-Linked with Epichlorohydrin in Aqueous Solution. A Sustainable Recycling Strategy in Textile Dyeing Process. Polymers 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.P.; Gopal, K. Adsorption of Chromium(VI) on Low Cost Adsorbents Derived from Agricultural Waste Material: A Comparative Study. J. Hazard. Mater. 2007, 145, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.A.; Ray, M.; Chakraborty, S. Hexavalent Chromium Removal from Wastewater Using Aniline Formaldehyde Condensate Coated Silica Gel. J. Hazard. Mater. 2007, 143, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, R.; Otto, M. Study of Chromium(VI) Adsorption onto Modified Activated Carbons with Respect to Analytical Application. Adsorption 2010, 16, 279–286. [Google Scholar] [CrossRef]
- Rodrigues, E.; Almeida, O.; Brasil, H.; Moraes, D.; dos Reis, M.A.L. Adsorption of Chromium (VI) on Hydrotalcite-Hydroxyapatite Material Doped with Carbon Nanotubes: Equilibrium, Kinetic and Thermodynamic Study. Appl. Clay Sci. 2019, 172, 57–64. [Google Scholar] [CrossRef]
- Bal, D.K.; Bhasarkar, J.B. Adsorptive Degradation of Hexavalent Chromium from Aqueous Solution Using Coconut Shell as a Green Adsorbent. Environ. Prog. Sustain. Energy 2021, 40, e13594. [Google Scholar] [CrossRef]
- Kekes, T.; Tsakanika, L.A.; Kollipoulos, G.; Tzia, C. Adsorption of Indigo Carmine onto Chitosan—Cerium Oxide Nanobiosorbent: Adsorption Isotherms, Kinetics, and Thermodynamics Adsorption of Indigo Carmine onto Chitosan—Cerium Oxide Nanobiosorbent: Adsorption Isotherms, Kinetics, and Thermodynamics. IOP Conf. Ser. Earth Environ. Sci. 2021, 690, 012048. [Google Scholar] [CrossRef]
- Murcia-Salvador, A.; Pellicer, J.A.; Fortea, M.I.; Gómez-López, V.M.; Rodríguez-López, M.I.; Núñez-Delicado, E.; Gabaldón, J.A. Adsorption of Direct Blue 78 Using Chitosan and Cyclodextrins as Adsorbents. Polymers 2019, 11, 1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red and Chromium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568–1576. [Google Scholar] [CrossRef]
- Shi, T.; Yang, D.; Yang, H.; Ye, J.; Cheng, Q. Preparation of Chitosan Crosslinked Modified Silicon Material and Its Adsorption Capability for Chromium(VI). Appl. Clay Sci. 2017, 142, 100–108. [Google Scholar] [CrossRef]
- Li, Q.; Xu, B.; Zhuang, L.; Xu, X.; Wang, G.; Zhang, X.; Chen, J.; Tang, Y. Preparation, Characterization, Adsorption Kinetics and Thermodynamics of Chitosan Adsorbent Grafted with a Hyperbranched Polymer Designed for Cr(VI) Removal. Cellulose 2018, 25, 3471–3486. [Google Scholar] [CrossRef]
- Samuel, M.S.; Shah, S.S.; Subramaniyan, V.; Qureshi, T.; Bhattacharya, J.; Pradeep Singh, N.D. Preparation of Graphene Oxide/Chitosan/Ferrite Nanocomposite for Chromium(VI) Removal from Aqueous Solution. Int. J. Biol. Macromol. 2018, 119, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Peng, L.; Chen, A.; Shang, C.; Lei, M.; He, K.; Luo, S.; Shao, J.; Zeng, Q. Chitosan-Stabilized FeS Magnetic Composites for Chromium Removal: Characterization, Performance, Mechanism, and Stability. Carbohydr. Polym. 2019, 214, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, M.; Khatun, S.; Anand, S. Kinetics and Thermodynamics of Lead (II) Adsorption on Lateritic Nickel Ores of Indian Origin. Chem. Eng. J. 2009, 155, 184–190. [Google Scholar] [CrossRef]
- Wang, X.S.; Li, Z.Z.; Tao, S.R. Removal of Chromium (VI) from Aqueous Solution Using Walnut Hull. J. Environ. Manag. 2009, 90, 721–729. [Google Scholar] [CrossRef]
- Kassir, M.; Roques-Carmes, T.; Hamieh, T.; Razafitianamaharavo, A.; Barres, O.; Toufaily, J.; Villiéras, F. Surface Modification of TiO2 Nanoparticles with AHAPS Aminosilane: Distinction between Physisorption and Chemisorption. Adsorption 2013, 19, 1197–1209. [Google Scholar] [CrossRef]
- Ajmani, A.; Shahnaz, T.; Subbiah, S.; Narayanasamy, S. Hexavalent Chromium Adsorption on Virgin, Biochar, and Chemically Modified Carbons Prepared from Phanera Vahlii Fruit Biomass: Equilibrium, Kinetics, and Thermodynamics Approach. Environ. Sci. Pollut. Res. 2019, 26, 32137–32150. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S. Insight Into Adsorption Thermodynamics. Thermodynamics 2011, 16, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced Physico-Chemical Characterization of Chitosan by Means of TGA Coupled on-Line with FTIR and GCMS: Thermal Degradation and Water Adsorption Capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Azeez, H.S.; Mohammad, M.R. Study the Structure, Morphology and Vibration Modes for K2CrO4 and K2Cr2O7. J. Al-Nahrain Univ. 2017, 20, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Preethi, J.; Hasmath Farzana, M.; Rathinam, K.; Vigneshwaran, S.; Karthikeyan, P.; Meenakshi, S. Enhanced Photocatalytic Response of ZnO Embedded Chitosan/β-Cyclodextrin towards the Detoxification of Cr(VI) under Visible Light. Int. J. Biol. Macromol. 2020, 147, 867–876. [Google Scholar] [CrossRef]
- Preethi, J.; Meenakshi, S. Fabrication of La3+ Impregnated Chitosan/β-Cyclodextrin Biopolymeric Materials for Effective Utilization of Chromate and Fluoride Adsorption in Single Systems. J. Chem. Eng. Data 2018, 63, 723–731. [Google Scholar] [CrossRef]
Experimental Condition | Value | Constant Operating Conditions |
---|---|---|
pH | 2 | C0,Cr(VI) = 50 mg/L, Cadsorbent = 1 g/L, and T = 25 °C |
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
C0,Cr(VI) (mg/L) | 5 | Cadsorbent = 1 g/L, pH = 3, and T = 25 °C |
10 | ||
25 | ||
50 | ||
75 | ||
100 | ||
Cadsorbent (g/L) | 0.10 | C0,Cr(VI) = 50 mg/L, pH = 3, and T = 25 °C |
0.25 | ||
0.50 | ||
0.75 | ||
1.00 | ||
1.25 | ||
1.50 | ||
1.75 | ||
2.00 | ||
T (°C) | 15 | C0,Cr(VI) = 50 mg/L, Cadsorbent = 1 g/L, and pH = 3 |
25 | ||
35 | ||
50 |
Studied Parameter | Chit/Ce | Chit/β-CyD/Ce | |||
---|---|---|---|---|---|
% Removal | qe (mgCr(VI)/gadsorbent) | % Removal | qe (mgCr(VI)/gadsorbent) | ||
pH (C0,Cr(VI) = 50 mg/L, Cadsorbent = 1 g/L, and T = 25 °C) | 2 | 77.04 ± 2.76 Ab | 38.52 ± 1.38 Ab | 79.91 ± 2.32 Bb | 39.95 ± 1.14 Bb |
3 | 87.06 ± 1.18 Aa | 43.53 ± 0.59 Aa | 93.57 ± 2.19 Ba | 46.78 ± 0.68 Ba | |
4 | 75.94 ± 2.38 Ab | 37.97 ± 1.20 Ab | 78.24 ± 2.18 Bb | 39.12 ± 1.36 Bb | |
5 | 69.06 ± 1.57 Ac | 34.53 ± 0.79 Ac | 69.35 ± 1.86 Bc | 34.68 ± 0.95 Bc | |
6 | 68.72 ± 2.09 Ac | 34.36 ± 1.04 Ac | 69.18 ± 1.78 Bc | 34.59 ± 0.83 Bc | |
7 | 64.86 ± 3.21 Acd | 32.43 ± 1.60 Acd | 66.65 ± 1.39 Bcd | 33.33 ± 1.22 Bcd | |
8 | 61.32 ± 2.10 Ad | 30.66 ± 1.05 Ad | 64.81 ± 2.03 Bd | 32.41 ± 1.01 Bd | |
9 | 54.94 ± 1.28 Ae | 27.47 ± 0.64 Ae | 61.94 ± 1.36 Be | 30.97 ± 1.11 Be | |
10 | 54.20 ± 0.66 Aef | 27.10 ± 0.33 Aef | 60.05 ± 0.75 Bef | 30.02 ± 0.56 Bef | |
11 | 50.76 ± 1.23 Af | 25.38 ± 0.61 Af | 57.14 ± 0.98 Bf | 28.57 ± 0.82 Bf | |
C0,Cr(VI) (mg/L) (Cadsorbent = 1 g/L, pH = 3, and T = 25 °C) | 5 | 100.00 ± 0.00 Aa | 5.00 ± 0.00 Aa | 100.00 ± 0.00 Ba | 5.00 ± 0.00 Ba |
10 | 92.10 ± 2.97 Aab | 9.21 ± 0.30 Aab | 100.00 ± 0.00 Bab | 10.00 ± 0.00 Bab | |
25 | 90.44 ±1.20 Aab | 22.61 ± 0.40 Aab | 95.35 ±1.69 Bab | 23.84 ± 0.81 Bab | |
50 | 87.06 ± 1.18 Ab | 43.53 ± 0.59 Ab | 93.57 ± 2.19 Bb | 46.78 ± 0.68 Bb | |
75 | 76.39 ± 3.29 Ac | 57.29 ± 1.89 Ac | 83.16 ± 2.81 Bc | 62.37 ± 1.95 Bc | |
100 | 65.40 ± 2.28 Ac | 65.40 ± 2.28 Ac | 79.06 ± 3.02 Bc | 79.06 ± 2.14 Bc | |
Cadsorbent (g/L) (C0,Cr(VI) = 50 mg/L, pH = 3, and T = 25 °C) | 0.1 | 35.80 ± 1.66 Ag | 179.00 ± 4.59 Ag | 41.65 ± 1.82 Bg | 208.24 ± 3.19 Bg |
0.25 | 59.62 ± 2.55 Af | 119.24 ± 3.97 Af | 63.40 ± 2.41 Bf | 126.80 ± 2.58 Bf | |
0.5 | 75.78 ± 0.92 Ae | 75.78 ± 0.92 Ae | 82.86 ± 1.04 Be | 82.86 ± 1.04 Be | |
0.75 | 81.74 ± 1.13 Ad | 54.49 ± 1.03 Ad | 88.68 ± 1.25 Bd | 59.12 ± 0.97 Bd | |
1 | 87.06 ± 1.18 Ac | 43.53 ± 0.59 Ac | 93.57 ± 2.19 Bc | 46.78 ± 0.68 Bc | |
1.25 | 89.92 ± 1.42 Abc | 35.97 ± 0.87 Abc | 94.95 ± 1.18 Bbc | 37.98 ± 0.48 Bbc | |
1.5 | 91.70 ± 1.39 Aab | 30.57 ± 0.61 Aab | 95.91 ± 0.86 Bab | 31.97 ± 0.52 Bab | |
1.75 | 93.62 ± 1.47 Aa | 26.75 ± 0.49 Aa | 96.86 ± 1.21 Ba | 27.67 ± 0.44 Ba | |
2 | 93.98 ± 0.87 Aa | 23.50 ± 0.34 Aa | 97.68 ± 0.73 Ba | 24.42 ± 0.49 Ba | |
T (°C) (C0,Cr(VI) = 50 mg/L, Cadsorbent = 1 g/L, and pH = 3) | 15 | 83.24 ± 1.69 Ac | 41.62 ± 0.84 Ac | 87.36 ± 1.78 Bc | 43.68 ± 0.81 Bc |
25 | 87.06 ± 1.18 Ab | 43.53 ± 0.59 Ab | 93.57 ± 2.19 Bb | 46.78 ± 0.68 Bb | |
35 | 89.22 ± 1.37 Aab | 44.61 ± 0.68 Aab | 95.71 ± 1.74 Bab | 47.85 ± 0.59 Bab | |
50 | 91.86 ± 0.93 Aa | 45.93 ± 0.46 Aa | 97.89 ± 1.69 Ba | 48.94 ± 0.72 Ba |
Initial Cr(VI) Concentration (mg/L) | Chit/Ce | Chit/β-CyD/Ce | ||
---|---|---|---|---|
% Removal | qe (mgCr(VI)/gadsorbent) | % Removal | qe (mgCr(VI)/gadsorbent) | |
5 | 100.00 ± 0.00 A | 2.50 ± 0.00 A | 100.00 ± 0.00 B | 2.50 ± 0.00 B |
10 | 100.00 ± 0.00 A | 5.00 ± 0.00 A | 100.00 ± 0.00 B | 5.00 ± 0.00 B |
25 | 95. 34 ± 0.82 A | 11.92 ± 0.41 A | 100.00 ± 0.00 B | 12.5 ± 0.00 B |
50 | 93.73 ± 1.02 A | 23.43 ± 0.53 A | 100.00 ± 0.00 B | 25 ± 0.00 B |
75 | 90.57 ± 1.27 A | 33.96 ± 0.62 A | 96.16 ± 1.14 B | 36.06 ± 0.57 B |
100 | 86.57 ± 1.53 A | 43.28 ± 0.55 A | 95.79 ± 0.72 B | 47.89 ± 0.36 B |
Isotherm Constants | ||
---|---|---|
Langmuir | Chit/Ce | Chit/β-CyD/Ce |
qm (mgCr(VI)/gadsorbent) | 270.27 | 144.93 |
KL (L/mgCr(VI)) | 0.032 | 0.157 |
RL | 0.386 | 0.113 |
R2 | 0.9856 | 0.9613 |
Freundlich | Chit/Ce | Chit/β-CyD/Ce |
KF ((mgCr(VI)/gadsorbent) ∗ (L/mgCr(VI))1/n) | 9.294 | 20.831 |
1/n | 0.842 | 0.650 |
R2 | 0.9954 | 0.9920 |
Temkin | Chit/Ce | Chit/β-CyD/Ce |
AT (L/g) | 0.386 | 0.906 |
bT (kJ/mol) | 0.042 | 0.049 |
R2 | 0.9044 | 0.8752 |
C0,Cr(VI) (mg/L) | qexp | Kinetic Models and Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pseudo-First-Order | Pseudo-Second-Order | Intraparticle Diffusion | ||||||||
qcal | k1 | R2 | qcal | k2 | R2 | Kid | C | R2 | ||
Chit/Ce | ||||||||||
5 | 5.00 | 3.95 | 0.0601 | 0.944 | 5.66 | 0.0233 | 0.9899 | 0.6849 | 0.5127 | 0.9326 |
10 | 9.21 | 6.44 | 0.0778 | 0.9497 | 9.91 | 0.0218 | 0.9993 | 1.2749 | 1.3442 | 0.8756 |
25 | 22.61 | 13.50 | 0.0933 | 0.9164 | 23.64 | 0.0172 | 0.9998 | 3.1293 | 3.9568 | 0.8289 |
50 | 43.53 | 23.64 | 0.0534 | 0.8570 | 45.45 | 0.0055 | 0.9965 | 5.1430 | 8.7681 | 0.8095 |
75 | 57.29 | 33.97 | 0.0677 | 0.8961 | 60.98 | 0.0043 | 0.9999 | 7.1198 | 10.173 | 0.8451 |
100 | 65.40 | 38.34 | 0.0783 | 0.912 | 68.97 | 0.0039 | 0.9986 | 8.1092 | 12.585 | 0.8251 |
Chit/β-CyD/Ce | ||||||||||
5 | 5.00 | 5.05 | 0.4670 | 0.9857 | 5.29 | 0.0498 | 0.9860 | 0.7686 | 0.5995 | 0.8760 |
10 | 10.00 | 10.84 | 0.2432 | 0.9193 | 10.80 | 0.0165 | 0.9929 | 1.3529 | 1.3230 | 0.8910 |
25 | 23.84 | 26.56 | 0.1352 | 0.8635 | 24.88 | 0.0162 | 0.9998 | 3.2736 | 4.2483 | 0.8234 |
50 | 46.78 | 53.85 | 0.0601 | 0.8378 | 50.51 | 0.0062 | 0.9977 | 6.4320 | 6.7477 | 0.8776 |
75 | 62.37 | 66.97 | 0.0690 | 0.8371 | 63.29 | 0.0020 | 0.9999 | 8.4827 | 13.475 | 0.7574 |
100 | 79.06 | 95.59 | 0.0444 | 0.7934 | 83.33 | 0.0012 | 0.9999 | 11.0150 | 13.251 | 0.8427 |
Adsorbent | Ea (kJ/mol) | R2 |
---|---|---|
Chit/Ce | 68.88 | 0.9958 |
Chit/β-CyD/Ce | 67.14 | 0.9971 |
T (K) | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol∗K) | R2 |
---|---|---|---|---|
Chit/Ce | ||||
288.15 | −3.84 | −17.91 | 75.67 | 0.9956 |
298.15 | −4.73 | |||
308.15 | −5.41 | |||
323.15 | −6.51 | |||
Chit/β-CyD/Ce | ||||
288.15 | −4.63 | −41.19 | 159.55 | 0.9919 |
298.15 | −6.64 | |||
308.15 | −7.95 | |||
323.15 | −10.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kekes, T.; Giannou, V.; Tzia, C.; Kolliopoulos, G. Synthesis of a Novel Adsorbing Agent by Coupling Chitosan, β-Cyclodextrin, and Cerium Dioxide: Evaluation of Hexavalent Chromium Removal Efficacy from Aqueous Solutions. Sustainability 2022, 14, 13527. https://doi.org/10.3390/su142013527
Kekes T, Giannou V, Tzia C, Kolliopoulos G. Synthesis of a Novel Adsorbing Agent by Coupling Chitosan, β-Cyclodextrin, and Cerium Dioxide: Evaluation of Hexavalent Chromium Removal Efficacy from Aqueous Solutions. Sustainability. 2022; 14(20):13527. https://doi.org/10.3390/su142013527
Chicago/Turabian StyleKekes, Tryfon, Virginia Giannou, Constantina Tzia, and Georgios Kolliopoulos. 2022. "Synthesis of a Novel Adsorbing Agent by Coupling Chitosan, β-Cyclodextrin, and Cerium Dioxide: Evaluation of Hexavalent Chromium Removal Efficacy from Aqueous Solutions" Sustainability 14, no. 20: 13527. https://doi.org/10.3390/su142013527
APA StyleKekes, T., Giannou, V., Tzia, C., & Kolliopoulos, G. (2022). Synthesis of a Novel Adsorbing Agent by Coupling Chitosan, β-Cyclodextrin, and Cerium Dioxide: Evaluation of Hexavalent Chromium Removal Efficacy from Aqueous Solutions. Sustainability, 14(20), 13527. https://doi.org/10.3390/su142013527