Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review
Abstract
:1. Introduction
2. Excessive Use of Disinfectants
2.1. Overexposure to Alcoholic Hand Sanitizers
2.1.1. Ethanol and Methanol Poisoning
2.1.2. Effects on Skin
2.1.3. Imbalance of Normal, Symbiotic Microbiota
2.1.4. Developing Alcohol-Resistant Microorganisms
2.2. Overexposure to Household Bleach Products
2.3. Excessive Use of Detergents
2.4. Alcohol Overdoses and Drug Abuse during Quarantines
2.5. Self-Administration of Dietary Supplements and Self-Medication
2.5.1. Dietary Supplements: Vitamins C and D, Zinc, and Selenium
2.5.2. Drugs and Medicinal Products
2.6. Self-Medication by Herbal Remedies
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jairoun, A.A.; Al-Hemyari, S.S.; Shahwan, M. The pandemic of COVID-19 and its implications for the purity and authenticity of alcohol-based hand sanitizers: The health risks associated with falsified sanitizers and recommendations for regulatory and public health bodies. Res. Soc. Adm. Pharm. 2021, 17, 2050–2051. [Google Scholar] [CrossRef]
- Watkins, J. Preventing a COVID-19 pandemic. Br. Med. J. Publ. Group 2020, 368, m810. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 51; WHO: Geneva, Switzerland, 2020.
- World Health Organization. Water, Sanitation, Hygiene, and Waste Management for SARS-CoV-2, the Virus that Causes COVID-19: Interim Guidance, 29 July 2020; World Health Organization: Geneva, Switzerland, 2020.
- Gao, K.; Nguyen, D.D.; Chen, J.; Wang, R.; Wei, G.-W. Repositioning of 8565 existing drugs for COVID-19. J. Phys. Chem. Lett. 2020, 11, 5373–5382. [Google Scholar] [CrossRef]
- Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol. 2020, 177, 4813–4824. [Google Scholar] [CrossRef]
- Panyod, S.; Ho, C.-T.; Sheen, L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020, 10, 420–427. [Google Scholar] [CrossRef]
- Golin, A.P.; Choi, D.; Ghahary, A. Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses. Am. J. Infect. Control 2020, 48, 1062–1067. [Google Scholar] [CrossRef]
- Gupta, M.K.; Lipner, S.R. Hand hygiene in preventing COVID-19 transmission. J. Am. Acad. Dermatol. 2020, 82, 1215–1216. [Google Scholar]
- Lebin, J.A.; Ma, A.; Mudan, A.; Smollin, C.G. Fatal ingestion of sodium chlorite used as hand sanitizer during the COVID-19 pandemic. Clin. Toxicol. 2021, 59, 265–266. [Google Scholar] [CrossRef]
- Soave, P.M.; Grassi, S.; Oliva, A.; Romanò, B.; Di Stasio, E.; Dominici, L.; Pascali, V.; Antonelli, M. Household disinfectant exposure during the COVID-19 pandemic: A retrospective study of the data from an Italian poison control center. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, D.L.; Watson, C.J.; Castañeda, N.R.; Ganetsky, M. A geographically distinct case of fatal methanol toxicity from ingestion of a contaminated hand sanitizer product during the COVID-19 pandemic. J. Med. Toxicol. 2021, 17, 218–221. [Google Scholar] [CrossRef]
- Chary, M.A.; Overbeek, D.L.; Papadimoulis, A.; Sheroff, A.; Burns, M.M. Geospatial correlation between COVID-19 health misinformation and poisoning with household cleaners in the Greater Boston Area. Clin. Toxicol. 2021, 59, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Yip, L.; Bixler, D.; Brooks, D.E.; Clarke, K.R.; Datta, S.D.; Dudley, S., Jr.; Komatsu, K.K.; Lind, J.N.; Mayette, A.; Melgar, M.; et al. Serious adverse health events, including death, associated with ingesting alcohol-based hand sanitizers containing methanol—Arizona and New Mexico, May–June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1070. [Google Scholar] [CrossRef] [PubMed]
- McCulley, L.; Cheng, C.; Mentari, E.; Diak, I.-L.; Michele, T. Alcohol-based hand sanitizer exposures and effects on young children in the US during the COVID-19 pandemic. Clin. Toxicol. 2021, 59, 355–356. [Google Scholar] [CrossRef]
- Mushtaq, S.; Terzi, E.; Recalcati, S.; Salas-Alanis, J.C.; Amin, S.; Faizi, N. Cutaneous adverse effects due to personal protective measures during COVID-19 pandemic: A study of 101 patients. Int. J. Dermatol. 2021, 60, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, G.; Sinno-Tellier, S.; Puskarczyk, E.; Labadie, M.; von Fabeck, K.; Pélissier, F.; Nisse, P.; Paret, N.; Descatha, A.; Vodovar, D.; et al. Poisoning during the COVID-19 outbreak and lockdown: Retrospective analysis of exposures reported to French poison control centres. Clin. Toxicol. 2021, 59, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, G.; Sinno-Tellier, S.; Descatha, A. COVID-19: Home poisoning throughout the containment period. Lancet Public Health 2020, 5, e314. [Google Scholar] [CrossRef]
- Neufeld, M.; Lachenmeier, D.W.; Ferreira-Borges, C.; Rehm, J. Is alcohol an "Essential Good" during COVID-19? Yes, but only as a disinfectant! Alcohol. Clin. Exp. Res. 2020, 44, 1906–1909. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi, M.; Nasiri, N.; Sharifi, H.; Baral, S.; Stranges, S. A syndemic of COVID-19 and methanol poisoning in Iran: Time for Iran to consider alcohol use as a public health challenge? Alcohol 2020, 87, 25–27. [Google Scholar] [CrossRef]
- Delirrad, M.; Mohammadi, A.B. New methanol poisoning outbreaks in Iran following COVID-19 pandemic. Alcohol Alcohol. 2020, 55, 347–348. [Google Scholar] [CrossRef]
- Soltaninejad, K. Methanol mass poisoning outbreak, a consequence of COVID-19 pandemic and misleading messages on social media. Int. J. Occup. Environ. Med. 2020, 11, 148. [Google Scholar] [CrossRef]
- Arasteh, P.; Pakfetrat, M.; Roozbeh, J. A surge in methanol poisoning amid COVID-19 pandemic: Why Is this occurring? Am. J. Med. Sci. 2020, 360, 201. [Google Scholar] [CrossRef] [PubMed]
- Hassanian-Moghaddam, H.; Zamani, N.; Kolahi, A.-A.; McDonald, R.; Hovda, K.E. Double trouble: Methanol outbreak in the wake of the COVID-19 pandemic in Iran—A cross-sectional assessment. Crit. Care 2020, 24, 402. [Google Scholar] [CrossRef] [PubMed]
- Sefidbakht, S.; Lotfi, M.; Jalli, R.; Moghadami, M.; Sabetian, G.; Iranpour, P. Methanol toxicity outbreak: When fear of COVID-19 goes viral. Emerg. Med. J. 2020, 37, 416. [Google Scholar] [CrossRef] [PubMed]
- Dear, K.; Grayson, L.; Nixon, R. Potential methanol toxicity and the importance of using a standardised alcohol-based hand rub formulation in the era of COVID-19. Antimicrob. Resist. Infect. Control 2020, 9, 129. [Google Scholar] [CrossRef]
- Dindarloo, K.; Aghamolaei, T.; Ghanbarnejad, A.; Turki, H.; Hoseinvandtabar, S.; Pasalari, H.; Ghaffari, H.R. Pattern of disinfectants use and their adverse effects on the consumers after COVID-19 outbreak. J. Environ. Health Sci. Eng. 2020, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Babić, Ž.; Turk, R.; Macan, J. Toxicological aspects of increased use of surface and hand disinfectants in Croatia during the COVID-19 pandemic: A preliminary report. Arch. Ind. Hyg. Toxicol. 2020, 71, 261–264. [Google Scholar] [CrossRef]
- Yasseen Iii, A.; Weiss, D.; Remer, S.; Dobbin, N.; MacNeill, M.; Bogeljic, B.; Leong, D.; Wan, V.; Mosher, L.; Bélair, G.; et al. At-a-glance-Increases in exposure calls related to selected cleaners and disinfectants at the onset of the COVID-19 pandemic: Data from Canadian poison centres. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2020, 41, 25. [Google Scholar]
- Himabindu, C.S.; Tanish, B.T.; Kumari, N.P.; Nayab, S.N. Hand sanitizers: Is over usage harmful? World J. Curr. Med. Pharm. Res. 2020, 2, 296–300. [Google Scholar] [CrossRef]
- Mahmood, A.; Eqan, M.; Pervez, S.; Alghamdi, H.A.; Tabinda, A.B.; Yasar, A.; Brindhadevi, K.; Pugazhendhi, A. COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Sci. Total Environ. 2020, 742, 140561. [Google Scholar] [CrossRef] [PubMed]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A review of methanol poisoning: A crisis beyond ocular toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Keshavarzi, A.; Pirbonyeh, N. Hidden threat lurking behind the alcohol sanitizers in COVID-19 outbreak. Dermatol. Ther. 2020, 33, e13627. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Ualiyeva, D.; Sapkota, S.; Khan, A.; Noor, Z.; Amissah, O.B.; Ahmad, U.; Zaman, N. The Potential Risk to Children Associated with Excessive use of Disinfectant Against Coronavirus Disease (COVID-19). EC Microbiol. 2021, 17, 01–06. [Google Scholar]
- Santos, C.; Kieszak, S.; Wang, A.; Law, R.; Schier, J.; Wolkin, A. Reported adverse health effects in children from ingestion of alcohol-based hand sanitizers—United States, 2011–2014. Morb. Mortal. Wkly. Rep. 2017, 66, 223. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Sayfouri, N. COVID-19 and alcohol poisoning: A fatal competition. Disaster Med. Public Health Prep. 2021, 89, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.A.; Kolahi, A.; Akhgari, M.; Gheshlaghi, F.; Gholami, N.; Moshiri, M.; Mohtasham, N.; Ebrahimi, S.; Ziaeefar, P.; McDonald, R.; et al. COVID-19 pandemic and methanol poisoning outbreak in Iranian children and adolescents: A data linkage study. Alcohol. Clin. Exp. Res. 2021, 45, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M. The coronavirus disease 2019 (COVID-19) and alcohol use disorders in Iran. Am. J. Men Health 2020, 14, 1557988320938610. [Google Scholar] [CrossRef] [PubMed]
- Pirnia, B.; Dezhakam, H.; Pirnia, K.; Malekanmehr, P.; Soleimani, A.A.; Zahiroddin, A.; Eslami, M.R.; Sadeghi, P. COVID-19 pandemic and addiction: Current problems in Iran. Asian J. Psychiatr. 2020, 54, 102313. [Google Scholar] [CrossRef]
- White, A.M.; Castle, I.-J.P.; Powell, P.A.; Hingson, R.W.; Koob, G.F. Alcohol-related deaths during the COVID-19 pandemic. JAMA 2022, 327, 1704–1706. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Ziwei, M.P.; Tao, S.Y.; Ke, P.C.; Shang, M.M. Dysregulation of immune response in patients with COVID-19 in Wuhan, China; Clinical Infectious Diseases; Oxford Academic. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Goral, J.; Karavitis, J.; Kovacs, E.J. Exposure-dependent effects of ethanol on the innate immune system. Alcohol 2008, 42, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gevers, D.; Knight, R.; Petrosino, J.F.; Huang, K.; McGuire, A.L.; Birren, B.W.; Nelson, K.E.; White, O.; Methé, B.A.; Huttenhower, C. The Human Microbiome Project: A community resource for the healthy human microbiome. PLoS Biol. 2012, 10, e1001377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gottardi, A.; McCoy, K.D. Evaluation of the gut barrier to intestinal bacteria in non-alcoholic fatty liver disease. J. Hepatol. 2011, 55, 1181–1183. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001, 291, 881–884. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.M.; Hong, T.; Van Pijkeren, J.P.; Hemarajata, P.; Trinh, D.V.; Hu, W.; Britton, R.A.; Kalkum, M.; Versalovic, J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 2012, 7, e31951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burcelin, R.; Serino, M.; Chabo, C.; Blasco-Baque, V.; Amar, J. Gut microbiota and diabetes: From pathogenesis to therapeutic perspective. Acta Diabetol. 2011, 48, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Sherafat, S.J.; Azimirad, M.; Alebouyeh, M.; Amoli, H.A.; Hosseini, P.; Ghasemian-Safaei, H.; Moghim, S. The rate and importance of Clostridium difficile in colorectal cancer patients. Gastroenterol. Hepatol. Bed Bench 2019, 12, 358. [Google Scholar]
- Widmer, A.F. Replace hand washing with use of a waterless alcohol hand rub? Clin. Infect. Dis. 2000, 31, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020, 20, e102–e107. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Schnall, A.H.; Law, R.; Bronstein, A.C.; Marraffa, J.M.; Spiller, H.A.; Hays, H.L.; Funk, A.R.; Mercurio-Zappala, M.; Calello, D.P.; et al. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19—National poison data system, United States, January 1, 2020–March 31, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 496. [Google Scholar] [CrossRef] [Green Version]
- Samara, F.; Badran, R.; Dalibalta, S. Are disinfectants for the prevention and control of COVID-19 safe? Health Secur. 2020, 18, 496–498. [Google Scholar] [CrossRef]
- Wilhelm, K.-P. Prevention of surfactant-induced irritant contact dermatitis. Prev. Contact Dermat. 1996, 25, 78–85. [Google Scholar]
- Folletti, I.; Siracusa, A.; Paolocci, G. Update on asthma and cleaning agents. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 90–95. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Eljaszewicz, A.; Meng, Y.; Wawrzyniak, P.; Acharya, S.; Altunbulakli, C.; Westermann, P.; Dreher, A.; Yan, L.; et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J. Allergy Clin. Immunol. 2019, 143, 1892–1903. [Google Scholar] [CrossRef]
- Dumas, O. Cleaners and airway diseases. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 101–109. [Google Scholar] [CrossRef]
- Parks, J.; McCandless, L.; Dharma, C.; Brook, J.; Turvey, S.; Mandhane, P.; Becker, A.B.; Kozyrskyj, A.L.; Azad, M.B.; Moraes, T.J.; et al. Association of use of cleaning products with respiratory health in a Canadian birth cohort. Cmaj 2020, 192, E154–E161. [Google Scholar] [CrossRef] [Green Version]
- Rosenman, K.D. Cleaning products-related asthma. Clin. Pulm. Med. 2006, 13, 221–228. [Google Scholar] [CrossRef]
- Suri, V.; Mahi, S.; Bhalla, A.; Sharma, N.; Varma, S. Detergents-uncommon household poisons. Indian J. Med. Sci. 2009, 63, 311–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.A.; Genois, R.; Jin, J.; Vigo, D.; Rehm, J.; Rush, B. The early impact of COVID-19 on the incidence, prevalence, and severity of alcohol use and other drugs: A systematic review. Drug Alcohol Depend. 2021, 228, 109065. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, E.; Siste, K.; Limawan, A.P.; Sen, L.T.; Christian, H.; Murtani, B.J.; Adrian; Siswidiani, L.P.; Suwartono, C. Alcohol-and cigarette-use related behaviors during quarantine and physical distancing amid COVID-19 in Indonesia. Front. Psychiatr. 2021, 12, 622917. [Google Scholar] [CrossRef] [PubMed]
- Sallie, S.N.; Ritou, V.; Bowden-Jones, H.; Voon, V. Assessing international alcohol consumption patterns during isolation from the COVID-19 pandemic using an online survey: Highlighting negative emotionality mechanisms. BMJ Open 2020, 10, e044276. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, S.; Guirguis, A.; John, A.; Corkery, J.M.; Schifano, F. COVID-19: The hidden impact on mental health and drug addiction. Front. Psychiatr. 2020, 11, 767. [Google Scholar] [CrossRef] [PubMed]
- Carrico, A.W.; Horvath, K.J.; Grov, C.; Moskowitz, J.T.; Pahwa, S.; Pallikkuth, S.; Hirshfield, S. Double jeopardy: Methamphetamine use and HIV as risk factors for COVID-19. AIDS Behav. 2020, 24, 3020–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clay, J.M.; Parker, M.O. Alcohol use and misuse during the COVID-19 pandemic: A potential public health crisis? Lancet Public Health 2020, 5, e259. [Google Scholar] [CrossRef]
- Shigemura, J.; Ursano, R.J.; Morganstein, J.C.; Kurosawa, M.; Benedek, D.M. Public responses to the novel 2019 coronavirus (2019-nCoV) in Japan: Mental health consequences and target populations. Psychiatr. Clin. Neurosci. 2020, 74, 281. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Di, Y.; Ye, J.; Wei, W. Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China. Psychol. Health Med. 2021, 26, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Chevance, A.; Gourion, D.; Hoertel, N.; Llorca, P.M.; Thomas, P.; Bocher, R.; Moro, M.R.; Laprévote, V.; Benyamina, A.; Fossati, P.; et al. Ensuring mental health care during the SARS-CoV-2 epidemic in France: A narrative review. L’encephale 2020, 46, 193–201. [Google Scholar] [CrossRef]
- Mousavi-Roknabadi, R.S.; Arzhangzadeh, M.; Safaei-Firouzabadi, H.; Sharifi, M.; Fathi, N.; Jelyani, N.Z.; Mokdad, M. Methanol poisoning during COVID-19 pandemic; A systematic scoping review. Am. J. Emerg. Med. 2022, 52, 69–84. [Google Scholar] [CrossRef]
- Iranpour, P.; Firoozi, H.; Haseli, S. Methanol poisoning emerging as the result of COVID-19 outbreak; radiologic perspective. Acad. Radiol. 2020, 27, 755–756. [Google Scholar] [CrossRef]
- Simani, L.; Ramezani, M.; Roozbeh, M.; Shadnia, S.; Pakdaman, H. The outbreak of methanol intoxication during COVID-19 pandemic: Prevalence of brain lesions and its predisposing factors. Drug Chem. Toxicol. 2022, 45, 1500–1503. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Tahir, M.J.; Jabbar, R.; Ahmed, A.; Hussain, R. Self-medication during COVID-19 pandemic: Challenges and opportunities. Drugs Ther. Perspect. 2020, 36, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Rugole, V.; Pucarin-Cvetković, J.; Milošević, M. Food supplements in healthcare professionals’ diet during COVID-19 pandemic. Sestrin. Glas. 2021, 26, 82–91. [Google Scholar] [CrossRef]
- Keshavarz Shahbaz, S.; Naderi, Y.; Aali, E. A Promising Approach to Improving COVID-19 Symptoms: Using Antioxidant Supplements. J. Inflamm. Dis. 2021, 25, 105–126. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Çelik, M.N.; Çıtar Dazıroğlu, M.E.; Capasso, R. Emergent drug and nutrition interactions in COVID-19: A comprehensive narrative review. Nutrients 2021, 13, 1550. [Google Scholar] [CrossRef]
- Younis, N.K.; Zareef, R.O.; Fakhri, G.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19: Potential therapeutics for pediatric patients. Pharmacol. Rep. 2021, 73, 1520–1538. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 6 August 2022).
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D toxicity–a clinical perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef] [Green Version]
- Wimalawansa, S. Causes, benefits and consequences of vitamin D deficiency. J. Community Med. Health Res. 2019, 2, 122. [Google Scholar]
- Boreskie, K.F.; Hay, J.; Duhamel, T. Preventing frailty progression during the COVID-19 pandemic. J. Frailty Aging 2020, 9, 130–131. [Google Scholar] [CrossRef]
- Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006, 134, 1129–1140. [Google Scholar] [CrossRef]
- Azmi, H.; Hassou, N.; Ennaji, M.M. Vitamin D immunomodulatory role in chronic and acute viral diseases. In Emerging and Reemerging Viral Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 489–506. [Google Scholar]
- Hadizadeh, F. Supplementation with vitamin D in the COVID-19 pandemic? Nutr. Rev. 2021, 79, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Davies, J.S. A review of the growing risk of vitamin D toxicity from inappropriate practice. Br. J. Clin. Pharmacol. 2018, 84, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millán-Oñate, J.; Rodriguez-Morales, A.J.; Camacho-Moreno, G.; Mendoza-Ramírez, H.; Rodríguez-Sabogal, I.A.; Álvarez-Moreno, C. A new emerging zoonotic virus of concern: The 2019 novel Coronavirus (SARS-CoV-2). Infectio 2020, 24, 187–192. [Google Scholar] [CrossRef]
- Han, Q.; Lin, Q.; Jin, S.; You, L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect. 2020, 80, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, G.P.; Macchi, M.; Guz-Mark, A. Vitamin C in the Treatment of COVID-19. Nutrients 2021, 13, 1172. [Google Scholar] [CrossRef]
- Sunkara, V.; Pelkowski, T.D.; Dreyfus, D.; Satoskar, A. Acute kidney disease due to excessive vitamin C ingestion and remote roux-en-y gastric bypass surgery superimposed on CKD. Am. J. Kidney Dis. 2015, 66, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, M. Human zinc deficiency. J. Nutr. 2000, 130, 1344S–1349S. [Google Scholar] [CrossRef] [Green Version]
- Lemire, J.; Mailloux, R.; Appanna, V.D. Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J. Appl. Toxicol. Int. J. 2008, 28, 175–182. [Google Scholar] [CrossRef]
- Piao, F.; Yokoyama, K.; Ma, N.; Yamauchi, T. Subacute toxic effects of zinc on various tissues and organs of rats. Toxicol. Lett. 2003, 145, 28–35. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses 2020, 143, 109878. [Google Scholar] [CrossRef]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Townsend, L.; Ni Cheallaigh, C.; Bergin, C.; Martin-Loeches, I.; Browne, P.; Bacon, C.L.; Gaule, R.; Gillett, A.; Byrne, M.; et al. COVID-19 coagulopathy in Caucasian patients. Br. J. Haematol. 2020, 189, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Risher, J. Toxicological Profile for Selenium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2003.
- Fan, A.; Kizer, K. Selenium. Nutritional, toxicologic, and clinical aspects. West. J. Med. 1990, 153, 160. [Google Scholar] [PubMed]
- Sun, H.-J.; Rathinasabapathi, B.; Wu, B.; Luo, J.; Pu, L.-P.; Ma, L.Q. Arsenic and selenium toxicity and their interactive effects in humans. Environ. Int. 2014, 69, 148–158. [Google Scholar] [CrossRef]
- Busari, S.; Adebayo, B. Nigeria Records Chloroquine Poisoning after Trump Endorses it for Coronavirus Treatment. CNN. 2020. Available online: https://www.cnn.com/2020/03/23/africa/chloroquine-trump-nigeria-intl/index.html (accessed on 24 July 2020).
- Erickson, T.; Chai, P.; Boyer, E. Chloroquine, hydroxychloroquine and COVID-19. Toxicol. Commun. 2020, 4, 40–42. [Google Scholar] [CrossRef]
- Popp, M.; Stegemann, M.; Metzendorf, M.I.; Gould, S.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst. Rev. 2021, 7, 1465–1858. [Google Scholar]
- Heidary, F.; Gharebaghi, R. Ivermectin: A systematic review from antiviral effects to COVID-19 complementary regimen. J. Antibiot. 2020, 73, 593–602. [Google Scholar] [CrossRef]
- Temple, C.; Hoang, R.; Hendrickson, R.G. Toxic effects from ivermectin use associated with prevention and treatment of COVID-19. N. Engl. J. Med. 2021, 385, 2197–2198. [Google Scholar] [CrossRef]
- Singh, A.K.; Majumdar, S.; Singh, R.; Misra, A. Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 971–978. [Google Scholar] [CrossRef]
- Isidori, A.; Arnaldi, G.; Boscaro, M.; Falorni, A.; Giordano, C.; Giordano, R.; Pivonello, R.; Pofi, R.; Hasenmajer, V.; Venneri, M.A.; et al. COVID-19 infection and glucocorticoids: Update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J. Endocrinol. Investig. 2020, 43, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Theoharides, T.; Conti, P. Dexamethasone for COVID-19? Not so fast. J. Biol. Regul. Homeost Agents. 2020, 34, 1241–1243. [Google Scholar] [PubMed]
- Srivastava, A.; Chaurasia, J.; Khan, R.; Dhand, C.; Verma, S. Role of medicinal plants of traditional use in recuperating devastating COVID-19 situation. Med. Aromat Plants 2020, 9, 2167-0412. [Google Scholar]
- Jahan, I.; Ahmet, O. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol. 2020, 44, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Villena-Tejada, M.; Vera-Ferchau, I.; Cardona-Rivero, A.; Zamalloa-Cornejo, R.; Quispe-Florez, M.; Frisancho-Triveño, Z.; Abarca-Meléndez, R.C.; Alvarez-Sucari, S.G.; Mejia, C.R.; Yañez, J.A. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS ONE 2021, 16, e0257165. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Ghareghani, S.; Nasimi, N.; Shahbazi, M. A review of poisonings originating from self-administration of common preventative substances during COVID-19 pandemic. Am. J. Emerg. Med. 2022. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, S.; Pittler, M.; Roufogalis, B. Zingiberis rhizoma: A comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 2005, 12, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; Kumar, N.V.A.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J. Piperine-A Major Principle of Black Pepper: A review of its bioactivity and studies. Appl. Sci. 2019, 9, 4270. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Khan, M.A.; Ullah, N.; Nadhman, A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol. 2021, 31, 101890. [Google Scholar] [CrossRef]
- Nazari, S.; Rameshrad, M.; Hosseinzadeh, H. Toxicological effects of Glycyrrhiza glabra (licorice): A review. Phytother. Res. 2017, 31, 1635–1650. [Google Scholar] [CrossRef]
- Omar, H.R.; Komarova, I.; El-Ghonemi, M.; Fathy, A.; Rashad, R.; Abdelmalak, H.D.; Yerramadha, M.R.; Ali, Y.; Helal, E.; Camporesi, E.M. Licorice abuse: Time to send a warning message. Ther. Adv. Endocrinol. Metab. 2012, 3, 125–138. [Google Scholar] [CrossRef]
- Salem, M.A.; Ezzat, S.M. The use of aromatic plants and their therapeutic potential as antiviral agents: A hope for finding anti-COVID 19 essential oils. J. Essent. Oil Res. 2021, 33, 105–113. [Google Scholar] [CrossRef]
- Basch, E.; Ulbricht, C.; Hammerness, P.; Bevins, A.; Sollars, D. Thyme (Thymus vulgaris L.), thymol. J. Herb. Pharmacother. 2004, 4, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Feng, R.; Xiang, F.; Song, X.; Yin, Z.; Zhang, C.; Zhao, X.; Jia, R.; Chen, Z.; Li, L.; et al. Acute and subchronic toxicity as well as evaluation of safety pharmacology of eucalyptus oil-water emulsions. Int. J. Clin. Exp. Med. 2014, 7, 4835. [Google Scholar] [PubMed]
Herbs | Ref. | English Name | Possible Toxic Effects of High Dose Consumption | Ref. |
---|---|---|---|---|
Alium stivum. L. | [110] | garlic | Vacuolation of liver cells of treated rats near the organ surface. RBCs and WBCs aggregation and alveoli thickening at very high doses. Significant edema in several places of the lung. | [111] |
Zingiber officinalis Roscoe | [108,110] | Ginger | Cytotoxic effects against the promyelocytic leukemia cells might be possible. Mutagenic effects have been seen over pregnancy. Negative reproductive effects on male rats also have been reported. | [112] |
Piper nigrum L. | [108] | Black Pepper | Increase in serum aspartate aminotransferase and ALP and decrease in serum protein led to liver damage. Increase in aflatoxin B1 binding to calf thymus. Damage to sperm function. | [113] |
Glycyrrhiza glabra | [114] | Licorice | Based on consumption dose and time Hypertension, visual problems, pseudo -hyperaldosteronism, cardiovascular disorders, neurological syndrome can occur. Capability of causing mutagenicity, carcinogenicity, and genotoxicity has been reported. | [115,116] |
Thymus vulgaris L. | [117] | Thyme | Nausea and vomiting, tachypnea, hypotension, allergy, headache and dizziness, heartburn, antityrotropic effects, liver toxicity, and bradycardia. | [118] |
Eucalyptus polybractea | [110] | Eucalyptus | Irritation of the nasopharyngeal and lung epithelial cells, Because of its strong odor. Skin irritation, ataxia, muscle weakness, seizure, and slurred speech may occur in high doses. | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, H.; Ghareghani, S.; Nasimi, N.; Shahbazi, M.; Derakhshan, Z.; Sarkodie, S.A. Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review. Sustainability 2022, 14, 13614. https://doi.org/10.3390/su142013614
Hashemi H, Ghareghani S, Nasimi N, Shahbazi M, Derakhshan Z, Sarkodie SA. Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review. Sustainability. 2022; 14(20):13614. https://doi.org/10.3390/su142013614
Chicago/Turabian StyleHashemi, Hassan, Shiva Ghareghani, Nasrin Nasimi, Mohammad Shahbazi, Zahra Derakhshan, and Samuel Asumadu Sarkodie. 2022. "Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review" Sustainability 14, no. 20: 13614. https://doi.org/10.3390/su142013614
APA StyleHashemi, H., Ghareghani, S., Nasimi, N., Shahbazi, M., Derakhshan, Z., & Sarkodie, S. A. (2022). Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review. Sustainability, 14(20), 13614. https://doi.org/10.3390/su142013614