Injury Severity Analysis of Rear-End Crashes at Signalized Intersections
Abstract
:1. Introduction
2. Literature Review
3. Data Preparation
4. Research Methodology
5. Empirical Analysis
6. Conclusions and Recommendations
7. Study Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Road Traffic Injuries, World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 1 October 2022).
- Insurance Information Institute. Facts + Statistics: Highway Safety. Available online: https://www.iii.org/fact-statistic/facts-statistics-highway-safety (accessed on 29 July 2022).
- Environmental Protection Agency (EPA). Fast Facts on Transportation Greenhouse Gas Emissions. Available online: https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (accessed on 11 September 2022).
- Fernandes, P.M.; Vilaça, E.; Macedo, C.; Sampaio, B.; Bahmankhah, J.M.; Bandeira, C.; Guarnaccia, S.; Rafael, A.P.; Fernandes, H.; Relvas, C.; et al. Integrating Road Traffic Externalities through a Sustainability Indicator. Sci. Total Environ. 2019, 691, 483–498. [Google Scholar] [CrossRef] [PubMed]
- FHWA. The National Intersection Safety Problem [Issue Briefs Vol. 2] 2009. Available online: https://rosap.ntl.bts.gov/view/dot/49962 (accessed on 1 October 2022).
- Arafat, M.; Hadi, M.; Raihan, M.A.; Iqbal, M.S.; Tariq, M.T. Benefits of Connected Vehicle Signalized Left-Turn Assist: Simulation-Based Study. Transp. Eng. 2021, 4, 100065. [Google Scholar] [CrossRef]
- Arafat, M.; Nafis, S.R.; Sadeghvaziri, E.; Tousif, F. A Data-Driven Approach to Calibrate Microsimulation Models Based on the Degree of Saturation at Signalized Intersections. Transp. Res. Interdiscip. Perspect. 2020, 8, 100231. [Google Scholar] [CrossRef]
- Abaza, O.A.; Arafat, M.; Chowdhury, T.D. Study on Pedestrian Road Crossing Compliance at High Pedestrian Crash Locations of Anchorage, Alaska; American Society of Civil Engineers: Reston, VA, USA, 2018. [Google Scholar]
- The Road Safety Toolkit. Intersection. Available online: https://toolkit.irap.org/crash-type/intersections/ (accessed on 29 July 2022).
- Yan, X.; Radwan, E.; Abdel-Aty, M. Characteristics of Rear-End Accidents at Signalized Intersections Using Multiple Logistic Regression Model. Accid. Anal. Prev. 2005, 37, 983–995. [Google Scholar] [CrossRef] [PubMed]
- Cvijovic, Z.; Zlatkovic, M.; Stevanovic, A.; Song, Y. Conditional Transit Signal Priority for Connected Transit Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 490–503. [Google Scholar] [CrossRef]
- Dobrota, N.; Stevanovic, A.; Mitrovic, N. Development of Assessment Tool and Overview of Adaptive Traffic Control Deployments in the u.s. In Transportation Research Record 2020; SAGE Publications Ltd.: Newbury Park, CA, USA; pp. 464–480.
- Cvijovic, Z.; Zlatkovic, M.; Stevanovic, A.; Song, Y. Multi-Level Conditional Transit Signal Priority in Connected Vehicle Environments. J. Road Traffic Eng. 2021, 67, 1–12. [Google Scholar] [CrossRef]
- Reza, I.; Ratrout, N.T.; Rahman, S.M. Calibration Protocol for PARAMICS Microscopic Traffic Simulation Model: Application of Neuro-Fuzzy Approach. Can. J. Civ. Eng. 2016, 43, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Dobrota, N.; Stevanovic, A.; Mitrovic, N. A Novel Model to Jointly Estimate Delay and Arrival Patterns by Using High-Resolution Signal and Detection Data. Transp. A Transp. Sci. 2022, 1–33. [Google Scholar] [CrossRef]
- Reza, I.; Ratrout, N.T.; Rahman, S.M. Artificial Intelligence-Based Protocol for Macroscopic Traffic Simulation Model Development. Arab. J. Sci. Eng. 2021, 46, 4941–4949. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Farid, A.; Ksaibati, K. Examining the Risk Factors of Rear-End Crashes at Signalized Intersections. J. Transp. Technol. 2022, 12, 635–650. [Google Scholar] [CrossRef]
- Stevanovic, A.; Dobrota, N.; Mitrovic, N. NCHRP 20-07/Task 414: Benefits of Adaptive Traffic Control Deployments—A Review of Evaluation Studies; NCHRP: Washington, DC, USA, 2019. [Google Scholar]
- Hall, J.; Smith, K.; Titus-Glover, L.; Wambold, J.; Yager, T.; Rado, Z. National Cooperative Highway Research Program Web-Only Document 108: Guide for Pavement Friction; National Cooperative Highway Research Program, Transportation Research Board, National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2009. [Google Scholar]
- Hafez, M.; Farid, A.; Ksaibati, K.; Director, P.E.; Rickgauer, S.; Carlson, M. Managing Pavement Friction of Wyoming’s Roads Considering Safety; Wyoming Department of Transportation: Cheyenne, WI, USA, 2020.
- Elkhazindar, A.; Hafez, M.; Ksaibati, K. Incorporating Pavement Friction Management into Pavement Asset Management Systems: State Department of Transportation Experience. CivilEng 2022, 3, 541–561. [Google Scholar] [CrossRef]
- FHWA. Evaluation of Pavement Safety Performance. Available online: https://www.fhwa.dot.gov/publications/research/safety/14065/003.cfm (accessed on 31 July 2022).
- Abaza, O.A.; Chowdhury, T.D.; Arafat, M. Comparative Analysis of Skid Resistance for Different Roadway Surface Treatments. Am. J. Eng. Appl. Sci. 2017, 10, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Roy, U.; Farid, A.; Ksaibati, K. Effects of Pavement Friction and Geometry on Traffic Crash Frequencies: A Case Study in Wyoming. Int. J. Pavement Res. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- NHTSA. National Highway Traffic Safety Administration (NHTSA) Motor Vehicle Crash Data Querying and Reporting. Available online: https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars (accessed on 19 July 2022).
- Alrejjal, A.; Farid, A.; Ksaibati, K. Investigating Factors Influencing Rollover Crash Risk on Mountainous Interstates. J. Saf. Res. 2022, 80, 391–398. [Google Scholar] [CrossRef]
- Abdalla, A.; Faheem, A.F.; Walters, E. Life Cycle Assessment of Eco-Friendly Asphalt Pavement Involving Multi-Recycled Materials: A Comparative Study. J. Clean. Prod. 2022, 362, 132471. [Google Scholar] [CrossRef]
- Abaza, O.A.; Arafat, M.; Uddin, M.S. Physical and Economic Impacts of Studded Tyre Use on Pavement Structures in Cold Climates. Transp. Saf. Environ. 2021, 3, tdab022. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, C.; Ma, C. Analysis of Injury Severity of Rear-End Crashes in Work Zones: A Random Parameters Approach with Heterogeneity in Means and Variances. Anal. Methods Accid. Res. 2020, 27, 100126. [Google Scholar] [CrossRef]
- Ahmadi, A.; Jahangiri, A.; Berardi, V.; Machiani, S. Crash Severity Analysis of Rear-End Crashes in California Using Statistical and Machine Learning Classification Methods. J. Transp. Saf. Secur. 2020, 12, 522–546. [Google Scholar] [CrossRef]
- Chen, F.; Song, M.; Ma, X. Investigation on the Injury Severity of Drivers in Rear-End Collisions between Cars Using a Random Parameters Bivariate Ordered Probit Model. Int. J. Environ. Res. Public Health 2019, 16, 2632. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Nam, B.; Abdel-Aty, M. Effects of Pavement Surface Conditions on Traffic Crash Severity. J. Transp. Eng. 2015, 141, 04015020. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, T.; Alqadhi, S.; Labi, S. Safety Impacts of Pavement Surface Roughness at Two-Lane and Multi-Lane Highways: Accounting for Heterogeneity and Seemingly Unrelated Correlation across Crash Severities. Transp. A Transp. Sci. 2019, 15, 18–33. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Yu, B.; Cheng, J. Injury Severity Assessment of Rear-End Crashes via Approaches Based on Generalized Estimating Equations. Can. J. Civ. Eng. 2022, 49, 10. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, G.; Tarefder, R.; Ma, J.; Wei, H.; Guan, H. A Multinomial Logit Model-Bayesian Network Hybrid Approach for Driver Injury Severity Analyses in Rear-End Crashes. Accid. Anal. Prev. 2015, 80, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Lu, M.; Theofilatos, A.; Li, Y.B. Investigation on Occupant Injury Severity in Rear-End Crashes Involving Trucks as the Front Vehicle in Beijing Area, China. Chin. J. Traumatol.-Engl. Ed. 2017, 20, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cao, L.; Logan, D. Analysis of Risk Factors Affecting the Severity of Intersection Crashes by Logistic Regression. Traffic Inj. Prev. 2012, 13, 300–307. [Google Scholar] [CrossRef]
- Haleem, K.; Abdel-Aty, M. Examining Traffic Crash Injury Severity at Unsignalized Intersections. J. Saf. Res. 2010, 41, 347–357. [Google Scholar] [CrossRef]
- Hussein, N.; Hassan, R.; Fahey, M. Effect of Pavement Condition and Geometrics at Signalised Intersections on Casualty Crashes. J. Saf. Res. 2021, 76, 276–288. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials. Highway Safety Manual; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2010. [Google Scholar]
- De León Izeppi, E.; Flintsch, G.; Katicha, S.; McCarthy, R.; McGhee, K. Locked-Wheel and Sideway-Force CFME Friction Testing Equipment Comparison and Evaluation Report; No. FHWA-RC-19-001; U.S. Federal Highway Administration: Washington, DC, USA, 2019.
- FHWA. Pavement Friction Management. Federal Highway Administration (FHWA). Available online: https://safety.fhwa.dot.gov/roadway_dept/pavement_friction/cpfm/ (accessed on 31 July 2022).
- U.S. Census Bureau. 2010 Census Urban Area Reference Maps. Available online: https://www.census.gov/geographies/reference-maps/2010/geo/2010-census-urban-areas.html (accessed on 1 October 2022).
- Balakrishnan, S.; Moridpour, S.; Tay, R. Sociodemographic Influences on Injury Severity in Truck-Vulnerable Road User Crashes. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2019, 5, 04019015. [Google Scholar] [CrossRef]
- Christoforou, Z.; Cohen, S.; Karlaftis, M.G. Vehicle Occupant Injury Severity on Highways: An Empirical Investigation. Accid. Anal. Prev. 2010, 42, 1606–1620. [Google Scholar] [CrossRef]
- Farid, A.; Alrejjal, A.; Ksaibati, K. Two-Lane Highway Crash Severities: Correlated Random Parameters Modeling versus Incorporating Interaction Effects. In Transportation Research Record 2021; SAGE Publications Ltd.: Newbury Park, CA, USA; pp. 565–575.
- Srinivasan, K.K. Injury Severity Analysis with Variable and Correlated Thresholds Ordered Mixed Logit Formulation. Transp. Res. Rec. 2002, 1784, 132–141. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Yuan, Y.; Blackwelder, G.; Yang, X. Examining Driver Injury Severity in Left-Turn Crashes Using Hierarchical Ordered Probit Models. Traffic Inj. Prev. 2020, 22, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, S.; Eluru, N. Evaluating Alternate Discrete Outcome Frameworks for Modeling Crash Injury Severity. Accid. Anal. Prev. 2013, 59, 506–521. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, M. Analysis of Driver Injury Severity Levels at Multiple Locations Using Ordered Probit Models. J. Saf. Res. 2003, 34, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, M.R.; Mauriello, F.; Sarkar, S.; Galante, F.; Scarano, A.; Montella, A. Parametric and Non-Parametric Analyses for Pedestrian Crash Severity Prediction in Great Britain. Sustainability 2022, 14, 3188. [Google Scholar] [CrossRef]
- Ye, F.; Lord, D. Investigation of Effects of Underreporting Crash Data on Three Commonly Used Traffic Crash Severity Models. Transp. Res. Rec. 2011, 2241, 51–58. [Google Scholar] [CrossRef]
- Gong, H.; Fu, T.; Sun, Y.; Guo, Z.; Cong, L.; Hu, W.; Ling, Z. Two-Vehicle Driver-Injury Severity: A Multivariate Random Parameters Logit Approach. Anal. Methods Accid. Res. 2022, 33, 100190. [Google Scholar] [CrossRef]
- Eluru, N.; CBhat, R.; Hensher, D.A. A Mixed Generalized Ordered Response Model for Examining Pedestrian and Bicyclist Injury Severity Level in Traffic Crashes. Accid. Anal. Prev. 2008, 40, 1033–1054. [Google Scholar] [CrossRef] [Green Version]
- Fountas, G.; PAnastasopoulos, C.; Abdel-Aty, M. Analysis of Accident Injury-Severities Using a Correlated Random Parameters Ordered Probit Approach with Time Variant Covariates. Anal. Methods Accid. Res. 2018, 18, 57–68. [Google Scholar] [CrossRef]
- Mannering, F.L.; Shankar, V.; Bhat, C.R. Unobserved Heterogeneity and the Statistical Analysis of Highway Accident Data. Anal. Methods Accid. Res. 2016, 11, 1–16. [Google Scholar] [CrossRef]
- Halton, J.H. On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals. Numer. Math. 1960, 2, 84–90. [Google Scholar] [CrossRef]
- Bhat, C.R. Simulation Estimation of Mixed Discrete Choice Models Using Randomized and Scrambled Halton Sequences. Transp. Res. Part B Methodol. 2003, 37, 837–855. [Google Scholar] [CrossRef] [Green Version]
- Sarrias, M. Discrete Choice Models with Random Parameters in R: The Rchoice Package. J. Stat. Softw. 2016, 74, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Rifaat, S.M.; Tay, R.; de Barros, A. Severity of Motorcycle Crashes in Calgary. Accid. Anal. Prev. 2022, 49, 44–49. [Google Scholar] [CrossRef]
- Rezapour, M.; Nazneen, S.; Ksaibati, K. Application of Deep Learning Techniques in Predicting Motorcycle Crash Severity. Eng. Rep. 2020, 2, e12175. [Google Scholar] [CrossRef]
- Nazneen, S.; Farid, A.; Ksaibati, K. Examining Seat Belt Use Habits in Wyoming: A Bayesian Hierarchical Logit Approach. Transp. Res. Rec. J. Transp. Res. Board 2022, 036119812211191. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Albatayneh, O.; Farid, A.; Ksaibati, K. A Bayesian Approach to Examine the Impact of Pavement Friction on Intersection Safety. Sustainability 2022, 14, 12495. [Google Scholar] [CrossRef]
- Paleti, R.; Eluru, N.; Bhat, C.R. Examining the Influence of Aggressive Driving Behavior on Driver Injury Severity in Traffic Crashes. Accid. Anal. Prev. 2010, 42, 1839–1854. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, D.A.; Horrey, W.J.; Courtney, T.K. Age-Related Differences in Fatal Intersection Crashes in the United States. Accid. Anal. Prev. 2017, 99, 20–29. [Google Scholar] [CrossRef]
- Najafi, S.; Flintsch, G.W.; Medina, A. Linking Roadway Crashes and Tire–Pavement Friction: A Case Study. Int. J. Pavement Eng. 2015, 18, 121–129. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Farid, A.; Ksaibati, K. Investigating the Impact of Roadway Characteristics on Intersection Crash Severity. Eng 2022, 3, 412–423. [Google Scholar] [CrossRef]
Categorical Variables | |||
---|---|---|---|
Response | Count | Percent | |
No injury (property damage only, PDO, or O) | 2433 | 77.1 | |
Possible injury or suspected minor injury (BC) | 703 | 22.3 | |
Fatal injury or suspected serious injury (KA) | 20 | 0.6 | |
Roadway and Environmental Characteristics | |||
Type: four legs or more (1 if yes or 0 otherwise) | 2732 | 86.6 | |
Location: urban (1 if yes or 0 otherwise) | 3063 | 97.1 | |
Grade: uphill (1 if yes or 0 otherwise) | 61 | 1.9 | |
Grade: downhill (1 if yes or 0 otherwise) | 194 | 6.1 | |
Lighting: non-daylight (1 if yes or 0 otherwise) | 540 | 17.1 | |
Road condition: non-dry surface (1 if yes or 0 otherwise) | 871 | 27.6 | |
Adverse weather (1 if yes or 0 otherwise) | 578 | 18.3 | |
Crash Characteristics | |||
Weekend crash (1 if yes or 0 otherwise) | 1079 | 34.2 | |
Hit-and-run crash (1 if yes or 0 otherwise) | 210 | 6.7 | |
Motorcycle involvement (1 if yes or 0 otherwise) | 35 | 1.1 | |
Improper or non-use of safety restraints (1 if yes or 0 otherwise) | 457 | 14.5 | |
Vehicle 1: large (1 if yes or 0 otherwise) | 50 | 1.6 | |
Vehicle 2: large (1 if yes or 0 otherwise) | 53 | 1.7 | |
Driver’s Characteristics | |||
Driver 1: female (1 if yes or 0 otherwise) | 1296 | 41.1 | |
Driver 1: not normal condition (1 if yes or 0 otherwise) | 180 | 5.7 | |
Driver 2: female (1 if yes or 0 otherwise) | 1441 | 45.7 | |
Driver 2: not normal condition (1 if yes or 0 otherwise) | 49 | 1.6 | |
Continuous Variable | |||
Mean | Minimum | Maximum | |
Pavement friction | 39.0 | 19 | 66 |
Driver 1’s age | 36.8 | 10 | 102 |
Driver 2’s age | 39.7 | 14 | 102 |
Parameter | Estimate | Standard Error | p-Value |
---|---|---|---|
Constant | −1.131 | 0.070 | <0.001 |
Motorcycle involvement | 0.700 | 0.204 | 0.001 |
Improper or non-use of safety restraints | 0.378 | 0.067 | <0.001 |
Non-dry road surface | −0.178 | 0.057 | 0.002 |
Driver 1: not normal condition | 0.472 | 0.097 | <0.001 |
Driver 2’s age | 0.006 | 0.001 | <0.001 |
Driver 2: female | 0.178 | 0.050 | <0.001 |
Driver 2: not normal condition | 0.439 | 0.177 | 0.013 |
ψ | 1.830 | 0.083 | <0.001 |
Model Fit Summary | |||
Log–likelihood | −1727 | ||
Log–likelihood of constant-only model | −1790 | ||
Log–likelihood ratio χ2 | 126 | ||
Degrees of freedom | 7 | ||
p-Value | <0.001 |
Parameter | Estimate | Standard Error | p-Value |
---|---|---|---|
Constant | −1.195 | 0.170 | <0.001 |
Motorcycle involvement | 0.869 | 0.293 | 0.003 |
Improper or non-use of safety restraints | 0.481 | 0.120 | <0.001 |
Non-dry road surface | −0.227 | 0.083 | 0.006 |
Driver 1: not normal condition | 0.585 | 0.158 | <0.001 |
Driver 2′s age | 0.007 | 0.002 | <0.001 |
Driver 2: female | 0.216 | 0.072 | 0.003 |
Driver 2: not normal condition | 0.557 | 0.251 | 0.026 |
Mean pavement surface friction * | −0.006 | 0.008 | 0.487 |
Standard deviation of the random parameter | 0.020 | 0.010 | 0.050 |
ψ | 2.346 | 0.471 | <0.001 |
Model Fit Summary | |||
Log–likelihood | −1725 | ||
Log–likelihood of constant-only model | −1790 | ||
Log–likelihood ratio χ2 | 130 | ||
Degrees of freedom | 9 | ||
p-Value | <0.001 |
Variable | Marginal Effects (%) | ||
---|---|---|---|
ΔP(y = O) | ΔP(y = BC) | ΔP(y = KA) | |
Motorcycle involvement | −26.87 | 26.44 | 0.44 |
Improper or non-use of safety restraints | −12.92 | 12.81 | 0.11 |
Non-dry road surface | 4.21 | −4.19 | −0.02 |
Driver 1: not normal condition | −16.42 | 16.25 | 0.17 |
Driver 2’s age | −8.52 | 8.47 | 0.05 |
Driver 2: female | −5.12 | 5.09 | 0.03 |
Driver 2: not normal condition | −15.45 | 15.30 | 0.15 |
Mean pavement friction | 2.53 | −2.52 | −0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharafeldin, M.; Farid, A.; Ksaibati, K. Injury Severity Analysis of Rear-End Crashes at Signalized Intersections. Sustainability 2022, 14, 13858. https://doi.org/10.3390/su142113858
Sharafeldin M, Farid A, Ksaibati K. Injury Severity Analysis of Rear-End Crashes at Signalized Intersections. Sustainability. 2022; 14(21):13858. https://doi.org/10.3390/su142113858
Chicago/Turabian StyleSharafeldin, Mostafa, Ahmed Farid, and Khaled Ksaibati. 2022. "Injury Severity Analysis of Rear-End Crashes at Signalized Intersections" Sustainability 14, no. 21: 13858. https://doi.org/10.3390/su142113858
APA StyleSharafeldin, M., Farid, A., & Ksaibati, K. (2022). Injury Severity Analysis of Rear-End Crashes at Signalized Intersections. Sustainability, 14(21), 13858. https://doi.org/10.3390/su142113858