The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypothesis
2.1. Literature Review
2.2. Theoretical Hypotheses
3. Methodology and Data
3.1. Empirical Model
3.1.1. Baseline Model
3.1.2. Mediation Effect Model
3.2. Explanation of the Variables
3.2.1. Measurement of Total Factor Productivity
3.2.2. Measuring Digital Transformation
3.2.3. Mediation Variables
3.2.4. Control Variables
3.3. Data sources and Processing
4. Empirical Results and Discussion
4.1. Baseline Results
4.2. Robustness Check and Endogenous Discussion
4.2.1. Robustness Test
Eliminating Specific Samples
Extending Observation Window
Adjustment of Variables
4.2.2. Endogenous Discussion
4.3. Heterogeneity Analysis
4.3.1. Ownership Heterogeneity
4.3.2. Regional Heterogeneity
4.4. Identification Test of Indirect Effect Mechanism
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, K.; Kim, D.J.; Lang, K.R.; Kauffman, R.J.; Naldi, M. How should we understand the digital economy in Asia? Critical assessment and research agenda. Electron. Commer. Res. Appl. 2020, 44, 101004. [Google Scholar] [CrossRef] [PubMed]
- China Academy of Information and Communications Technology. White Paper on the Global Digital Economy. 2022. Available online: https://www.chinastor.com/dcdt/165946449929073.html (accessed on 3 August 2022).
- Ma, D.; Zhu, Q. Innovation in emerging economics: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Peng, Y.; Tao, C. Can digital transformation promote enterprise performance? —From the perspective of public policy and innovation. J. Innov. Knowl. 2022, 7, 100198. [Google Scholar] [CrossRef]
- Cong, L.W.; Xie, D.; Zhang, L. Knowledge Accumulation, Privacy, and Growth in a Data Economy. Manag. Sci. 2021, 67, 6480–6492. [Google Scholar] [CrossRef]
- Murthy, K.V.; Kalsie, A.; Shankar, R. Digital economy in a global perspective: Is there a digital divide? Transnatl. Corp. Rev. 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Lange, S.; Santarius, T.; Pohl, J. Digitalization and energy consumption: Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 50–73. [Google Scholar] [CrossRef]
- Dey, K.; Saha, S. Influence of procurement decisions in two-period green supply chain. J. Clean. Prod. 2018, 190, 388–402. [Google Scholar] [CrossRef]
- Adner, R.; Puranam, P.; Zhu, F. What Is Different About Digital Strategy? From Quantitative to Qualitative Change. Strat. Sci. 2019, 4, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Yang, M.; Chan, K.C. Does digital transformation enhance a firm’s performance? Evidence from China. Technol. Soc. 2022, 68, 101841. [Google Scholar] [CrossRef]
- China Listed Companies Association. White Paper on Digital Economy of Chinese Listed Companies. 2022. Available online: https://baijiahao.baidu.com/s?id=1737482266378661464&wfr=spider&for=pc (accessed on 5 July 2022).
- Xu, B.; Lin, B. Assessing the development of China’s new energy industry. Energy Econ. 2018, 70, 116–131. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, D. How much does financial development contribute to renewable energy growth and upgrading of energy structure in China? Energy Policy 2019, 128, 114–124. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Do we really understand the development of China’s new energy industry? Energy Econ. 2018, 74, 733–745. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, S. The effects of digital finance and financial constraint on financial performance: Firm-level evidence from China’s new energy enterprises. Energy Econ. 2022, 112, 106158. [Google Scholar] [CrossRef]
- Chen, P. Is the digital economy driving clean energy development? -New evidence from 276 cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M.R. The impact of income inequity on energy consumption: The moderating role of digitalization. J. Environ. Manage. 2023, 325, 116464. [Google Scholar] [CrossRef]
- Gao, F.; He, B. Power supply line selection decision system for new energy distribution network enterprises based on digital twinning. Energy Rep. 2021, 7, 760–771. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Petraite, M. Industry 4.0 technologies, digital trust and technological orientation: What matters in open innovation? Technol. Forecast. Soc. 2020, 161, 120332. [Google Scholar] [CrossRef]
- Guenzi, P.; Habel, J. Mastering the Digital Transformation of Sales. Calif. Manag. Rev. 2020, 62, 57–85. [Google Scholar] [CrossRef]
- Accenture. China Digital Transformation index Report. 2021. Available online: https://gov.sohu.com/a/573806778_121124365 (accessed on 3 August 2021).
- Mc Morrow, K.; Röger, W.; Turrini, A. Determinants of TFP growth: A close look at industries driving the EU–US TFP gap. Struct. Chang. Econ. Dyn. 2010, 21, 165–180. [Google Scholar] [CrossRef]
- Barseghyan, L.; DiCecio, R. Entry costs, industry structure, and cross-country income and TFP differences. J. Econ. Theory 2011, 146, 1828–1851. [Google Scholar] [CrossRef]
- Chen, H.; Guo, W.; Feng, X.; Wei, W.; Liu, H.; Feng, Y.; Gong, W. The impact of low-carbon city pilot policy on the total factor productivity of listed enterprises in China. Resour. Conserv. Recycl. 2021, 169, 105457. [Google Scholar] [CrossRef]
- Sheng, Y.; Song, L.G. Re-estimation of firm-level total factor productivity in China’s iron and steel industry. China Econ. Rev. 2013, 24, 177–188. [Google Scholar] [CrossRef]
- Wen, H.W.; Lee, C.C.; Zhou, F.X. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
- Ren, X.H.; Liu, Z.Q.; Jin, C.L.; Lin, R.Y. Oil price uncertainty and enterprise total factor productivity: Evidence from China. Int. Rev. Econ. Financ. 2021, 83, 201–218. [Google Scholar] [CrossRef]
- Ayyagari, M.; Demirgüç-Kunt, A.; Maksimovic, V. How Important Are Financing Constraints? The Role of Finance in the Business Environment. World Bank Econ. Rev. 2008, 22, 483–516. [Google Scholar] [CrossRef] [Green Version]
- Sapienza, P. The effects of government ownership on bank lending. J. Financial Econ. 2004, 72, 357–384. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lu, X.; Wang, L. Outward internationalization of private enterprises in China: The effect of competitive ad-vantages and disadvantages compared to home market rivals. J. World Bus. 2012, 47, 134–144. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing compa-nies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Agarwal, R.; Gao, G.; DesRoches, C.; Jha, A.K. Research Commentary—The Digital Transformation of Healthcare: Current Status and the Road Ahead. Inf. Syst. Res. 2010, 21, 796–809. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Kruschwitz, N.; Bonnet, D.; Welch, M. Embracing digital technology: A new strategic imperative. MIT Sloan Manag. Rev. 2014, 55, 1–12. [Google Scholar]
- Piccinini, E.; Hanelt, A.; Gregory, R.; Kolbe, L. Transforming industrial business: The impact of digital transformation on automotive organizations. In Proceedings of the ICIS 2015, Fort Worth, TX, USA, 13–16 December 2015. [Google Scholar]
- Majchrzak, A.; Markus, M.L.; Wareham, J. ESADE—Ramon Llull University Designing for Digital Transformation: Lessons for Information Systems Research from the Study of ICT and Societal Challenges. MIS Q. 2016, 40, 267–277. [Google Scholar] [CrossRef]
- Matt, C.; Hess, T.; Benlian, A. Digital transformation strategies. Bus. Inform. Syst. Eng. 2015, 57, 339–343. [Google Scholar] [CrossRef]
- Tabrizi, B.; Lam, E.; Girard, K.; Irvin, V. Digital transformation is not about technology. Harvard. Bus. Rev. 2019, 13, 1–6. [Google Scholar]
- Yi, L.X.; Wu, F.; Chang, X. Enterprise digital transformation process and main business performance: Empirical evidence from the text recognition of the Annual reports of listed companies in China. Mod. Financ. 2021, 10, 24–38. [Google Scholar]
- Hadjielias, E.; Dada, O.; Cruz, A.D.; Zekas, S.; Christofi, M.; Sakka, G. How do digital innovation teams function? Under-standing the team cognition-process nexus within the context of digital transformation. J. Bus. Res. 2021, 122, 373–386. [Google Scholar] [CrossRef]
- Bharadwaj, I. Organization sustainability. NHRD Netw. J. 2013, 6, 30–35. [Google Scholar] [CrossRef]
- Nambisan, S. Digital Entrepreneurship: Toward a Digital Technology Perspective of Entrepreneurship. Entrep. Theory Pr. 2017, 41, 1029–1055. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Yan, C.; Gozgor, G. Climate policy uncertainty and firm-level total factor productivity: Evidence from China. Energy Econ. 2022, 113, 106209. [Google Scholar] [CrossRef]
- Andriushchenko, K.; Buriachenko, A.; Rozhko, O.; Lavruk, O.; Skok, P.; Hlushchenko, Y.; Muzychka, Y.; Slavina, N.; Buchynska, O.; Kondarevych, V. Peculiarities of sustainable development of enterprises in the context of digital trans-formation. Entrep. Sustain. Iss. 2020, 7, 2255. [Google Scholar]
- Liu, Y.; Wu, A.; Song, D. Exploring the impact of cross-side network interaction on digital platforms on internationalization of manufacturing firms. J. Int. Manag. 2022, 28, 100954. [Google Scholar] [CrossRef]
- Ribeiro-Navarrete, S.; Botella-Carrubi, D.; Palacios-Marqu’es, D.; Orero-Blat, M. The effect of digitalization on business performance: An applied study of KIBS. J. Bus. Res. 2021, 126, 319–326. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 2021, 162, 120343. [Google Scholar] [CrossRef] [PubMed]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manage. J. 1997, 18, 509–534. [Google Scholar] [CrossRef]
- Butticè, V.; Caviggioli, F.; Franzoni, C.; Scellato, G.; Stryszowski, P.; Thumm, N. Counterfeiting in digital technologies: An empirical analysis of the economic performance and innovative activities of affected companies. Res. Policy 2020, 49, 103959. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Noor, S.; Shen, L.; Butt, A.S.; Ali, M. Role of privacy/safety risk and trust on the development of presump-tion and value co-creation under the sharing economy: A moderated mediation model. Inform. Technol. Dev. 2021, 27, 718–735. [Google Scholar] [CrossRef]
- Curran, D. Risk, innovation, and democracy in the digital economy. Eur. J. Soc. Theory 2018, 21, 207–226. [Google Scholar] [CrossRef]
- Miao, Z. Digital economy value chain: Concept, model structure, and mechanism. Appl. Econ. 2021, 53, 4342–4357. [Google Scholar] [CrossRef]
- Sousa, M.J.; Rocha, Á. Digital learning: Developing skills for digital transformation of organizations. Futur. Gener. Comput. Syst. 2019, 91, 327–334. [Google Scholar] [CrossRef]
- Lin, C.; Kunnathur, A. Strategic orientations, developmental culture, and big data capability. J. Bus. Res. 2019, 105, 49–60. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y.; Boland, R.J., Jr. Digital product innovation within four classes of innovation networks. Y. Inf. Syst. J. 2016, 26, 47–75. [Google Scholar] [CrossRef]
- Corsi, A.; Findeis, J.L. True state dependence and heterogeneity in off-farm labour participation. Eur. Rev. Agric. Econ. 2000, 27, 127–151. [Google Scholar] [CrossRef]
- Ode, E.; Ayavoo, R. The mediating role of knowledge application in the relationship between knowledge management practices and firm innovation. J. Innov. Knowl. 2019, 5, 210–218. [Google Scholar] [CrossRef]
- Hakala, H. Strategic Orientations in Management Literature: Three Approaches to Understanding the Interaction between Market, Technology, Entrepreneurial and Learning Orientations. Int. J. Manag. Rev. 2010, 13, 199–217. [Google Scholar] [CrossRef]
- Gatignon, H.; Xuereb, J. Strategic orientation of the firm and new product performance. J. Market. Res. 1997, 34, 77–90. [Google Scholar] [CrossRef]
- Haider, Z.A.; Liu, M.; Wang, Y.F.; Zhang, Y. Government ownership, financial constraint, corruption, and corporate performance: International evidence. J. Int. Financ. Mark. Inst. Money 2018, 53, 76–93. [Google Scholar] [CrossRef]
- Luo, L.; Yang, Y.; Luo, Y.; Liu, C. Export, subsidy and innovation: China’s state-owned enterprises versus privately-owned enterprises. Econ. Politi. Stud. 2016, 4, 137–155. [Google Scholar] [CrossRef]
- Liu, M.; Liu, L.; Xu, S.; Du, M.; Liu, X.; Zhang, Y. The Influences of Government Subsidies on Performance of New Energy Firms: A Firm Heterogeneity Perspective. Sustainability 2019, 11, 4518. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.C.; Li, X.Y.; Xue, X.H.; Liu, Y.H. More government subsidies, more green innovation? The evidence from Chinese new energy vehicle enterprises. Renew. Energ. 2022, 197, 11–21. [Google Scholar] [CrossRef]
- Yoo, Y.; Boland, R.J., Jr.; Lyytinen, K.; Majchrzak, A. Organizing for Innovation in the Digitized World. Organ. Sci. 2012, 23, 1398–1408. [Google Scholar] [CrossRef]
- Galindo-Martín, M.A.; Casta no-Martínez, M.S.; Mendez-Picazo, M.T. Digital transformation, digital dividends and entrepreneurship: A quantitative analysis. J. Bus. Res. 2019, 101, 522–527. [Google Scholar] [CrossRef]
- Tavoletti, E.; Kazemargi, N.; Cerruti, C.; Grieco, C.; Appolloni, A. Business model innovation and digital transformation in global management consulting firms. Eur. J. Innov. Manag. 2021, 25, 612–636. [Google Scholar]
- Ko, A.; Feher, P.; Kovacs, T.; Mitev, A.; Szabo, Z. Influencing factors of digital transformation: Management or IT is the driving force? Int. J. Inov. Sci. 2022, 14, 1–20. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Li, K.F.; Guo, Z.X.; Chen, Q. The effect of economy policy uncertainty on enterprise total factor productivity based on financial mismatch: Evidence from China. Pac. Basin Financ. J. 2021, 68, 101613. [Google Scholar] [CrossRef]
- Ackerberg, D.A.; Caves, K.; Frazer, G. Identification Properties of Recent Production Function Estimators. Econometrica 2015, 83, 2411–2451. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2021, 139, 303–311. [Google Scholar] [CrossRef]
- Chang, C.C. Cash conversion cycle and corporate performance: Global evidence. Int. Rev. Econ. Financ. 2018, 56, 568–581. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application t Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
Dimension | Category | Keywords |
Underlying technology | Artificial intelligence | business intelligence; artificial intelligence; investment decision aid; intelligent data analysis; image understanding; intelligent robot; deep learning; semantic search; machine learning; biometric; face recognition; voice recognition; identity verification; natural language processing |
Cloud computing | cloud computing; graph computing; stream computing; in-memory computing; brain-like computing; cognitive computing; multi-party; secure computing; green computing; billion-level concurrency; EB-class storage; converged architecture; Internet of Thing; information physical system; supercomputer; computational science; cloud platform; edge computing | |
Big data | text mining; data visualization; data mining; credit augmented reality; heterogeneous data; mixed reality; virtual reality; big data; imaging; ICT | |
Blockchain | blockchain; distributed computing; differential privacy technology; digital currency; intelligent financial contract | |
Practical application | Industry-specific application | new energy digitalization; intelligent new energy; intelligent new energy service; new energy intelligent system; intelligent new energy management; digital new energy; new energy digital system; intelligent new energy; digital new energy product; intelligent emergency; intelligent operation and maintenance; digital interconnection; digital ecology; digital process; digital business; interactive grid; digital grid; grid digitalization; intelligent hydropower; hydropower digitalization; intelligent battery; intelligent wind power; digital wind power; digital offshore wind power; new energy information; digital wind farm; intelligent microgrid; intelligent photovoltaic; digital photovoltaic; photovoltaic cloud platform; intelligent hydrogen; intelligent light energy; intelligent solar energy; virtual power plant; intelligent oil and gas pipeline; intelligent nuclear power; intelligent power plant; intelligent power equipment; digital empowerment; digital new energy industry; digital new energy monitoring; digital new energy management; intelligent newenergy infrastructure |
Variables | Obs | Mean | Std. Dev. | Min | Max |
TFP | 1976 | 7.0179 | 1.2225 | 4.2314 | 10.6423 |
DT | 1976 | 1.6935 | 1.2947 | 0.0000 | 4.2195 |
AT | 1976 | 0.5233 | 0.2586 | 0.1243 | 0.7491 |
OC | 1976 | 0.3562 | 0.2169 | 0.0950 | 0.6317 |
IP | 1976 | 0.5961 | 0.9453 | 0.0000 | 6.0753 |
CS | 1976 | 21.7452 | 1.2875 | 19.0532 | 26.1975 |
ROA | 1976 | 0.0310 | 0.0407 | −0.0260 | 0.1504 |
RGR | 1976 | 0.1387 | 0.2461 | −0.5597 | 2.2481 |
AL | 1976 | 0.5098 | 0.1415 | 0.1411 | 0.7185 |
EC | 1976 | 22.7315 | 5.5253 | 7.6283 | 67.1237 |
Variables | TFP | DT | AT | OC | IP | CS | ROA | RGR | AL | EC |
TFP | 1.0000 | |||||||||
DT | 0.1437 *** | 1.0000 | ||||||||
AT | 0.0404 *** | 0.0207 | 1.0000 | |||||||
OC | −0.0265 *** | −0.0492 *** | −0.0311 | 1.0000 | ||||||
IP | 0.0463 *** | 0.0641 *** | 0.0510 *** | 0.0253 ** | 1.0000 | |||||
CS | 0.1402 *** | 0.0109 *** | 0.0743 *** | 0.0218 ** | 0.0276 | 1.0000 | ||||
ROA | 0.1233 *** | 0.1033 *** | 0.1231 *** | 0.1048 *** | 0.0544 *** | 0.4096 *** | 1.0000 | |||
RGR | 0.3018 *** | −0.0207 | 0.0315 ** | 0.1263 *** | 0.0251 | 0.0242 | 0.2204 *** | 1.0000 | ||
AL | −0.0407 *** | 0.0189 *** | 0.0446 *** | 0.0538 *** | 0.0848 *** | −0.1426 *** | −0.0364 | 0.2100 *** | 1.0000 | |
EC | 0.1248 * | 0.0040 | 0.0731 *** | 0.0352 ** | 0.0663 *** | −0.2960 *** | 0.1645 *** | 0.0143 ** | 0.1286 *** | 1.0000 |
Variables | TFP | TFP |
(1) | (2) | |
DT | 0.0495 *** (4.27) | 0.0412 *** (4.48) |
CS | 0.2683 *** (7.34) | |
ROA | 1.5936 *** (6.35) | |
RGR | 0.0214 *** (4.73) | |
AL | 0.5189 *** (7.34) | |
EC | −0.0025 (−1.28) | |
Constant | 5.4175 *** (12.63) | −2.5931 *** (-8.74) |
IE | YES | YES |
YE | YES | YES |
Observations | 1976 | 1976 |
R-squared | 0.3154 | 0.5376 |
Variables | Excluding the Sample Data for 2015 | Excluding the Sample Data for 2015, 2020 and 2021 |
TFP | TFP | |
(1) | (2) | |
DT | 0.0371 *** (4.10) | 0.0325 *** (3.47) |
Controls | YES | YES |
Constant | −3.1294 *** (−11.56) | −2.5786 *** (−8.23) |
IE | YES | YES |
YE | YES | YES |
Observations | 1824 | 1520 |
R-squared | 0.4946 | 0.4558 |
Variables | TFP | TFP | TFP | F1.TFP | F2.TFP | F3.TFP |
(1) | (2) | (3) | (4) | (5) | (6) | |
DT | 0.0326 *** (4.58) | 0.0302 *** (4.13) | 0.0297 *** (3.86) | |||
L1.DT | 0.0345 *** (4.64) | |||||
L2.DT | 0.0316 *** (4.27) | |||||
L3.DT | 0.0284 *** (3.57) | |||||
Controls | YES | YES | YES | YES | YES | YES |
Constant | −2.6432 *** (−8.46) | −2.7604 *** (−9.20) | −2.7285 *** (−8.69) | −3.0756 *** (−9.32) | −2.7003 *** (−7.85) | −3.1641 *** (−10.25) |
IE | YES | YES | YES | YES | YES | YES |
YE | YES | YES | YES | YES | YES | YES |
Observations | 1824 | 1672 | 1520 | 1824 | 1672 | 1520 |
R-squared | 0.4624 | 0.4510 | 0.4165 | 0.4428 | 0.4375 | 0.4306 |
Variables | Adding Control Variables | Changing Core Explanatory Variable |
TFP | TFP | |
(1) | (2) | |
DT | 0.0465 *** (4.97) | 0.0412 *** (4.13) |
Controls | YES | YES |
Constant | −1.3570 *** (−6.41) | −2.6631 *** (−9.52) |
IE | YES | YES |
YE | YES | YES |
Observations | 1976 | 1976 |
R-squared | 0.5662 | 0.5175 |
Variables | TFP | TFP |
(1) | (2) | |
DT | 0.0314 *** (3.43) | 0.0504 *** (4.15) |
Controls | YES | YES |
Constant | −2.9581 *** (−9.24) | −2.3426 *** (−7.02) |
IE | YES | YES |
YE | YES | YES |
Kleibergen–Paap rk LM statistic | 436.742 [0.0000] | 493.623 [0.0000] |
Kleibergen–Paap rk Wald F statistic | 274.850 {62.76} | 319.539 {74.25} |
Observations | 1976 | 1976 |
R-squared | 0.4125 | 0.5831 |
Variables | SOEs | NSOEs | Eastern Region | Central Region | Western Region |
TFP | TFP | TFP | TFP | TFP | |
(1) | (2) | (3) | (4) | (5) | |
DT | 0.0593 *** (5.18) | −0.0121 (−1.53) | 0.0713 *** (6.24) | 0.0214 (1.55) | 0.0116 (1.23) |
Controls | YES | YES | YES | YES | YES |
Constant | −2.6324 *** (−5.32) | −0.2563 *** (−3.54) | −2.1245 *** (−7.81) | −1.4543 *** (−4.48) | −1.154 *** (−3.89) |
IE | YES | YES | YES | YES | YES |
YE | YES | YES | YES | YES | YES |
Observations | 637 | 1339 | 1261 | 546 | 169 |
R-squared | 0.5485 | 0.2904 | 0.6620 | 0.2575 | 0.2361 |
Variables | AT | TFP | OC | TFP | IP | TFP |
(1) | (2) | (3) | (4) | (5) | (6) | |
DT | 0.0411 *** (4.32) | 0.0384 *** (4.42) | −0.1112 *** (−3.75) | 0.0317 *** (3.75) | 0.0458 *** (5.53) | 0.0385 *** (3.85) |
AT | 0.0681 *** (5.70) | |||||
OC | −0.0854 *** (−3.57) | |||||
IP | 0.0764 *** (4.12) | |||||
Controls | YES | YES | YES | YES | YES | YES |
Constant | −2.3915 *** (−6.63) | −2.1861 *** (−5.37) | 1.2350 *** (4.72) | −2.5401 *** (−6.28) | −2.9254 *** (−7.32) | −2.0356 *** (−5.58) |
IE | YES | YES | YES | YES | YES | YES |
YE | YES | YES | YES | YES | YES | YES |
Observations | 1976 | 1976 | 1976 | 1976 | 1976 | 1976 |
R-squared | 0.4742 | 0.5123 | 0.3274 | 0.4742 | 0.3625 | 0.4574 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Zhang, X.; Chen, H. The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China. Sustainability 2022, 14, 13928. https://doi.org/10.3390/su142113928
Ren Y, Zhang X, Chen H. The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China. Sustainability. 2022; 14(21):13928. https://doi.org/10.3390/su142113928
Chicago/Turabian StyleRen, Yangjun, Xin Zhang, and Hui Chen. 2022. "The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China" Sustainability 14, no. 21: 13928. https://doi.org/10.3390/su142113928
APA StyleRen, Y., Zhang, X., & Chen, H. (2022). The Impact of New Energy Enterprises’ Digital Transformation on Their Total Factor Productivity: Empirical Evidence from China. Sustainability, 14(21), 13928. https://doi.org/10.3390/su142113928