Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characteristic of Publications (2011–2022)
3.2. Top 20 Journals
3.3. Top 20 Articles
3.4. Attributes of the Top 20 Articles
3.4.1. Analysis of Keywords
3.4.2. Analysis of a Single Keyword (“Biodiesel”)
3.5. Authors and Countries
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.-H.P. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Sci. Eng. 2013, 1, 27–41. [Google Scholar] [CrossRef]
- Stocks, M.; Stocks, R.; Lu, B.; Cheng, C.; Blakers, A. Global Atlas of Closed-Loop Pumped Hydro Energy Storage. Joule 2021, 5, 270–284. [Google Scholar] [CrossRef]
- Saklani, U.; Shresth, P.P.; Mukherji, A.; Scott, C.A. Hydro-energy cooperation in South Asia: Prospects for transboundary energy and water security. Environ. Sci. Policy 2020, 114, 22–34. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Introducing a new approach for wind energy potential assessment under climate change at the wind turbine scale. Energy Convers. Manag. 2020, 225, 113425. [Google Scholar] [CrossRef]
- Rezaeiha, A.; Montazeri, H.; Blocken, B. A framework for preliminary large-scale urban wind energy potential assessment: Roof-mounted wind turbines. Energy Convers. Manag. 2020, 214, 112770. [Google Scholar] [CrossRef]
- Longa, F.D.; Nogueira, L.P.; Limberger, J.; van Wees, J.-D.; van der Zwaan, B. Scenarios for geothermal energy deployment in Europe. Energy 2020, 206, 118060. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Dou, J.; Li, M.; Zeng, M. Geothermal energy in China: Status, challenges, and policy recommendations. Util. Policy 2020, 64, 101020. [Google Scholar] [CrossRef]
- Gorjian, S.; Sharon, H.; Ebadi, H.; Kant, K.; Scavo, F.B.; Tina, G.M. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. J. Clean. Prod. 2021, 278, 124285. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, J.; Pu, Y.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Van Gerpen, J. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Knothe, G.; Krahl, J.; Van Gerpen, J. The Biodiesel Handbook; AOCS Press: Urbana, IL, USA, 2010. [Google Scholar]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Sharma, P.K.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Wang, W.G.; Lyons, D.W.; Clark, N.N.; Gautam, M.; Norton, P.M. Emissions from Nine Heavy Trucks Fueled by Diesel and Biodiesel Blend without Engine Modification. Environ. Sci. Technol. 2000, 34, 933–939. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, L.; Cai, H.; Garza, E.; Yu, Z.; Zhou, S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 2011, 90, 1545–1548. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Y.; Zhou, H.; Yang, Y.; Chen, M.; Liang, B. Production of biodiesel from Jatropha curcas L. oil. Comput. Chem. Eng. 2009, 33, 1091–1096. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Chen, W.-W.; Lei, H.; Liu, Y.; Lin, X.; Ruan, R. Optimization of transesterification conditions for the production of fatty acid methyl ester (FAME) from Chinese tallow kernel oil with surfactant-coated lipase. Biomass Bioenergy 2009, 33, 277–282. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Dortmans, B.M.A.; Diener, S.; Verstappen, B.M.; Zurbrügg, C. Black Soldier Fly Biowaste Processing-A Step-by-Step Guide; Eawag: Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2017. [Google Scholar]
- Kamarulzaman, M.K.; Abdullah, A.; Mamat, R. Combustion, performances, and emissions characteristics of Hermetia illucens larvae oil in a direct injection compression ignition engine. Energy Sources A 2019, 41, 1483–1496. [Google Scholar] [CrossRef]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energy 2016, 98, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Feng, W. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (I). Renew. Energy 2017, 111, 749–756. [Google Scholar] [CrossRef]
- Feng, W.; Qian, L.; Wang, W.; Wang, T.; Deng, Z.; Yang, F.; Xiong, J.; Wang, C. Exploring the potential of lipids from black soldier fly: New paradigm for biodiesel production (II)—Extraction kinetics and thermodynamic. Renew. Energy 2018, 119, 12–18. [Google Scholar] [CrossRef]
- Su, C.H.; Nguyen, H.C.; Bui, T.L.; Huang, D.L. Enzyme-assisted extraction of insect fat for biodiesel production. J. Clean. Prod. 2019, 223, 436–444. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zheng, L.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag. 2011, 31, 1316–1320. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [Green Version]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy 2012, 41, 75–79. [Google Scholar] [CrossRef]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012, 47, 225–229. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Higa, J.E.; Ruby, M.B.; Rozin, P. Americans’ acceptance of black soldier fly larvae as food for themselves, their dogs, and farmed animals. Food Qual. Prefer. 2021, 90, 104119. [Google Scholar] [CrossRef]
- Li, W.; Dong, H.; Yu, H.; Wang, D.; Yu, H. Global characteristics and trends of research on ceramic membranes from 1998 to 2016: Based on bibliometric analysis combined with information visualization analysis. Ceram. Int. 2018, 44, 6926–6934. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed-a review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Liang, K.; Li, W.; Wen, J.; Ai, W.; Wang, J. Research characteristics and trends of power sector carbon emissions: A bibliometric analysis from various perspectives. Environ. Sci. Pollut. Res. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.C.; Liang, S.H.; Li, S.Y.; Su, C.H.; Chien, C.C.; Chen, Y.J.; Huong, D.T.M. Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J. Taiwan Inst. Chem. Eng. 2018, 85, 165–169. [Google Scholar] [CrossRef]
- Kamari, A.; Ishak, S.; Hussin, M.I.A.M.; Wong, S.T.S.; Jumadi, J.; Yahaya, N.M. Optimisation and characterisation studies of biodiesel production from black soldier fly larvae fed by soya residue. IOP Conf. Ser. Mater. Sci. Eng. 2020, 980, 012057. [Google Scholar] [CrossRef]
- Wong, C.Y.; Lim, J.W.; Chong, F.K.; Lam, M.K.; Uemura, Y.; Tan, W.N.; Bashir, M.J.K.; Lam, S.M.; Sin, J.C.; Lam, S.S. Valorization of exo-microbial fermented coconut endosperm waste by black soldier fly larvae for simultaneous biodiesel and protein productions. Environ. Res. 2020, 185, 109458. [Google Scholar] [CrossRef]
- Wong, C.Y.; Rosli, S.S.; Uemura, Y.; Ho, Y.C.; Leejeerajumnean, A.; Kiatkittipong, W.; Cheng, C.K.; Lam, M.K.; Lim, J.W. Potential protein and biodiesel sources from black soldier fly larvae: Insights of larval harvesting instar and fermented feeding medium. Energies 2019, 12, 1570. [Google Scholar] [CrossRef] [Green Version]
- Ishak, S.; Kamari, A. Biodiesel from black soldier fly larvae grown on restaurant kitchen waste. Environ. Chem. Lett. 2019, 17, 1143–1150. [Google Scholar] [CrossRef]
- Ishak, S.; Kamari, A.; Yusoff, S.N.M.; Halim, A.L.A. Optimisation of biodiesel production of Black Soldier Fly larvae rearing on restaurant kitchen waste. J. Phys. Conf. Ser. 2018, 1097, 012052. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Q.; Zheng, L.; Wang, Y.; Zhang, J.; Yu, Z.; Zhang, Y. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour. Technol. 2015, 194, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.; Ran, Y.; Ai, P.; Azab, M.; Mansour, A.; Jin, K.; Zhang, Y.; Abomohra, A.E.F. Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvae. J. Clean. Prod. 2020, 263, 121495. [Google Scholar] [CrossRef]
- Jung, S.; Jung, J.M.; Tsang, Y.F.; Bhatnagar, A.; Chen, W.H.; Lin, K.Y.A.; Kwon, E.E. Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification. Energy 2022, 238, 121700. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Liang, S.-H.; Chen, S.-S.; Su, C.-H.; Lin, J.-H.; Chien, C.-C. Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Conv. Manag. 2018, 158, 168–175. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Liang, S.-H.; Doan, T.T.; Su, C.-H.; Yang, P.-C. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers. Manag. 2017, 145, 335–342. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Nguyen, M.L.; Liang, S.H.; Su, C.H.; Wang, F.M. Switchable Solvent-Catalyzed Direct Transesterification of Insect Biomass for Biodiesel Production. Bioenergy Res. 2020, 13, 563–570. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, K. An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review. J. Environ. Manag. 2019, 251, 109569. [Google Scholar] [CrossRef] [PubMed]
Scopus Search Query | Resulting Entries |
---|---|
(TITLE-ABS-KEY (black AND soldier AND fly)) AND (biodiesel) | 488 |
(TITLE-ABS-KEY (hermetia AND illucens)) AND (biodiesel) | 431 |
Combined search result, with duplicated items removed | 535 |
Year | Number of Publications |
---|---|
2011 | 2 |
2012 | 5 |
2013 | 4 |
2014 | 4 |
2015 | 13 |
2016 | 9 |
2017 | 23 |
2018 | 50 |
2019 | 71 |
2020 | 104 |
2021 | 119 |
2022 | 131 |
No. | Journal Name | Publisher | 2021 Impact Factor | Total Articles |
---|---|---|---|---|
1. | Journal of Insects as Food and Feed | Wageningen Academic Publishers | 5.099 | 33 |
2. | Journal of Cleaner Production | Elsevier | 11.072 | 22 |
3 | Waste Management | Elsevier | 8.816 | 22 |
4. | Animals | Multidisciplinary Digital Publishing Institute (MDPI) | 3.231 | 17 |
5. | Insects | MDPI | 3.139 | 15 |
6. | IOP Conference Series: Earth and Environmental Science | Institute of Physics (IOP) | - | 15 |
7. | Journal of Environmental Management | Elsevier | 8.910 | 15 |
8. | Science of the Total Environment | Elsevier | 10.753 | 14 |
9. | Sustainability | MDPI | 3.889 | 12 |
10. | Frontiers in Microbiology | Frontiers Media S.A. | 6.064 | 10 |
11. | Renewable Energy | Elsevier | 8.634 | 10 |
12. | Aquaculture | Elsevier | 5.135 | 9 |
13. | PLoS ONE | Public Library of Science (PLoS) | 3.752 | 9 |
14. | Waste and Biomass Valorization | Springer Nature | 3.449 | 9 |
15. | AIP Conference Proceedings | American Institute of Physics (AIP) | - | 8 |
16. | Processes | MDPI | 3.352 | 8 |
17. | Scientific Reports | Nature Publishing Group | 4.996 | 8 |
18. | Environmental Research | Elsevier | 8.431 | 6 |
19. | Environmental Science and Pollution Research | Springer Nature | 5.190 | 6 |
20. | Animal Feed Science and Technology | Elsevier | 3.313 | 5 |
No. | Title | Journal Name | Citations | 2021 Impact Factor | Type(s) of WFE Nexus | Year | Burst Begins | Burst Ends | Peak | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1. | State-of-the-art on use of insects as animal feed | Animal Feed Science and Technology | 789 | 3.313 | Food (or feed) | 2014 | 2015 | 2022 | 2021 | [27] |
2. | Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products | PLoS ONE | 403 | 3.752 | Food (or feed) | 2015 | 2016 | 2022 | 2021 | [29] |
3. | Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates | Journal of the Science of Food and Agriculture | 395 | 4.125 | Food (or feed) | 2017 | 2017 | 2022 | 2021 | [30] |
4. | Review on the use of insects in the diet of farmed fish: Past and future | Animal Feed Science and Technology | 385 | 3.313 | Food (or feed) | 2015 | 2015 | 2022 | 2021 | [28] |
5. | Review of black soldier fly (Hermetia illucens) as animal feed and human food | Foods | 312 | 5.561 | Food (or feed) | 2017 | 2019 | 2022 | 2021 | [31] |
6. | The use of fly larvae for organic waste treatment | Waste Management | 280 | 8.816 | Waste | 2015 | 2016 | 2022 | 2022 | [32] |
7. | Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed-a review | Journal of Insects as Food and Feed | 241 | 5.099 | Food (or feed) | 2017 | 2018 | 2022 | 2021 | [45] |
8. | Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens | Journal of Cleaner Production | 230 | 11.072 | Waste | 2017 | 2017 | 2022 | 2021 | [46] |
9. | Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy | Animal Feed Science and Technology | 216 | 3.313 | Food (or feed) | 2015 | 2015 | 2022 | 2021 | [38] |
10. | Bioconversion of organic wastes into biodiesel and animal feed via insect farming | Renewable Energy | 215 | 8.634 | Waste, energy | 2016 | 2017 | 2022 | 2021 | [21] |
11. | Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production | Waste Management | 214 | 8.816 | Waste, energy, food | 2011 | 2013 | 2022 | 2020 | [26] |
12. | Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets | Journal of Animal Science and Biotechnology | 213 | 5.032 | Food (or feed) | 2017 | 2018 | 2022 | 2021 | [39] |
13. | Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae | Journal of the Science of Food and Agriculture | 209 | 4.125 | Waste | 2018 | 2019 | 2022 | 2022 | [35] |
14. | Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens) | Journal of Cleaner Production | 206 | 11.072 | Waste | 2019 | 2019 | 2022 | 2022 | [36] |
15. | Sustainability of insect use for feed and food: Life Cycle Assessment perspective | Journal of Cleaner Production | 184 | 11.072 | Food (or feed) | 2016 | 2017 | 2022 | 2020 | [40] |
16. | From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible | Fuel | 180 | 6.609 | Waste, energy | 2011 | 2012 | 2022 | 2021 | [15] |
17. | Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review | Waste Management | 165 | 8.816 | Waste | 2018 | 2019 | 2022 | 2021 | [37] |
18. | Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production | Renewable Energy | 160 | 8.634 | Waste, Energy | 2012 | 2015 | 2022 | 2020 | [33] |
19. | Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility | Journal of Animal Science and Biotechnology | 147 | 5.032 | Food (or feed) | 2017 | 2018 | 2022 | 2021 | [41] |
= 20a. | Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality | Italian Journal of Animal Science | 146 | 2.217 | Food (or feed) | 2017 | 2017 | 2022 | 2021 | [42] |
= 20b. | Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes | Energy | 146 | 8.857 | Waste, energy | 2012 | 2015 | 2022 | 2020 | [34] |
No. | Pretreatment | Reactant | BSF Feed | Mixing Ratio | Reaction | Condition | Biodiesel Yield | Unit of Yield | Ref. |
---|---|---|---|---|---|---|---|---|---|
1. | None | Dried BSF larvae | Wheat bran | Dried BSFL/methanol/hexane = 1/4/2 w/v/v | Acid -catalyzed reaction | H2SO4 60% at 120 °C for 90 min | 28.4 | wt.% per dried BSF larvae | [48] |
2. | Solvent extraction with petroleum ether for 6 h | BSF larvae oil | Soya residue | Oil/methanol = 1/8, 1/10, 1/12, 1/14, 1/16 molar ratio | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% in methanol, 45 °C, 60 min, followed with NaOH (0.5–1.5%), 45–65 °C, 20–40 min | 35–90 | wt.% per BSF larvae oil | [49] |
3. | Solvent extraction with petroleum ether for 24 h | BSF larvae extract | Fermented coconut endosperm waste | Extract/methanol = 1/8 w/w, | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% in methanol, 75 °C, 200 rpm, 1 h, followed with KOH 0.8% in methanol, 65 °C, 200 rpm, 30 min. | 35–40 | wt.% per powdered BSF larvae | [50] |
4. | Solvent extraction with petroleum ether for 24 h | BSF larvae extract | Fermented coconut endosperm waste (0.0–2.5% mixed- bacteria, 0–28 days fermentation | Extract/methanol = 1/8 w/w, | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | HCl 1% in methanol, 75 °C, 1 h, followed with KOH 1% in methanol, 65 °C, 30 min. | 35–38.5 | wt.% per powdered BSF larvae | [51] |
5. | Solvent extraction with petroleum ether for 6 h, followed with addition of 1% (v/v) concentrated H3PO4 (85%) | BSF larvae oil | Restaurant kitchen waste | Oil/methanol = 1/10 molar ratio | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% in methanol, 50 °C, 41 min, followed with NaOH 1.1% in methanol, 62 °C, 61 min | 97 | wt.% per BSF larvae oil | [52] |
6. | Solvent extraction with petroleum ether for 6 h | BSF larvae oil | Restaurant kitchen waste | Oil/methanol = 1/6–1/14 molar ratio | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% in methanol, followed with NaOH (0.5–1.5%), 35–65 °C, 40–60 min | 24–95 | wt.% per BSF larvae oil | [53] |
7 | Solvent extraction with petroleum ether for 6 h, followed with addition of 1% (v/v) concentrated H3PO4 (85%) | BSF larvae oil | Pig manure | Grease/methanol = 1/8 w/w (for acid -catalyzed reaction), 1/6 (for alkaline- catalyzed reaction) | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% in methanol, 75 °C, 60 min, followed with NaOH 0.8% in methanol, 65 °C, 30 min | 94.91 | Wt.% per BSF larvae grease | [54] |
8. | Solvent extraction with petroleum ether for 48 h (twice) | BSF larvae extract | Restaurant food waste | Extract/methanol = 1/8 for acid -catalyzed reaction, 1/6 for alkaline -catalyzed reaction | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% at 75 °C for 1 h, followed with NaOH 0.8% at 65 °C for 30 min | 36.3 | wt.% per dried BSF larvae | [33] |
9. | Solvent extraction with petroleum ether for 16 h | BSF larvae grease | Fresh manure | Grease/methanol = 1/8, | Acid -catalyzed reaction followed with alkaline -catalyzed reaction | H2SO4 1% in methanol, 73 °C, 2 h, followed with NaOH 0.8% in methanol, 65 °C, 30 min | 96.34 | wt.% per BSF larvae grease | [26] |
10. | Solvent extraction with petroleum ether for 48 h | BSF larvae extract | Pig manure | Extract/methanol = 1/8 for acid -catalyzed reaction, 1/6 for alkaline -catalyzed reaction | Acid -catalyzed reaction followed with alkaline-catalyzed reaction | H2SO4 1% at 75 °C for 1 h, followed with NaOH 0.8% at 65 °C for 30 min | 27.9 | wt.% per dried BSF larvae | [15] |
11. | Solvent extraction with petroleum ether for 12 h | Milled dried BSF larvae | Solid digestate of chicken manure and rapeseed straw | 200 larval/150 g digestate | Alkaline transmethylation | Fatty residue dissolved in hexane, KOH 5% in methanol, mixed for 5 min. | 14.36 | g per kg waste | [55] |
12. | Solvent extraction with hexane for 24 h | BSF larvae extract | Food waste | Extract/methanol = 1/8 w/w | Alkaline- catalyzed reaction | KOH 5% at 65 °C for 8 h | 33.9 | wt.% per dried BSF larvae | [56] |
13. | Solvent extraction with n-hexane for 48 h | BSF larvae fat | Wheat bran | Fat/methyl acetate = 1/14.64 molar ratio | Enzymatic reaction | Novozym 435 (4% concentration, loaded at 17.58% shaken at 40 °C, 12 h. | 96.97 | wt.% per BSF | [57] |
14. | Solvent extraction with n-hexane for 48 h | BSF larvae fat | Wheat bran | Fat/methanol = 1/6.33 molar ratio | Enzymatic reaction | Novozym 435 (4% concentration, loaded at 20%, shaken at 26 °C, 9.48 h. | 96.18 | wt.% per BSF fat | [58] |
15. | None | Dried BSF larvae | Food waste | Dried BSFL/methanol = 1/10 w/w | Non-catalytic reaction | SiO2 at 390 °C for 1 min | 34.7 | wt.% per dried BSF larvae | [56] |
16. | Solvent extraction with hexane for 24 h | BSF larvae extract | Food waste | Extract/methanol = 1/20 w/v | Non-catalytic reaction | SiO2 at 390 °C for 1 min | 34 | wt.% per dried BSF larvae | [56] |
17. | Solvent extraction with n-hexane for 48 h | Powdered BSF larvae | Wheat bran | Methanol/BSF powder = 4:1 to 10:1 mL/g | Switchable -solvent -catalyzed (using polarity switchable solvent, DBU (1,8-diazabicyclo [5.4.0]undec-7-ene)) | DBU/biomass = 8:1 to 20:1 mL/g, 90–120 °C, 30–120 min. | 96.2% | actual biodiesel produced per theoretical biodiesel produced | [59] |
Cluster | Color | Description |
---|---|---|
1 | Red | Animal feed preparation and experiments |
2 | Green | Entomology, microbiology, biochemistry |
3 | Yellow | BSF and biodiesel, biofuels |
4 | Blue | Agricultural waste management |
5 | Violet | Municipal waste management |
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 |
---|---|---|---|---|
Hermetia illucens | nonhuman | fly | black soldier fly larvae | biotransformation |
larva | maggot | simuliidae | biomass | manure |
animals | biodegradation | waste management | black soldier fly | fertilizers |
diptera | bioremediation | food waste | hexapoda | waste treatment |
animal | heavy metal | organic waste | fatty acids | composting |
animal food | microbial community | waste disposal | insect | nitrogen |
fatty acid | human | animalia | biodiesel | nutrients |
protein | intestine flora | fermentation | proteins | pH |
animal experiment | livestock | refuse disposal | lipid | manures |
animal feed | rearing | growth rate | biofuel | moisture |
No. | Terms Associated with Biodiesel | Weight | Cluster |
---|---|---|---|
1. | Hermetia illucens | 25 | 4 |
2. | fly | 21 | 3 |
3. | black soldier fly larvae | 21 | 4 |
4. | biofuel | 20 | 3 |
5. | larva | 20 | 3 |
6. | biodiesel production | 17 | 4 |
7. | black soldier fly | 16 | 3 |
8. | biomass | 14 | 4 |
9. | nonhuman | 14 | 2 |
10. | fatty acids | 13 | 3 |
11. | hexapoda | 12 | 5 |
12. | food waste | 11 | 4 |
13. | lipid | 9 | 4 |
14. | waste management | 9 | 1 |
15. | fermentation | 8 | 1 |
16. | feedstocks | 8 | 2 |
17. | fatty acid | 8 | 3 |
18. | biofuels | 8 | 5 |
19. | transesterification | 8 | 5 |
20. | organic wastes | 7 | 4 |
No. | Author Name | Affiliation | Citations | h-Index | Number of Co-Authored Publications |
---|---|---|---|---|---|
1. | Tomberlin, Jeffrey Keith | Texas A&M University, College Station, the United States of America | 7878 | 48 | 39 |
2. | Zhang, Jibin | Huazhong Agricultural University, Wuhan, China | 3198 | 32 | 37 |
3. | Yu, Ziniu | Huazhong Agricultural University, Wuhan, China | 9479 | 52 | 35 |
4. | Zheng, Longyu | Huazhong Agricultural University, Wuhan, China | 2795 | 30 | 31 |
5. | Cai, Minmin. | Huazhong Agricultural University, Wuhan, China | 1961 | 26 | 23 |
6. | Li, Qing | Huazhong Agricultural University, Wuhan, China | 2075 | 23 | 17 |
7. | Lim, J.-W. | Universiti Teknologi Petronas, Malaysia | 4562 | 39 | 16 |
8. | van Loon, J.J.A. | Wageningen University & Research, Wageningen, the Netherlands | 14,095 | 66 | 15 |
9. | Li, Wu. | Hubei Polytechnic University, Huangshi, China | 1017 | 13 | 15 |
10. | Wang, Cunwen | Wuhan Institute of Technology, Wuhan, China | 3912 | 31 | 15 |
No. | Country | Documents |
---|---|---|
1. | China | 114 |
2. | Italy | 80 |
3. | The United States | 65 |
4. | Malaysia | 55 |
5. | Indonesia | 36 |
6. | The Netherlands | 35 |
7. | Germany | 28 |
8. | Belgium | 25 |
9. | The United Kingdom | 21 |
10. | Taiwan | 21 |
Continent | Link Strength |
---|---|
Africa | 66 |
America (North, South, Central, Canada) | 58.5 |
Asia (East, South, Southeast) | 131.5 |
Australia (Australia, New Zealand) | 5.5 |
Europe | 170.5 |
Total | 432 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangindaan, D.; Kaburuan, E.R.; Meindrawan, B. Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis. Sustainability 2022, 14, 13993. https://doi.org/10.3390/su142113993
Mangindaan D, Kaburuan ER, Meindrawan B. Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis. Sustainability. 2022; 14(21):13993. https://doi.org/10.3390/su142113993
Chicago/Turabian StyleMangindaan, Dave, Emil Robert Kaburuan, and Bayu Meindrawan. 2022. "Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis" Sustainability 14, no. 21: 13993. https://doi.org/10.3390/su142113993
APA StyleMangindaan, D., Kaburuan, E. R., & Meindrawan, B. (2022). Black Soldier Fly Larvae (Hermetia illucens) for Biodiesel and/or Animal Feed as a Solution for Waste-Food-Energy Nexus: Bibliometric Analysis. Sustainability, 14(21), 13993. https://doi.org/10.3390/su142113993