Participatory Historical Village Landscape Analysis Using a Virtual Globe-Based 3D PGIS: Guizhou, China
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Study Area
3.2. Main Research Methods
3.3. Research Time Period and Data Acquisition
4. Results
4.1. Historical Landscape Characteristics of Duimenshan village
4.1.1. The 2015 Landscape of Duimenshan Village
4.1.2. The 1995 Landscape of Duimenshan Village
4.1.3. The 1980 Landscape of Duimenshan Village
4.1.4. The 1958 Landscape of Duimenshan Village
4.2. Analysis of Landscape Evolution Characteristics
- Evolution characteristics of land use structure
- Evolution characteristics of ecological service value
- Evolution characteristics of landscape pattern
- Analysis of the Dependence of changes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Wu, B. Revitalizing traditional villages through rural tourism: A case study of Yuanjia Village, Shaanxi Province, China. Tour. Manag. 2017, 63, 223–233. [Google Scholar] [CrossRef]
- Hur, M.; Nasar, J.L.; Chun, B. Neighborhood satisfaction, physical and perceived naturalness and openness. J. Environ. Psychol. 2010, 30, 52–59. [Google Scholar] [CrossRef]
- Kweon, B.-S.; Ellis, C.D.; Leiva, P.I.; Rogers, G.O. Landscape Components, Land Use, and Neighborhood Satisfaction. Environ. Plan. B Plan. Des. 2010, 37, 500–517. [Google Scholar] [CrossRef]
- Ellis, E.C.; Neerchal, N.; Peng, K.; Xiao, H.S.; Wang, H.Q.; Yan, Z.A.; Li, S.C.; Wu, J.X.; Jiao, J.G.; Hua, O.Y.; et al. Estimating Long-Term Changes in China’s Village Landscapes. Ecosystems 2009, 12, 279–297. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Wang, Z.; Zhang, B. Traditional Village Landscape Integration Based on Social Network Analysis: A Case Study of the Yuan River Basin in South-Western China. Sustainability 2021, 13, 13319. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, Y.; Li, T. The spatio-temporal patterns of urban–rural development transformation in China since 1990. Habitat Int. 2016, 53, 178–187. [Google Scholar] [CrossRef]
- Lu, S.; Rao, X.; Duan, P. The Rural Gentrification and Its Impacts in Traditional Villages—A Case Study of Xixinan Village, in China. Sustainability 2022, 14, 10077. [Google Scholar] [CrossRef]
- Markuszewska, I. Sentimentality versus Transformation of the Historical Traditional Rural Landscape (A Case Study: The Landscape of Dutch Law Settlement in Poland). Quaest. Geogr. 2019, 38, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Cullotta, S.; Barbera, G. Mapping traditional cultural landscapes in the Mediterranean area using a combined multidisciplinary approach: Method and application to Mount Etna (Sicily; Italy). Landsc. Urban Plan. 2011, 100, 98–108. [Google Scholar] [CrossRef]
- Tortora, A.; Statuto, D.; Picuno, P. Rural landscape planning through spatial modelling and image processing of historical maps. Land Use Policy 2015, 42, 71–82. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, W. Alterations of Historic Rural Landscape Based on the Multifunctional Approach: The Case of Coastal Fishing Villages in the Yangtze River Basin. Sustainability 2022, 14, 7451. [Google Scholar] [CrossRef]
- Bezant, J.; Grant, K. The post-medieval rural landscape: Towards a landscape archaeology? Post-Mediev. Archaeol. 2016, 50, 92–107. [Google Scholar] [CrossRef]
- Riley, M.; Harvey, D. Landscape Archaeology, Heritage and the Community in Devon: An Oral History Approach. Int. J. Herit. Stud. 2005, 11, 269–288. [Google Scholar] [CrossRef]
- Pelorosso, R.; Leone, A.; Lorenzo, B. Land cover and land use change in the Italian central Apennines. Appl. Geogr. 2009, 29, 35–48. [Google Scholar] [CrossRef]
- Rovai, M.; Andreoli, M.; Gorelli, S.; Jussila, H. A DSS model for the governance of sustainable rural landscape: A first application to the cultural landscape of Orcia Valley (Tuscany, Italy). Land Use Policy 2016, 56, 217–237. [Google Scholar] [CrossRef]
- Haase, D.; Walz, U.; Neubert, M.; Rosenberg, M. Changes to Central European landscapes—Analysing historical maps to approach current environmental issues, examples from Saxony, Central Germany. Land Use Policy 2007, 24, 248–263. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J.I.; Kasanko, M.; McCormick, N.; Lavalle, C. Modelling dynamic spatial processes: Simulation of urban future scenarios through cellular automata. Landsc. Urban Plan. 2003, 64, 145–160. [Google Scholar] [CrossRef]
- McDonough, K.; Hutchinson, S.; Moore, T.; Hutchinson, J.M.S. Analysis of publication trends in ecosystem services research. Ecosyst. Serv. 2017, 25, 82–88. [Google Scholar] [CrossRef]
- Rastandeh, A.; Carnes, M.; Jarchow, M. Spatial analysis of landscape social values in multifunctional landscapes of the Upper Missouri River Basin. Ecosphere 2021, 12, e03490. [Google Scholar] [CrossRef]
- Wagner, M.M.; Gobster, P.H. Interpreting landscape change: Measured biophysical change and surrounding social context. Landsc. Urban Plan. 2007, 81, 67–80. [Google Scholar] [CrossRef]
- Plieninger, T.; Bieling, C.; Fagerholm, N.; Byg, A.; Hartel, T.; Hurley, P.; Lopez-Santiago, C.A.; Nagabhatla, N.; Oteros-Rozas, E.; Raymond, C.M.; et al. The role of cultural ecosystem services in landscape management and planning. Curr. Opin. Env. Sust. 2015, 14, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Varela, E.; Verheyen, K.; Valdes, A.; Solino, M.; Jacobsen, J.B.; De Smedt, P.; Ehrmann, S.; Gartner, S.; Gorriz, E.; Decocq, G. Promoting biodiversity values of small forest patches in agricultural landscapes: Ecological drivers and social demand. Sci. Total Environ. 2018, 619, 1319–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.G.; Reed, P. Social Landscape Metrics: Measures for Understanding Place Values from Public Participation Geographic Information Systems (PPGIS). Landsc. Res. 2012, 37, 73–90. [Google Scholar] [CrossRef]
- Sieber, R. Public Participation Geographic Information Systems: A Literature Review and Framework. Ann. Assoc. Am. Geogr. 2006, 96, 491–507. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Biedenweg, K.; Williams, K.; Cerveny, L.; Styers, D. Is recreation a landscape value?: Exploring underlying values in landscape values mapping. Landsc. Urban Plan. 2019, 185, 24–27. [Google Scholar] [CrossRef]
- Brown, G.; Reed, P.; Raymond, C.M. Mapping place values: 10 lessons from two decades of public participation GIS empirical research. Appl. Geogr. 2020, 116, 102156. [Google Scholar] [CrossRef]
- Volker, K. Local commitment for sustainable rural landscape development. Agric. Ecosyst. Environ. 1997, 63, 107–120. [Google Scholar] [CrossRef]
- Pant, L.P.; Hambly Odame, H. Broadband for a sustainable digital future of rural communities: A reflexive interactive assessment. J. Rural. Stud. 2017, 54, 435–450. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; Cinderby, S.; Forrester, J. Enhancing participation: Experiences of participatory geographic information systems in Shanxi province, China. Appl. Geogr. 2008, 28, 96–109. [Google Scholar] [CrossRef]
- Bell, S. Landscape pattern, perception and visualisation in the visual management of forests. Landsc. Urban Plan. 2001, 54, 201–211. [Google Scholar] [CrossRef]
- Campos, M.; Velázquez, A.; Verdinelli, G.B.; Priego-Santander, Á.G.; McCall, M.K.; Boada, M. Rural People’s Knowledge and Perception of Landscape: A Case Study From the Mexican Pacific Coast. Soc. Nat. Resour. 2012, 25, 759–774. [Google Scholar] [CrossRef]
- Valencia-Sandoval, C.; Flanders, D.N.; Kozak, R.A. Participatory landscape planning and sustainable community development: Methodological observations from a case study in rural Mexico. Landsc. Urban Plan. 2010, 94, 63–70. [Google Scholar] [CrossRef]
- Brown, G.; Kyttä, M. Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research. Appl. Geogr. 2014, 46, 122–136. [Google Scholar] [CrossRef]
- Brown, G.; Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecosyst. Serv. 2015, 13, 119–133. [Google Scholar] [CrossRef]
- Liang, J.; Chen, J.; Tong, D.; Li, X. Planning control over rural land transformation in Hong Kong: A remote sensing analysis of spatio-temporal land use change patterns. Land Use Policy 2022, 119, 106159. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, X.; Zhao, C.; Pu, T.; Zhang, L. Regional landscape transformation and sustainability of the rural homegarden agroforestry system in the Chengdu Plain, China. Reg. Sustain. 2022, 3, 68–81. [Google Scholar] [CrossRef]
- Jessel, B. Elements, characteristics and character—Information functions of landscapes in terms of indicators. Ecol. Indic. 2006, 6, 153–167. [Google Scholar] [CrossRef]
- Onyango, D.O.; Opiyo, S.B. Detection of historical landscape changes in Lake Victoria Basin, Kenya, using remote sensing multi-spectral indices. Watershed Ecol. Environ. 2022, 4, 1–11. [Google Scholar] [CrossRef]
- Brozovsky, J.; Gaitani, N.; Gustavsen, A. A systematic review of urban climate research in cold and polar climate regions. Renew. Sustain. Energy Rev. 2021, 138, 110551. [Google Scholar] [CrossRef]
- Kimberly, B.; Robin, M.; Patrick, M. Participatory GIS for strengthening transboundary marine governance in SIDS. Nat. Resour. Forum 2013, 37, 257–268. [Google Scholar]
- Cinderby, S. How Communities Can Use Geographical Information Systems. In Towards Understanding Community; Clay, C., Madden, M., Potts, L., Eds.; Palgrave Macmillan: London, UK, 2007. [Google Scholar]
- Brown, G.; Brabyn, L. An analysis of the relationships between multiple values and physical landscapes at a regional scale using public participation GIS and landscape character classification. Landsc. Urban Plan. 2012, 107, 317–331. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Minghini, M.; Zamboni, G. Public participation in GIS via mobile applications. ISPRS J. Photogramm. Remote Sens. 2016, 114, 306–315. [Google Scholar] [CrossRef]
- Lafrance, F.; Daniel, S.; Dragicevic, S. Multidimensional Web GIS Approach for Citizen Participation on Urban Evolution. ISPRS Int. J. Geo. -Inf. 2019, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.; Rhodes, J.; Dade, M. An evaluation of participatory mapping methods to assess urban park benefits. Landsc. Urban Plan. 2018, 178, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.K.; Masullo, M.; Maffei, L.; Meng, F.Y.; Vorlander, M. A demonstrator tool of web-based virtual reality for participatory evaluation of urban sound environment. Landsc. Urban Plan. 2018, 170, 276–282. [Google Scholar] [CrossRef]
- Mekonnen, A.D.; Gorsevski, P.V. A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renew. Sust. Energ. Rev. 2015, 41, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.J.; Zhang, X.T.; He, F.; Liu, Y.L.; Wang, D.C. Participatory Rural Spatial Planning Based on a Virtual Globe-Based 3D PGIS. ISPRS Int. J. Geo.-Inf. 2020, 9, 763. [Google Scholar] [CrossRef]
- Lovett, A.; Appleton, K.; Warren-Kretzschmar, B.; Von Haaren, C. Using 3D visualization methods in landscape planning: An evaluation of options and practical issues. Landsc. Urban Plan. 2015, 142, 85–94. [Google Scholar] [CrossRef]
- Wissen, U.; Schroth, O.; Lange, E.; Schmid, W.A. Approaches to integrating indicators into 3D landscape visualisations and their benefits for participative planning situations. J. Environ. Manag. 2008, 89, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Onitsuka, K.; Ninomiya, K.; Hoshino, S. Potential of 3D Visualization for Collaborative Rural Landscape Planning with Remote Participants. Sustainability 2018, 10, 3059. [Google Scholar] [CrossRef] [Green Version]
- Howard, T.L.J.; Gaborit, N. Using Virtual Environment Technology to Improve Public Participation in Urban Planning Process. J. Urban Plan. Dev. 2007, 133, 233–241. [Google Scholar] [CrossRef]
- Lloret, J.R.; Omtzigt, N.; Koomen, E.; de Blois, F.S. 3D visualisations in simulations of future land use: Exploring the possibilities of new, standard visualisation tools. Int. J. Digit. Earth 2008, 1, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; He, Z.; Gong, J. A virtual globe-based 3D visualization and interactive framework for public participation in urban planning processes. Comput. Environ. Urban Syst. 2010, 34, 291–298. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Zhang, Z.; Gao, J.; Gao, Y. The influences of land use changes on the value of ecosystem services in Chaohu Lake Basin, China. Environ. Earth Sci. 2015, 74, 385–395. [Google Scholar] [CrossRef]
- Dramstad, W.E.; Tveit, M.S.; Fjellstad, W.J.; Fry, G.L.A. Relationships between visual landscape preferences and map-based indicators of landscape structure. Landsc. Urban Plan. 2006, 78, 465–474. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Paar, P. Landscape visualizations: Applications and requirements of 3D visualization software for environmental planning. Comput. Environ. Urban Syst. 2006, 30, 815–839. [Google Scholar] [CrossRef]
Land Use | Woodland | Grassland | Farmland | Wetland | Water | Unused Land |
---|---|---|---|---|---|---|
Gas regulation | 3097.0 | 707.9 | 442.4 | 1592.7 | 0.0 | 0.0 |
Climate regulation | 2389.1 | 796.4 | 787.5 | 15,130.9 | 407.0 | 0.0 |
Water source conservation | 2389.1 | 707.9 | 530.9 | 13,715.2 | 18,033.2 | 26.5 |
Soil formation and erosion control | 3450.9 | 1725.5 | 1291.9 | 1513.1 | 8.8 | 17.7 |
Waste disposal | 1159.2 | 1159.2 | 1451.2 | 16,086.6 | 16,086.6 | 8.8 |
Biological diversity | 2884.6 | 964.5 | 628.2 | 2212.2 | 2203.3 | 300.8 |
Food | 88.5 | 265.5 | 884.9 | 265.5 | 88.5 | 8.8 |
Raw materials | 2300.6 | 44.2 | 88.5 | 61.9 | 8.8 | 0.0 |
Recreation and Culture | 1132.6 | 35.4 | 8.8 | 4910.9 | 3840.2 | 8.8 |
Selected Years | Recognition Basis |
---|---|
1958 | The Great Leap Movement: trees were cut to temper steel, which destroyed the ecology |
1980 | In the first year of the establishment of the household contract system: village land was parceled out to individual households |
1995 | Introduction of flue-cured tobacco: this crop has become the most important economic crop at present |
2015 | The number of migrant workers has surged |
Land Type | 2015 | 1995 | 1980 | 1958 |
---|---|---|---|---|
Paddy fields | 8.35 | 22.27 | 23.36 | 24.71 |
Irrigated land | 0.12 | 0.03 | 0.00 | 0.00 |
Dryland | 10.60 | 0.48 | 0.24 | 0.29 |
Garden | 0.05 | 0.07 | 0.07 | 0.00 |
woodlands | 3.96 | 4.25 | 4.39 | 5.22 |
Grassland | 0.18 | 0.18 | 0.18 | 0.09 |
Commercial service land | 0.02 | 0.01 | 0.01 | 0.00 |
Residential land | 5.71 | 3.75 | 2.99 | 1.07 |
Public management and service land | 1.34 | 0.02 | 0.01 | 0.02 |
Special land use | 0.11 | 0.13 | 0.10 | 0.10 |
Transportation land | 1.83 | 1.39 | 1.27 | 1.06 |
Water and water conservancy facilities | 1.40 | 1.09 | 1.05 | 1.11 |
Type | 2015 | 1995 | 1980 | 1958 |
---|---|---|---|---|
Gas regulation | 131.28 | 209.04 | 271.63 | 237.26 |
Climate regulation | 623.46 | 1478.60 | 1547.06 | 1637.53 |
Water source conservation | 686.35 | 1441.69 | 1501.80 | 1590.56 |
Soil formation and erosion control | 174.42 | 211.07 | 218.48 | 238.50 |
Waste disposal | 772.32 | 1628.16 | 1697.04 | 1791.81 |
Biological diversity | 173.47 | 275.65 | 286.29 | 308.93 |
Food | 52.52 | 29.77 | 29.92 | 31.56 |
Raw materials | 45.87 | 48.23 | 49.85 | 58.59 |
Recreation and Culture | 221.16 | 502.80 | 524.93 | 556.51 |
Total ecological service value | 2880.85 | 5825.01 | 6073.00 | 6451.25 |
Indexes | 2015 | 1995 | 1980 | 1958 |
---|---|---|---|---|
Shannon’s index | 0.9394 | 0.5985 | 0.5367 | 0.3567 |
Modified Simpson index | 0.6085 | 0.3533 | 0.2959 | 0.1619 |
Patch Richness (PR) | 11 | 7 | 7 | 6 |
Patch density | 3,720,191 | 2,953,374 | 2,754,369 | 1,725,469 |
Contagion index | 47.0180 | 35.1391 | 35.7721 | 22.4186 |
Connectivity index | 6.3322 | 6.4465 | 6.7736 | 11.9792 |
Landscape shapes index | 12.2115 | 9.8771 | 9.3596 | 7.6533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Zhang, X.; He, F.; Wang, X. Participatory Historical Village Landscape Analysis Using a Virtual Globe-Based 3D PGIS: Guizhou, China. Sustainability 2022, 14, 14022. https://doi.org/10.3390/su142114022
Yu L, Zhang X, He F, Wang X. Participatory Historical Village Landscape Analysis Using a Virtual Globe-Based 3D PGIS: Guizhou, China. Sustainability. 2022; 14(21):14022. https://doi.org/10.3390/su142114022
Chicago/Turabian StyleYu, Linjun, Xiaotong Zhang, Feng He, and Xiaojun Wang. 2022. "Participatory Historical Village Landscape Analysis Using a Virtual Globe-Based 3D PGIS: Guizhou, China" Sustainability 14, no. 21: 14022. https://doi.org/10.3390/su142114022
APA StyleYu, L., Zhang, X., He, F., & Wang, X. (2022). Participatory Historical Village Landscape Analysis Using a Virtual Globe-Based 3D PGIS: Guizhou, China. Sustainability, 14(21), 14022. https://doi.org/10.3390/su142114022