Novel Biosynthesis of Graphene-Supported Zero-Valent Iron Nanohybrid for Efficient Decolorization of Acid and Basic Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biosynthesis of ZVI Graphene Nanocomposite
2.3. Characterization of ZVI Graphene Nanocomposite
2.4. Experimental Procedures
3. Results and Discussion
3.1. Characterization of ZVI Graphene Nanocomposite
3.2. Application of ZVI Graphene Nanocomposite in Cationic and Anionic Dye Removal
3.3. Effect of Contact Time
3.4. Effect of Adsorbent Dose
3.5. Effect of pH
3.6. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samy, M.; Ibrahim, M.G.; Gar Alalm, M.; Fujii, M. Application of CNTs/LaVO 4 on Photocatalytic Degradation of Methylene Blue in Different Contact Modes. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020. [Google Scholar]
- Mensah, K.; Samy, M.; Ezz, H.; Elkady, M.; Shokry, H. Utilization of Iron Waste from Steel Industries in Persulfate Activation for Effective Degradation of Dye Solutions. J. Environ. Manag. 2022, 314, 115108. [Google Scholar] [CrossRef]
- Mensah, K.; Mahmoud, H.; Fujii, M.; Shokry, H. Novel Nano-Ferromagnetic Activated Graphene Adsorbent Extracted from Waste for Dye Decolonization. J. Water Process Eng. 2022, 45, 102512. [Google Scholar] [CrossRef]
- Wang, G.; Liao, Y.; Stejskal, J. Fabrication of Polyaniline/Poly(Vinyl Alcohol)/Montmorillonite Hybrid Aerogels toward Efficient Adsorption of Organic Dye Pollutants. J. Hazard. Mater. 2022, 435, 129004. [Google Scholar] [CrossRef]
- Samy, M.; Ibrahim, M.G.; Gar Alalm, M.; Fujii, M.; Diab, K.E.; ElKady, M. Innovative Photocatalytic Reactor for the Degradation of Chlorpyrifos Using a Coated Composite of ZrV2O7 and Graphene Nano-Platelets. Chem. Eng. J. 2020, 395, 124974. [Google Scholar] [CrossRef]
- Samy, M.; Ibrahim, M.G.; Fujii, M.; Diab, K.E.; Elkady, M.; Alalm, G. CNTs/MOF-808 Painted Plates for Extended Treatment of Pharmaceutical and Agrochemical Wastewaters in a Novel Photocatalytic Reactor. Chem. Eng. J. 2021, 406, 7. [Google Scholar] [CrossRef]
- Samy, M.; Alalm, M.G.; Mossad, M. Utilization of Iron Sludge Resulted from Electro-Coagulation in Heterogeneous Photo-Fenton Process. Water Pract. Technol. 2020, 15, 1228–1237. [Google Scholar] [CrossRef]
- Venkatesan, S.; Chen, Y.; Teng, H.; Lee, Y. Enhanced Adsorption on TiO2 Photoelectrodes of Dye-Sensitized Solar Cells by Electrochemical Methods Dye. J. Alloys Compd. 2022, 903, 163959. [Google Scholar] [CrossRef]
- Mahanna, H.; Azab, M. Adsorption of Reactive Red 195 Dye from Industrial Wastewater by Dried Soybean Leaves Modified with Acetic Acid. Desalin. Water Treat. 2020, 178, 312–321. [Google Scholar] [CrossRef]
- Samy, M.; Gar Alalm, M.; Fujii, M.; Ibrahim, M.G. Doping of Ni in MIL-125(Ti) for Enhanced Photocatalytic Degradation of Carbofuran: Reusability of Coated Plates and Effect of Different Water Matrices. J. Water Process Eng. 2021, 44, 102449. [Google Scholar] [CrossRef]
- Elsayed, I.; Madduri, S.; El-giar, E.M.; Barbary, E. Effective Removal of Anionic Dyes from Aqueous Solutions by Novel Polyethylenimine-Ozone Oxidized Hydrochar (PEI-OzHC) Adsorbent. Arab. J. Chem. 2022, 15, 103757. [Google Scholar] [CrossRef]
- Jankowska, K.; Su, Z.; Zdarta, J.; Jesionowski, T.; Pinelo, M. Synergistic Action of Laccase Treatment and Membrane Filtration during Removal of Azo Dyes in an Enzymatic Membrane Reactor Upgraded with Electrospun Fibers. J. Hazard. Mater. 2022, 435, 129071. [Google Scholar] [CrossRef]
- Muthukumar, P.; Sowmiya, E.; Arunkumar, G.; Pannipara, M.; Al-sehemi, A.G.; Philip, S. Highly Enhanced Dye Adsorption of MoO3 Nanoplates Fabricated by Hydrothermal-Calcination Approach in Presence of Chitosan and Thiourea. Chemosphere 2022, 291, 132926. [Google Scholar] [CrossRef]
- Chen, C.; Tseng, W.J. Preparation of TiN-WN Composite Particles for Selective Adsorption of Methylene Blue Dyes in Water. Adv. Powder Technol. 2022, 33, 103423. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, L.; Wang, F.; Li, X.; Li, Z. Influence of Pore Volume and Surface Area on Benzene Adsorption Capacity of Activated Carbons in Indoor Environments. Build. Environ. 2022, 216, 109011. [Google Scholar] [CrossRef]
- Chung, J.; Sharma, N.; Kim, M.; Yun, K. Activated Carbon Derived from Sucrose and Melamine as Low-Cost Adsorbent with Fast Adsorption Rate for Removal of Methylene Blue in Wastewaters. J. Water Process Eng. 2022, 47, 102763. [Google Scholar] [CrossRef]
- Ren, J.; Zheng, L.; Su, Y.; Meng, P.; Zhou, Q.; Zeng, H. Competitive Adsorption of Cd(II), Pb(II) and Cu(II) Ions from Acid Mine Drainage with Zero-Valent Iron/Phosphoric Titanium Dioxide: XPS Qualitative Analyses and DFT Quantitative Calculations. Chem. Eng. J. 2022, 445, 136778. [Google Scholar] [CrossRef]
- Puthukkara, A.R.P.; Jose, S.T.; Lal, D.S. Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. J. Environ. Chem. Eng. 2021, 9, 104569. [Google Scholar] [CrossRef]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; Mckee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Iravani, S. Bacteria in Nanoparticle Synthesis: Current Status. Int. Sch. Res. Not. 2014, 2014, 59316. [Google Scholar]
- He, Y.; Fang, T.; Wang, J.; Liu, X.; Yan, Z.; Lin, H.; Li, F.; Guo, G. Insight into the Stabilization Mechanism and Long-Term Effect on As, Cd, and Pb in Soil Using Zeolite-Supported Nanoscale Zero-Valent Iron. J. Clean. Prod. 2022, 355, 131634. [Google Scholar] [CrossRef]
- Ma, Q.; Teng, W.; Sun, Y.; Chen, Y.; Xue, Y.; Chen, X.; Zhang, C.; Zhang, H.; Fan, J.; Qiu, Y.; et al. Multi-Component Removal of Pb (II), Cd (II), and As (V) over Core-Shell Structured Nanoscale Zero-Valent Iron @ Mesoporous Hydrated Silica. Sci. Total Environ. 2022, 827, 154329. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Dutta, S. Integrating Starch Encapsulated Nanoscale Zero-Valent Iron for Better Chromium Removal Performance. J. Water Process Eng. 2020, 37, 101370. [Google Scholar] [CrossRef]
- Kakavandi, B.; Takdastan, A.; Pourfadakari, S. Heterogeneous Catalytic Degradation of Organic Compounds Using Nanoscale Zero-Valent Iron Supported on Kaolinite: Mechanism, Kinetic and Feasibility Studies. J. Taiwan Inst. Chem. Eng. 2019, 96, 329–340. [Google Scholar] [CrossRef]
- Liu, F.; Yang, J.; Zuo, J.; Ma, D.; Gan, L.; Xie, B.; Wang, P.; Yang, B. Graphene-Supported Nanoscale Zero-Valent Iron: Removal of Phosphorus from Aqueous Solution and Mechanistic Study ScienceDirect Graphene-Supported Nanoscale Zero-Valent Iron: Removal of Phosphorus from Aqueous Solution and Mechanistic Study. J. Environ. Sci. 2014, 26, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Pet, P.; Waste, B. A Novel One Step Synthesis for Carbon Based Nanomaterials from a Novel One-Step Synthesis for Carbon-Based Nanomaterials from Polyethylene Terephthalate (PET) Bottles Waste. J. Air Waste Manag. Assoc. 2016, 67, 358–370. [Google Scholar] [CrossRef] [Green Version]
- El, N.A.; Ali, S.M.; Farag, H.A.; Konsowa, A.H. Green Synthesis of Graphene from Recycled PET Bottle Wastes for Use in the Adsorption of Dyes in Aqueous Solution. Ecotoxicol. Environ. Saf. 2017, 145, 57–68. [Google Scholar] [CrossRef]
- Zaki, S.A.; Eltarahony, M.M.; Abd-el-haleem, D.A. Disinfection of Water and Wastewater by Biosynthesized Magnetite and Zerovalent Iron Nanoparticles via NAP-NAR Enzymes of Proteus Mirabilis 10B. Environ. Sci. Pollut. Res. 2019, 26, 23661–23678. [Google Scholar] [CrossRef]
- Eltarahony, M.; Zaki, S.; Elkady, M.; Abd-el-haleem, D. Biosynthesis, Characterization of Some Combined Nanoparticles, and Its Biocide Potency against a Broad Spectrum of Pathogens. J. Nanomater. 2018, 2018, 5263814. [Google Scholar] [CrossRef] [Green Version]
- Golla, N.; Pradesh, A. Antibacterial and antiviral properties. Int. J. Pharma Sci. Res. 2019, 10, 1223–1228. [Google Scholar] [CrossRef]
- Adel, A.; Alalm, M.G.; El-Etriby, H.K.; Boffito, D.C. Optimization and Mechanism Insights into the Sulfamethazine Degradation by Bimetallic ZVI/Cu Nanoparticles Coupled with H2O2. J. Environ. Chem. Eng. 2020, 8, 104341. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Wan, J.; Wang, Y.; Guan, Z.; Yan, Z. Investigation of Factors Affecting the Physicochemical Properties and Degradation Performance of NZVI@mesoSiO2 Nanocomposites. J. Mater. Sci. 2019, 54, 7483–7502. [Google Scholar] [CrossRef]
- Ratanaphain, C.; Viboonratanasri, D.; Prompinit, P.; Krajangpan, S.; Khan, E.; Punyapalakul, P. Reactivity Characterization of SiO2-Coated Nano Zero-Valent Iron for Iodoacetamide Degradation: The Effects of SiO2 Thickness, and the Roles of Dehalogenation, Hydrolysis and Adsorption. Chemosphere 2022, 286, 131816. [Google Scholar] [CrossRef]
- Samy, M.; Ibrahim, M.G.; Alalm, M.G.; Fujii, M. Modeling and Optimization of Photocatalytic Degradation of Methylene Blue Using Lanthanum Vanadate. Mater. Sci. Forum 2020, 1008, 97–103. [Google Scholar]
- Gajera, R.; Patel, R.V.; Yadav, A.; Labhasetwar, P.K. Adsorption of Cationic and Anionic Dyes on Photocatalytic Flyash/TiO2 Modified Chitosan Biopolymer Composite. J. Water Process Eng. 2022, 49, 102993. [Google Scholar] [CrossRef]
- Xing, R.; He, J.; Hao, P.; Zhou, W. Graphene oxide-supported nanoscale zero-valent iron composites for the removal of atrazine from aqueous solution. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 589, 124466. [Google Scholar] [CrossRef]
- Jing, Q.; Qiao, S.; Xiao, W.; Tong, L.; Ren, Z. Efficient Removal of 2,4-DCP by Nano Zero-Valent Iron-Reduced Graphene Oxide: Statistical Modeling and Process Optimization Using RSM-BBD Approach. Adsorpt. Sci. Technol. 2021, 2021, 7130581. [Google Scholar] [CrossRef]
- Sun, X.; Kurokawa, T.; Suzuki, M.; Takagi, M.; Kawase, Y. Removal of Cationic Dye Methylene Blue by Zero-Valent Iron: Effects of PH and Dissolved Oxygen on Removal Mechanisms. J. Environ. Sci. Health Part A 2015, 50, 1057–1071. [Google Scholar] [CrossRef]
- Elkady, M.F.; Hassan, H.S. Invention of Hollow Zirconium Tungesto-Vanadate at Nanotube Morphological Structure for Radionuclides and Heavy Metal Pollutants Decontamination from Aqueous Solutions. Nanoscale Res. Lett. 2015, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Muthu, S.; Park, J.; Lee, W.; Chon, C.; Sung, J.; Lee, G. Azo Dye Decolorization by ZVI under Circum-Neutral PH Conditions and the Characterization of ZVI Corrosion Products. J. Ind. Eng. Chem. 2016, 47, 86–93. [Google Scholar] [CrossRef]
- Hamdy, A.; Mostafa, M.K.; Nasr, M. Zero-Valent Iron Nanoparticles for Methylene Blue Removal from Aqueous Solutions and Textile Wastewater Treatment, with Cost Estimation from Aqueous Solutions and Textile Wastewater Treatment, with Cost Estimation. Water Sci. Technol. 2018, 78, 367–378. [Google Scholar] [CrossRef]
- Samy, M.; Mossad, M.; El-Etriby, H.K. Synthesized Nano Titanium for Methylene Blue Removal under Various Operational Conditions. Desalin. Water Treat. 2019, 165, 374–381. [Google Scholar] [CrossRef]
- Yang, J.; Shojaei, S.; Shojaei, S. Removal of Drug and Dye from Aqueous Solutions by Graphene Oxide: Adsorption Studies and Chemometrics Methods. NPJ Clean Water 2022, 5, 5. [Google Scholar] [CrossRef]
- Thi, T.; Nguyet, P.; Trinh, X.; Minh, D.; Hoang, T. Preparing Three-Dimensional Graphene Aerogels by Chemical Reducing Method: Investigation of Synthesis Condition and Optimization of Adsorption Capacity of Organic Dye. Surf. Interfaces 2021, 23, 101023. [Google Scholar]
- Shahinpour, A.; Tanhaei, B.; Ayati, A.; Beiki, H.; Sillanpää, M. Binary Dyes Adsorption onto Novel Designed Magnetic Clay-Biopolymer Hydrogel Involves Characterization and Adsorption Performance: Kinetic, Equilibrium, Thermodynamic, and Adsorption Mechanism. J. Mol. Liq. 2022, 366, 120303. [Google Scholar] [CrossRef]
- Galdames, A.; Ruiz-rubio, L.; Orueta, M.; Miguel, S. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Int. J. Environ. Res. Public Health 2020, 17, 5817. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. Nanomaterials 2020, 10, 917. [Google Scholar] [CrossRef]
- Figueiredo, T.; Mayara, P.; Roberto, V.; Nunes, B.; Siqueira, C.; Picone, F.; Prediger, P. Instantaneous Adsorption and Synergic Effect in Simultaneous Removal of Complex Dyes through Nanocellulose/Graphene Oxide Nanocomposites: Batch, Fixed-Bed Experiments and Mechanism. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100584. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; El-tawil, A.M.; El-monaem, E.M.A.; El-subruiti, G.M. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for Efficient Removal of Both Anionic and Cationic Dyes. ACS Omega 2021, 6, 6348–6360. [Google Scholar] [CrossRef]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samy, M.; Elkady, M.; Kamal, A.; Elessawy, N.; Zaki, S.; Eltarahony, M. Novel Biosynthesis of Graphene-Supported Zero-Valent Iron Nanohybrid for Efficient Decolorization of Acid and Basic Dyes. Sustainability 2022, 14, 14188. https://doi.org/10.3390/su142114188
Samy M, Elkady M, Kamal A, Elessawy N, Zaki S, Eltarahony M. Novel Biosynthesis of Graphene-Supported Zero-Valent Iron Nanohybrid for Efficient Decolorization of Acid and Basic Dyes. Sustainability. 2022; 14(21):14188. https://doi.org/10.3390/su142114188
Chicago/Turabian StyleSamy, Mahmoud, Marwa Elkady, Ayman Kamal, Noha Elessawy, Sahar Zaki, and Marwa Eltarahony. 2022. "Novel Biosynthesis of Graphene-Supported Zero-Valent Iron Nanohybrid for Efficient Decolorization of Acid and Basic Dyes" Sustainability 14, no. 21: 14188. https://doi.org/10.3390/su142114188
APA StyleSamy, M., Elkady, M., Kamal, A., Elessawy, N., Zaki, S., & Eltarahony, M. (2022). Novel Biosynthesis of Graphene-Supported Zero-Valent Iron Nanohybrid for Efficient Decolorization of Acid and Basic Dyes. Sustainability, 14(21), 14188. https://doi.org/10.3390/su142114188