Research on Urban Road Network Extraction Based on Web Map API Hierarchical Rasterization and Improved Thinning Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition and Hierarchical Rasterization of Trajectory Data
2.2. Application of Fast Expansion and Improved Thinning Algorithm in Road Network Extraction
- (1)
- Find eight neighborhoods centered on the target point, and the center point is P1. The eight points in the neighborhood are recorded as P2, P3,..., P9, and P2 on P1. Mark pixels that meet the following conditions:
- ①
- 2 ≤ N (P1) ≤ 6
- ②
- S (P1) = 1 or B (P1) ∈{ 65, 5, 20, 80, 13, 22, 52, 133, 141, 54}
- ③
- P2 × P4 × P8 = 0 or S (P2) ! = 1
- ④
- P2 × P4 × P6 = 0 or S (P4) ! = 1
- (2)
- Remove all points that meet the mark, and assign the gray value of the target point to 0 and the gray value of the background point to 255.
2.3. Extracting Road Segments from Refined Road Network to Construct Vector Road Network
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrade, A.C.; Alixandrini, M.J., Jr.; Carvalho, F.P.S.; Fernandes, V.O. Performance of The Support Vector Machine and Artificial Neural Network Classifiers For Roads Identification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci 2021, XLIII-B3-2021, 9–14. [Google Scholar] [CrossRef]
- Ziems, M.; Rottensteiner, F.; Heipke, C. Verification of road databases using multiple road models. ISPRS J. Photogramm. Remote Sens. 2017, 130, 44–62. [Google Scholar] [CrossRef]
- Yang, X.; Wang, F.; Yang, X.; Zhou, Q. Fractal dimension in concrete and implementation for meso-simulation. Constr. Build. Mater. 2017, 143, 464–472. [Google Scholar] [CrossRef]
- Alattar, M.A.; Cottrill, C.; Beecroft, M. Public participation geographic information system (PPGIS) as a method for active travel data acquisition. J. Transp. Geogr. 2021, 96, 103180. [Google Scholar] [CrossRef]
- Sanhory, A.; El-Tahan, M.; Moghazy, H.M.; Reda, W. Natural and manmade impact on Rosetta eastern shoreline using satellite Image processing technique. Alex. Eng. J. 2021, 61, 6247–6260. [Google Scholar] [CrossRef]
- Soni, S.; Kaur, S. To Propose an improvement in Zhang-Suen algorithm for image thinning in image processing. Int. J. Sci. Technol. Eng. 2016, 3, 7481. [Google Scholar]
- Cai, L.; Jiang, F.; Zhou, W.; Li, K. Design and Application of an Attractiveness Index for Urban Hotspots Based on GPS Trajectory Data. IEEE Access 2018, 6, 55976–55985. [Google Scholar] [CrossRef]
- Cantisani, G.; Del Serrone, G. Procedure for the identification of existing roads alignment from georeferenced points database. Infrastructures 2020, 6, 2. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, R.; Beer, M. A new method for stochastic analysis of structures under limited observations. Mech. Syst. Signal Process. 2023, 185, 109730. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, R.; Beer, M. A new perspective on the simulation of cross-correlated random fields. Struct. Saf. 2022, 96, 102201. [Google Scholar] [CrossRef]
- Anderson, J.; Soden, R.; Anderson, K.M.; Kogan, M.; Palen, L. EPIC-OSM: A Software Framework for OpenStreetMap Data Analytics. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences, Koloa, HI, USA, 5–8 January 2016; pp. 5468–5477. [Google Scholar]
- Bridgelall, R. Using artificial intelligence to derive a public transit risk index. J. Public Transp. 2022, 24, 100009. [Google Scholar] [CrossRef]
- Justiniano, E.F.; Junior, E.R.d.S.; de Melo, B.M.; Siqueira, J.V.N.; Morato, R.G.; Fantin, M.; Pedrassoli, J.C.; Martines, M.R.; Kawakubo, F.S. Proposal for an index of roads and structures for the mapping of non-vegetated urban surfaces using OSM and Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102791. [Google Scholar]
- Nduji, N.N.; Madu, C.N.; Okafor, C.C. A Low-Cost Web Application System for Monitoring Geometrical Impacts of Surface Subsidence. Sustainability 2022, 14, 14240. [Google Scholar] [CrossRef]
- Zhang, B.; Zhuo, K.; Lan, Y.; Chen, D. Intelligent Movement Method for Trajectory Map Matching. In Proceedings of the 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Virtual, 17–19 December 2021; pp. 1705–1709. [Google Scholar]
- Schroedl, S.; Wagstaff, K.; Rogers, S.; Langley, P.; Wilson, C. Mining GPS traces for map refinement. Data Min. Knowl. Discov. 2004, 9, 59–87. [Google Scholar] [CrossRef]
- Worrall, S.; Nebot, E. Automated Process for generating Digitised Maps Through GPS Data Compression. In Proceedings of the Australasian Conference on Robotics and Automation, Brisbane, Australia, 10–12 December 2007. [Google Scholar]
- Li, J.; Qin, Q.; Xie, C.; Zhao, Y. ZIntegrated use of spatial and semantic relationships for extracting road networks from floating car data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 238–247. [Google Scholar]
- Bruntrup, R.; Edelkamp, S.; Jabbar, S.; Scholz, B. Incremental Map Generation with GPS traces. In Proceedings of Intelligent Transportation Systems, Vienna, Austria, 16 September 2005; pp. 574–579. [Google Scholar]
- Chen, D.; Guibas, L.J.; Hershberger, J.; Sun, J. Road network reconstruction for organizing paths. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 17–19 January 2010; pp. 1309–1320. [Google Scholar]
- Yang, W.; AI, T.H. The extraction of road boundary from crowdsourcing trajectory using constrained Delaunay triangulation. Acta Geod. Cartogr. Sin. 2017, 46, 237–245. [Google Scholar]
- Chen, C.; Cheng, Y.H. Roads Digital Map Generation with Multi-track GPS Data. In Proceedings of the International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, Shanghai, China, 21–22 December 2008; pp. 508–511. [Google Scholar]
- Shen, L.; Lu, J.; Long, M.; Chen, T. Identification of Accident Blackspots on Rural Roads Using Grid Clustering and Principal Component Clustering. Math. Probl. Eng. 2019, 2019, 2151284. [Google Scholar] [CrossRef]
- Xie, J.; Wang, M.; Lu, X.; Liu, X.; Grant, P.W. DP-k-modes: A self-tuning k-modes clustering algorithm. Pattern Recognit. Lett. 2022, 158, 117–124. [Google Scholar] [CrossRef]
- Dey, T.K.; Wang, J.; Wang, Y. Road network reconstruction from satellite images with machine learning supported by topological methods. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 5–8 November 2019; pp. 520–523. [Google Scholar]
- Shang, F.; Xu, T.; Liu, Y.; Liu, H.; Shen, L.; Gong, M. Differentially Private ADMM Algorithms for Machine Learning. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4733–4745. [Google Scholar] [CrossRef]
- Reimel, K.J.; Kumjian, M. Evaluation of K-DP Estimation Algorithm Performance in Rain Using a Known-Truth Framework. J. Atmos. Ocean. Technol. 2021, 38, 587–605. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Q.; Li, Y. Top-to-down segment process based urban road extraction from high-resolution remote sensing image. Egypt. J. Remote Sens. Space Sci. 2022, 25, 851–861. [Google Scholar] [CrossRef]
- Jayasinghe, A.; Sano, K.; Abenayake, C.C.; Mahanama, P. A novel approach to model traffic on road segments of large-scale urban road networks. MethodsX 2019, 6, 1147–1163. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.; Hunter, G. A Simple Positional Accuracy Measure for Linear Feature. Int. J. Geogr. Inf. Syst. 1997, 11, 299–306. [Google Scholar] [CrossRef]
- Wang, M.; Yang, X.; Wang, W. Establishing a 3D aggregates database from X-ray CT scans of bulk concrete. Constr. Build. Mater. 2022, 315, 125740. [Google Scholar] [CrossRef]
Vehicle_id | Order_id | Utc | Longi | Lati |
---|---|---|---|---|
7n6dhjnad_Et0hsuh k9ee7fjf2DE-ovu | gjhdafj6h@tz2rAy hnga7lkgh2ytaruA | 20220512T152036+08 | 126.648304 | 45.753281 |
9mde7Jj9aJEv6gsrh fk5e7d982EwanBni | dlh48kcie6Dticiyyg 17i7cgb69vubcpwt | 20220513T081325+08 | 126.637527 | 45.756314 |
icg876n8h7vq8hxq gbj776hcb9Dscmyo | 8hk99lh739qc]lkpz 9n9e7jk6cOAqleDq | 20220513T105703+08 | 126.590429 | 45.730337 |
9mde7f)9a_JEv6gsrh fk5e7d982EyvanBm | dlh48kcie6Diiciyyg 17i7cgb69vubqywt | 20220515T142516+08 | 126.527859 | 45.814551 |
6nehde97f5Br. oD fbhcffef5btE.jAp | efa5c6bf93wB8gv wihl3hehab-rr. hBv | 20220516T174506+08 | 126.678457 | 45.794172 |
ailbh7ly93DF0iux aohe4gkl42zxllxv | gbdf38nid3DiiclDtb 9ih7ari6h.AE9duz | 20220517T201538+08 | 126.692157 | 45.772399 |
Start_Lng | Start_Lat | End_Lng | End_Lat | Road_Types |
---|---|---|---|---|
126.641046 | 45.723925 | 126.637141 | 45.725064 | main road |
126.637141 | 45.725064 | 126.645981 | 45.737825 | main road |
126.645981 | 45.737825 | 126.630618 | 45.746900 | secondary road |
126.630618 | 45.746900 | 126.643020 | 45.757201 | main road |
126.643020 | 45.757201 | 126.634909 | 45.761033 | main road |
ID | Coordinates in (a) (°) | Coordinates in (b) (°) | Gap/m | ||
---|---|---|---|---|---|
A | 126.573473 | 45.747516 | 126.573195 | 45.747477 | 31 |
B | 126.558710 | 45.749762 | 126.558571 | 45.749898 | 22 |
C | 126.584374 | 45.743233 | 126.584262 | 45.743435 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W.; Zhang, W. Research on Urban Road Network Extraction Based on Web Map API Hierarchical Rasterization and Improved Thinning Algorithm. Sustainability 2022, 14, 14363. https://doi.org/10.3390/su142114363
Wen W, Zhang W. Research on Urban Road Network Extraction Based on Web Map API Hierarchical Rasterization and Improved Thinning Algorithm. Sustainability. 2022; 14(21):14363. https://doi.org/10.3390/su142114363
Chicago/Turabian StyleWen, Wen, and Wenhui Zhang. 2022. "Research on Urban Road Network Extraction Based on Web Map API Hierarchical Rasterization and Improved Thinning Algorithm" Sustainability 14, no. 21: 14363. https://doi.org/10.3390/su142114363
APA StyleWen, W., & Zhang, W. (2022). Research on Urban Road Network Extraction Based on Web Map API Hierarchical Rasterization and Improved Thinning Algorithm. Sustainability, 14(21), 14363. https://doi.org/10.3390/su142114363