Artificial Neural Networks for Sustainable Development of the Construction Industry
Abstract
:1. Introduction
1.1. Sustainability
1.2. Artificial Neural Networks (ANN)
2. Research Methodology
3. ANNs Application in Environmental Aspect of Sustainable Development of Construction Industry
3.1. Sustainable Construction Materials
3.2. Energy Management
3.3. Material Testing and Control
3.4. Infrastructure Analysis and Design
3.5. Sustainable Construction Management
3.6. Infrastructure Functional Performance
3.7. Sustainable Maintenance Management
4. ANN Application in Economic Aspect of Sustainable Development of Construction Industry
4.1. Financial Management
4.2. Construction Productivity
5. ANN Application in Social Aspect of Sustainable Development of Construction Industry
5.1. Society and Human Values in Construction Industry
5.2. Health and Safety Issues in Construction Projects
6. Review Outcome
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.; Qureshi, M.N.; Mallick, J.; Ben Kahla, N. Selection of Sustainable Supplementary Concrete Materials Using OSM-AHP-TOPSIS Approach. Adv. Mater. Sci. Eng. 2019, 2019, 2850480. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, P.J.M.; Miller, S.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, V.; Sharma, S.; Bhatnagar, A.; Kumar, L. Role of Machine Learning in Sustainable Engineering: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1099, 012036. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Manzoor, B.; Othman, I.; Durdyev, S.; Ismail, S.; Wahab, M.H. Influence of Artificial Intelligence in Civil Engineering toward Sustainable Development—A Systematic Literature Review. Appl. Syst. Innov. 2021, 4, 52. [Google Scholar] [CrossRef]
- Yucel, M.; Nigdeli, S.M.; Bekdas, G. Artificial neural networks (ANNs) and solution of civil engineering problems: ANNs and prediction applications. In Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering; IGI Global: Hershey, PA, USA, 2020; pp. 13–38. [Google Scholar]
- Kaswan, K.S.; Dhatterwal, J.S. The Use of Machine Learning for Sustainable and Resilient Buildings. In Digital Cities Roadmap; Wiley: Hoboken, NJ, USA, 2021; pp. 1–62. [Google Scholar]
- D’Amico, B.; Myers, R.; Sykes, J.; Voss, E.; Cousins-Jenvey, B.; Fawcett, W.; Richardson, S.; Kermani, A.; Pomponi, F. Machine Learning for Sustainable Structures: A Call for Data. Structures 2019, 19, 1–4. [Google Scholar] [CrossRef]
- Maya, R.; Hassan, B.; Hassan, A. Develop an artificial neural network (ANN) model to predict construction projects performance in Syria. J. King Saud Univ.-Eng. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Berrais, A. Artificial Neural Networks in Structural Engineering: Concept and Applications. J. King Abdulaziz Univ.-Eng. Sci. Eng. Sci. 1999, 12, 53–67. [Google Scholar] [CrossRef]
- Cubukcuoglu, B. Chapter 15—The importance of environmental sustainability in construction. In Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering; Roshni, T., Samui, P., Bui, D.T., Kim, D., Khatibi, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 249–254. [Google Scholar] [CrossRef]
- Yılmaz, M.; Bakış, A. Sustainability in Construction Sector. Procedia-Soc. Behav. Sci. 2015, 195, 2253–2262. [Google Scholar] [CrossRef]
- Popovic, T.; Kraslawski, A.; Avramenko, Y. Applicability of Sustainability Indicators to Wastewater Treatment Processes. In Proceedings of the 23rd European Symposium on Computer Aided Process Engineering (ESCAPE 23), Lappeenranta, Finland, 9–12 June 2013; pp. 931–936. [Google Scholar] [CrossRef]
- Hong, J.; Kang, H.; An, J.; Choi, J.; Hong, T.; Park, H.S.; Lee, D.-E. Towards environmental sustainability in the local community: Future insights for managing the hazardous pollutants at construction sites. J. Hazard. Mater. 2020, 403, 123804. [Google Scholar] [CrossRef]
- Oyedele, O.A. Impact of Sustainability on Design and Construction of Civil Engineering Infrastructure. Trends Civil Eng. Its Arch. 2020, 3, 500–504. [Google Scholar] [CrossRef]
- Buscema, M. A brief overview and introduction to artificial neural networks. Subst. Use Misuse 2002, 37, 1093–1148. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Gururaj, S. Conceptual Cost Modelling for Sustainable Construction Project Planning—A Levenberg–Marquardt Neural Network Approach. Appl. Math. Inf. Sci. 2019, 13, 201–208. [Google Scholar] [CrossRef]
- Adel, H.; Ghazaan, M.I.; Korayem, A.H. Machine learning applications for developing sustainable construction materials (Chapter 9). In Artificial Intelligence and Data Science in Environmental Sensing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 179–210. [Google Scholar]
- Naderpour, H.; Mirrashid, M. An innovative approach for compressive strength estimation of mortars having calcium inosilicate minerals. J. Build. Eng. 2018, 19, 205–215. [Google Scholar] [CrossRef]
- Kuppusamy, Y.; Jayaseelan, R.; Pandulu, G.; Kumar, V.S.; Murali, G.; Dixit, S.; Vatin, N.I. Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites. Materials 2022, 15, 3443. [Google Scholar] [CrossRef]
- Mater, Y.; Kamel, M.; Karam, A.; Bakhoum, E. ANN-Python prediction model for the compressive strength of green concrete. Constr. Innov. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Kurpinska, M.; Kułak, L. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks. Materials 2019, 12, 2002. [Google Scholar] [CrossRef] [Green Version]
- Abbas, H.; Al-Salloum, Y.A.; Elsanadedy, H.M.; Almusallam, T.H. ANN models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf. J. 2019, 106, 13–28. [Google Scholar] [CrossRef]
- Naser, M. Properties and material models for common construction materials at elevated temperatures. Constr. Build. Mater. 2019, 215, 192–206. [Google Scholar] [CrossRef]
- Elemam, W.E.; Abdelraheem, A.H.; Mahdy, M.G.; Tahwia, A.M. Optimizing fresh properties and compressive strength of self-consolidating concrete. Constr. Build. Mater. 2020, 249, 118781. [Google Scholar] [CrossRef]
- Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E. Design of UHPC using artificial neural networks. Brittle Matrix Compos. 2012, 10, 61–69. [Google Scholar] [CrossRef]
- Rao, H.S.; Ghorpade, V.G.; Matcha, B. Development of Artificial Neural Network Model for Permeability of High Performance Concrete. Int. J. Civ. Struct. Eng. 2016, 3, 45–48. [Google Scholar]
- Hendi, A.; Behravan, A.; Mostofinejad, D.; Moshtaghi, S.M.; Rezayi, K. Implementing ANN to minimize sewage systems concrete corrosion with glass beads substitution. Constr. Build. Mater. 2017, 138, 441–454. [Google Scholar] [CrossRef]
- Chen, H.; Qian, C.; Liang, C.; Kang, W. An approach for predicting the compressive strength of cement-based materials exposed to Sulphate attack. PLoS ONE 2018, 13, e0191370. [Google Scholar]
- Ahmad, A.; Farooq, F.; Ostrowski, K.; Śliwa-Wieczorek, K.; Czarnecki, S. Application of Novel Machine Learning Techniques for Predicting the Surface Chloride Concentration in Concrete Containing Waste Material. Materials 2021, 14, 2297. [Google Scholar] [CrossRef]
- Jahanbakhsh, H.; Karimi, M.M.; Naseri, H.; Nejad, F.M. Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: Performance assessment, cost analysis, and environmental impact. J. Clean. Prod. 2019, 244, 118837. [Google Scholar] [CrossRef]
- Al-Mansour, A.; Chow, C.L.; Feo, L.; Penna, R.; Lau, D. Green Concrete: By-Products Utilization and Advanced Approaches. Sustainability 2019, 11, 5145. [Google Scholar] [CrossRef] [Green Version]
- Bondar, D. Use of a Neural Network to Predict Strength and Optimum Compositions of Natural Alumina-Silica-Based Geopolymers. J. Mater. Civ. Eng. 2014, 26, 499–503. [Google Scholar] [CrossRef]
- Açikgenç, M.; Ulaş, M.; Alyamaç, K.E. Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete. Arab. J. Sci. Eng. 2014, 40, 407–419. [Google Scholar] [CrossRef]
- International Energy Association (IEA). World Energy Statistics and Balances 2018; OECD/IEA: Paris, France, 2018. [Google Scholar]
- Rodrigues, E.; Gomes, A.; Gaspar, A.; Antunes, C.H. Estimation of renewable energy and built environment-related variables using neural networks—A review. Renew. Sustain. Energy Rev. 2018, 94, 959–988. [Google Scholar] [CrossRef]
- Ji, C.; Choi, M.; Hong, T.; Yeom, S.; Kim, H. Evaluation of the effect of a building energy efficiency certificate in reducing energy consumption in Korean apartments. Energy Build. 2021, 248, 111168. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; Mallick, J. Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals 2022, 12, 514. [Google Scholar] [CrossRef]
- Li, Z.; Yoon, J.; Zhang, R.; Rajabipour, F.; Srubar, W.V.; Dabo, I.; Radlińska, A. Machine learning in concrete science: Applications, challenges, and best practices. NPJ Comput. Mater. 2022, 8, 127. [Google Scholar] [CrossRef]
- Kumar, R.; Aggarwal, R.; Sharma, J. Energy analysis of a building using artificial neural network: A review. Energy Build. 2013, 65, 352–358. [Google Scholar] [CrossRef]
- Georgiou, G.S.; Christodoulides, P.; Kalogirou, S.A. Implementing artificial neural networks in energy building applications—A review. In Proceedings of the 5th IEEE International Energy Conference (ENERGYCON 2018), University of Cyprus, Limassol, Cyprus, 3–7 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Moon, J.; Park, S.; Rho, S.; Hwang, E. A comparative analysis of artificial neural network architectures for building energy consumption forecasting. Int. J. Distrib. Sens. Networks 2019, 15, 1550147719877616. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Yang, S.; Zuo, J.; Li, Z.; Liu, Y. Relationship between built form and energy performance of office buildings in a severe cold Chinese region. Build. Simul. 2016, 10, 11–24. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Artificial neural networks in energy applications in buildings. Int. J. Low-Carbon Technol. 2006, 1, 201–216. [Google Scholar] [CrossRef]
- Zhai, Z.J.; McNeill, J.S. Roles of building simulation tools in sustainable building design. Build. Simul. 2013, 7, 107–109. [Google Scholar] [CrossRef] [Green Version]
- Echenagucia, T.M.; Capozzoli, A.; Cascone, Y.; Sassone, M. The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Appl. Energy 2015, 154, 577–591. [Google Scholar] [CrossRef]
- Li, Z.; Dai, J.; Chen, H.; Lin, B. An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage. Build. Simul. 2019, 12, 665–681. [Google Scholar] [CrossRef]
- Li, A.; Xiao, F.; Fan, C.; Hu, M. Development of an ANN-based building energy model for information-poor buildings using transfer learning. Build. Simul. 2020, 14, 89–101. [Google Scholar] [CrossRef]
- Attoue, N.; Shahrour, I.; Younes, R. Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting. Energies 2018, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Orosa, J.A.; Vergara, D.; Costa, Á.M.; Bouzón, R. A Novel Method Based on Neural Networks for Designing Internal Coverings in Buildings: Energy Saving and Thermal Comfort. Appl. Sci. 2019, 9, 2140. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Ullah, I.; Ahmad, S.; Kim, D. Occupant Comfort Management Based on Energy Optimization Using an Environment Prediction Model in Smart Homes. Sustainability 2019, 11, 997. [Google Scholar] [CrossRef] [Green Version]
- Nicolosi, G.; Volpe, R.; Messineo, A. An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse. Energies 2017, 10, 722. [Google Scholar] [CrossRef] [Green Version]
- Flood, I.; Kartam, N. Neural Networks in Civil Engineering. I: Principles and Understanding. J. Comput. Civ. Eng. 1994, 8, 131–148. [Google Scholar] [CrossRef]
- Messner, J.I.; Sanvido, V.E.; Kumara, S.R.T. StructNet: A Neural Network for Structural System Selection. Comput. Civ. Infrastruct. Eng. 1994, 9, 109–118. [Google Scholar] [CrossRef]
- Chandwani, V.; Agrawal, V.; Nagar, R. Applications of Artificial Neural Networks in Modeling Compressive Strength of Concrete: A State of the Art Review. Int. J. Curr. Eng. Tech. 2014, 4, 2944–2956. [Google Scholar]
- Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 2016, 28, 707–718. [Google Scholar] [CrossRef]
- El-Khoja, A.M.N.; Ashour, A.F.; Abdalhmid, J.; Dai, X.; Khan, A. Prediction of rubberised concrete strength by using Artificial Neural Networks. Int. Sch. Sci. Res. Innov. 2018, 12, 1068–1072. [Google Scholar]
- Khan, S.U.; Ayub, T.; Rafeeqi, S.F.A. Prediction of Compressive Strength of Plain Concrete Confined with Ferrocement using Artificial Neural Network (ANN) and Comparison with Existing Mathematical Models. Am. J. Civ. Eng. Arch. 2013, 1, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Vidivelli, B.; Jayaranjini, A. Prediction of compressive strength of high performance concrete containing industrial by products using artificial neural networks. Int. J. Civ. Eng. Tech. 2016, 7, 302–314. [Google Scholar]
- Gupta, S. Using Artificial Neural Network to Predict the Compressive Strength of Concrete containing Nano-silica. Civ. Eng. Arch. 2013, 1, 96–102. [Google Scholar] [CrossRef]
- Chithra, S.; Kumar, S.S.; Chinnaraju, K.; Ashmita, F.A. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr. Build. Mater. 2016, 114, 528–535. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Y.; Xie, T.; Zhao, X.; Xiong, B.; Chen, Z. Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques. Constr. Build. Mater. 2019, 226, 534–554. [Google Scholar] [CrossRef]
- Dantas, A.T.A.; Leite, M.B.; de Jesus Nagahama, K. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Constr. Build. Mater. 2013, 38, 717–722. [Google Scholar] [CrossRef]
- Yue, L.; Hongwen, L.; Yinuo, L.; Caiyun, J. Optimum Design of High-Strength Concrete Mix Proportion for Crack Resistance Using Artificial Neural Networks and Genetic Algorithm. Front. Mater. 2020, 7, 590661. [Google Scholar] [CrossRef]
- Tanyildizi, H. Prediction of compressive strength of lightweight mortar exposed to sulfate attack. Comput. Concr. 2017, 19, 217–226. [Google Scholar] [CrossRef]
- García, J.A.; Gómez, J.F.; Castellanos, N.T. Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. Eur. J. Environ. Civ. Eng. 2020, 26, 2319–2343. [Google Scholar] [CrossRef]
- Al-Janab, K.R.M.; Al-Hadithi, A.I.A. Modeling of Polymer Modified-Concrete Strength with Artificial Neural Networks. Int. J. Civ. Eng. 2008, 10, 47–68. [Google Scholar]
- Ghaboussi, J.; Garrett, J.H.; Wu, X. Knowledge-Based Modeling of Material Behavior with Neural Networks. J. Eng. Mech. 1991, 117, 132–153. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y. Explicit neural network model for predicting FRP-concrete interfacial bond strength based on a large database. Compos. Struct. 2020, 240, 111998–112015. [Google Scholar] [CrossRef]
- Kwon, S.-J.; Song, H.-W. Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling. Cem. Concr. Res. 2010, 40, 119–127. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, F.; Zhou, M.; Sabri, M.M.S.; Huang, J. Intelligent Design of Construction Materials: A Comparative Study of AI Approaches for Predicting the Strength of Concrete with Blast Furnace Slag. Materials 2022, 15, 4582. [Google Scholar] [CrossRef]
- Zavrtanik, N.; Prosen, J.; Tušar, M.; Turk, G. The use of artificial neural networks for modeling air void content in aggregate mixture. Autom. Constr. 2016, 63, 155–161. [Google Scholar] [CrossRef]
- Sarıdemir, M.; Topçu, I.B.; Özcan, F.; Severcan, M.H. Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Constr. Build. Mater. 2009, 23, 1279–1286. [Google Scholar] [CrossRef]
- Chandwani, V.; Agrawal, V.; Nagar, R. Modeling Slump of Ready Mix Concrete Using Genetically Evolved Artificial Neural Networks. Adv. Artif. Neural Syst. 2014, 2014, 629137. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Ati, M.; Al Hawat, W. Implementation of Artificial Neural Networks for Prediction of Chloride Penetration in Concrete. Int. J. Eng. Technol. 2018, 7, 47–52. [Google Scholar] [CrossRef]
- Xi, X.; Yin, Z.; Yang, S.; Li, C.-Q. Using artificial neural network to predict the fracture properties of the interfacial transition zone of concrete at the meso-scale. Eng. Fract. Mech. 2020, 242, 107488. [Google Scholar] [CrossRef]
- Nazari, A. Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes. Bull. Mater. Sci. 2012, 35, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.A.; Murthy, P.L.N.; Berke, L. Computational simulation of composite ply micromechanics using artificial neural networks. Microcomput. Civ. Eng. 1991, 6, 87–97. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Heniegal, A.; Elgamal, M.S.; Tayeh, B.A. The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks. Comput. Concr. 2021, 27, 21–28. [Google Scholar]
- Lande, P.S.; Gadewar, A.S. Application of Artificial Neural Networks in Prediction of Compressive Strength of Concrete by Using Ultrasonic Pulse Velocities. IOSR J. Mech. Civ. Eng. 2012, 3, 34–42. [Google Scholar] [CrossRef]
- Moayedi, H.; Mosallanezhad, M.; Rashid, A.S.A.; Jusoh, W.A.W.; Muazu, M.A. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications. Neural Comput. Appl. 2019, 32, 495–518. [Google Scholar] [CrossRef]
- Anysz, H.; Narloch, P. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks. Materials 2019, 12, 1396. [Google Scholar] [CrossRef]
- Salahudeen, A.B.; Ijimdiya, T.S.; Eberemu, A.O.; Osinubi, K.J. Artificial Neural Networks Prediction of Compaction Characteristics of Black Cotton Soil Stabilized with Cement Kiln Dust. J. Soft Comput. Civ. Eng. 2018, 2–3, 53–74. [Google Scholar]
- Maizir, H.; Suryanita, R.; Jingga, H. Estimation of Pile Bearing Capacity of Single Driven Pile in Sandy Soil using Finite Element and Artificial Neural Network Methods. Int. J. Appl. Phys. Sci. 2016, 2, 45–50. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H.; Mollahassani, A.; Heshmati, A.A.; Rashed, A. Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks. J. Plant Nutr. Soil Sci. 2010, 173, 368–379. [Google Scholar] [CrossRef]
- Ellis, G.W.; Yao, C.; Zhao, R.; Penumadu, D. Stress-Strain Modeling of Sands Using Artificial Neural Networks. J. Geotech. Eng. 1995, 121, 429–435. [Google Scholar] [CrossRef]
- Shahin, M.A.; Jaksa, M.B. Neural network prediction of pull-out capacity of marquee ground anchors. Comput. Geotech. 2005, 32, 153–163. [Google Scholar] [CrossRef]
- Das, S.K.; Sabat, A.K. Using Neural Networks for Prediction of Some Properties of Fly Ash. Eelectronic J. Geotech. Eng. 2008, 13, 1–14. [Google Scholar]
- Eidgahee, D.R.; Haddad, A.; Naderpour, H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Int. J. Sci. Technol. 2018, 25, 3233–3244. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Jain, P.K. Prediction of California bearing ratio of soils using Artificial Neural Network. Am. Int. J. Res. Sci. Technol. Eng. Math. 2014, 8, 156–161. [Google Scholar]
- Mahamat, A.; Boukar, M.; Ibrahim, N.; Stanislas, T.; Bih, N.L.; Obianyo, I.; Savastano, H. Machine Learning Approaches for Prediction of the Compressive Strength of Alkali Activated Termite Mound Soil. Appl. Sci. 2021, 11, 4754. [Google Scholar] [CrossRef]
- Nazemi, E.; Dinca, M.; Movafeghi, A.; Rokrok, B.; Dastjerdi, M.C. Estimation of volumetric water content during imbibition in porous building material using real time neutron radiography and artificial neural network. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 940, 344–350. [Google Scholar] [CrossRef]
- Sharmik, S.; Lekha, G.; Kanshik, S. Cost and time effective prediction of soil characteristics using artificial neural networks model. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 3829–3834. [Google Scholar]
- Shi, J.; Ortigao, J.A.R.; Bai, J. Modular Neural Networks for Predicting Settlements during Tunneling. J. Geotech. Geoenvironmental Eng. 1998, 124, 389–395. [Google Scholar] [CrossRef]
- Sivakugan, N.; Eckersley, J.D.; Li, H. Settlement predictions using neural networks. Aust. Civ. Eng. Trans. 1998, 40, 49–52. [Google Scholar] [CrossRef]
- Yadollahi, M.M.; Benli, A. A study on using artificial neural network techniques in civil engineering problems. Turk. J. Nat. Sci. 2015, 4, 5–22. [Google Scholar]
- Flood, I.; Kartam, N. Neural Networks in Civil Engineering. II: Systems and Application. J. Comput. Civ. Eng. 1994, 8, 149–162. [Google Scholar] [CrossRef]
- Rogers, J.L. Simulating Structural Analysis with Neural Network. J. Comput. Civ. Eng. 1994, 8, 252–265. [Google Scholar] [CrossRef]
- Mukherjee, A.; Deshpande, M. Modeling Initial Design Process Using Artificial Neural Networks. J. Comput. Civ. Eng. 1995, 8, 194–200. [Google Scholar] [CrossRef]
- Anderson, D.; Hines, E.L.; Arthur, S.J.; Eiap, E.L. Application of Artificial Neural Networks to Prediction of Minor Axis Steel Connections. In Proceedings of the 3rd International Conference in the Application of Artificial Intelligence to Civil and Structural Engineering, Toulouse, France, 17–19 August 1993; Topping, B.H., Khan, A.I., Eds.; Heriot-Watt University: Edinburgh, UK, 1993; pp. 31–37. [Google Scholar]
- Abambres, M.; Rajana, K.; Tsavdaridis, K.D.; Ribeiro, T.P. Neural Network-Based Formula for the Buckling Load Prediction of I-Section Cellular Steel Beams. Computers 2018, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Trung, N.T.; Shahgoli, A.F.; Zandi, Y.; Shariati, M.; Wakil, K.; Safa, M.; Khorami, M. Moment-rotation prediction of precast beam-to-column connections using extreme learning machine. Struct. Eng. Mech. 2019, 70, 639–647. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, F.; Yang, X.; Wang, F.; Chi, B.; Zhang, Z. Shear capacity estimation of fully grouted reinforced concrete masonry walls using neural network and adaptive neuro-fuzzy inference system models. Constr. Build. Mater. 2017, 153, 937–947. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C. Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks. Eng. Struct. 2014, 61, 99–112. [Google Scholar] [CrossRef]
- Karina, C.N.; Chun, P.; Okubo, K. Tensile strength prediction of corroded steel plates by using machine learning approach. Steel Compos. Struct. 2017, 24, 635–641. [Google Scholar]
- García-Segura, T.; Yepes, V.; Frangopol, D.M. Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Struct. Multidiscip. Optim. 2017, 56, 139–150. [Google Scholar] [CrossRef]
- Yadollahi, M.M.; Karagöl, F.; Kaygusuz, M.A.; Polat, R.; Demirboğa, R. Safety factor determining for space trusses by non-linear analysis and artificial neural network method. Sci. Eng. Compos. Mater. 2013, 20, 277–284. [Google Scholar] [CrossRef]
- Terenchuk, S.; Pashko, A.; Yeremenko, B.; Kartavykh, S.; Ershova, N. Modeling an intelligent system for the estimation of technical state of construction structures. Eastern-European J. Enterp. Technol. 2018, 3, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Arditi, D.; Korsal, A.; Kale, S. Business failures in the construction industry. Eng. Constr. Archit. Manag. 2000, 7, 120–132. [Google Scholar] [CrossRef]
- Chinowsky, P.S.; Meredith, J.E. Strategic Management in Construction. J. Constr. Eng. Manag. 2000, 126, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Oliver, C. Sustainable Competitive Advantage: Combining Institutional and Resource-Based Views. Strateg. Manag. J. 1997, 18, 697–713. [Google Scholar] [CrossRef]
- Cicmil, S.; Nicholson, A. The role of the marketing function in operations of a construction enterprise: Misconceptions and paradigms. Manag. Decis. 1998, 36, 96–101. [Google Scholar] [CrossRef]
- Liu, S.; Chang, R.; Zuo, J.; Webber, R.J.; Xiong, F.; Dong, N. Application of Artificial Neural Networks in Construction Management: Current Status and Future Directions. Appl. Sci. 2021, 11, 9616. [Google Scholar] [CrossRef]
- Moselhi, O.; Hegazy, T.; Fazio, P. Potential applications of neural networks in construction. Can. J. Civ. Eng. 1992, 19, 521–529. [Google Scholar] [CrossRef]
- Araújo, A.G.; Carneiro, A.M.P.; Palha, R.P. Sustainable construction management: A systematic review of the literature with meta-analysis. J. Clean. Prod. 2020, 256, 120350. [Google Scholar] [CrossRef]
- Xu, H.; Chang, R.; Pan, M.; Li, H.; Liu, S.; Webber, R.J.; Zuo, J.; Dong, N. Application of Artificial Neural Networks in Construction Management: A Scientometric Review. Buildings 2022, 12, 952. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2020, 122, 103517. [Google Scholar] [CrossRef]
- Onifade, M.K.; Oroye, O.A. Application of Artificial Neural Networks Technique to Project Management and Control: A Pilot Assessment of Some Firms in Lagos, Nigeria. J. Sci. Technol. Res. 2020, 2, 40–46. [Google Scholar]
- Chen, Z.; Li, H.; Wong, C.T.C. EnvironalPlanning: Analytic Network Process Model for Environmentally Conscious Construction Planning. J. Constr. Eng. Manag. 2005, 131, 92–101. [Google Scholar] [CrossRef]
- Rizzo, D.M.; Dougherty, D.E. Application of artificial neural networks for site characterization using hard and soft information. In Proceedings of the 10th International Conference Computational Methods in Water Resources, Heidelberg, Germany, 19–22 July 1994; Kluwer Academic Publishers: Heidelberg, Germany, 1994; Volume 1, pp. 793–799. [Google Scholar]
- Ansari, A.; AbuBakar, A. A Comparative Study of Three Artificial Intelligence Techniques: Genetic Algorithm, Neural Network, and Fuzzy Logic, on Scheduling Problem. In Proceedings of the 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology (ICAIET 2014), Kota Kinabalu, Malaysia, 2–5 December 2014. [Google Scholar]
- Bhokha, S.; Ogunlana, S.O. Application of artificial neural network to forecast construction duration of buildings at the predesign stage. Eng. Constr. Arch. Manag. 1999, 6, 133–144. [Google Scholar] [CrossRef]
- Alzubaidi, E.; Yas, A.H.; Abbas, H.F. Guess the time of implementation of residential construction projects using neural networks ANN. Period. Eng. Nat. Sci. (PEN) 2019, 7, 1218–1227. [Google Scholar] [CrossRef]
- Petruseva, S.; Zujo, V.; Pancovska, V.Z. Neural Network Prediction Model for Construction Project Duration. Int. J. Eng. Res. Technol. 2013, 2, 1646–1654. [Google Scholar]
- Maghrebi, M.; Sammut, C.; Waller, T.S. Predicting the Duration of Concrete Operations Via Artificial Neural Network and by Focusing on Supply Chain Parameters. Build. Res. J. 2014, 61, 1–14. [Google Scholar] [CrossRef]
- Yahia, H.; Hosny, H.; Razik, M.E.A. Time contingency assessment in construction projects in Egypt using artificial neural networks model. Int. J. Comput. Sci. 2011, 8, 523–531. [Google Scholar]
- Shi, J.J. A neural network based system for predicting earthmoving production. Constr. Manag. Econ. 1999, 17, 463–471. [Google Scholar] [CrossRef]
- Boussabaine, A.H.; Kaka, A.P. A neural networks approach for cost flow forecasting. Constr. Manag. Econ. 1998, 16, 471–479. [Google Scholar] [CrossRef]
- Minli, Z.; Shanshan, Q. Research on the Application of Artificial Neural Networks in Tender Offer for Construction Projects. Phys. Procedia 2012, 24, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Fatima, A.; Sekhar, T.S.; Hussain, S.A.M. Analysis of construction dispute resolution process using artificial neural networks. Int. J. Innov. Res. Dev. 2014, 3, 81–86. [Google Scholar]
- Yitmen, I.; Soujeri, E. An artificial neural network model for estimating the influence of change orders on project performance and dispute resolution. In Proceedings of the International Conference on Computing in Civil and Building Engineering, Nottingham, UK, 30 June–2 July 2010. [Google Scholar]
- Yousefi, V.; Yakhchali, S.H.; Khanzadi, M.; Mehrabanfar, E.; Šaparauskas, J. Proposing a Neural Network Model to predict time and cost claims in construction projects. J. Civ. Eng. Manag. 2016, 22, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.-H.; Zhang, G. Modelling optimal risk allocation in PPP projects using artificial neural networks. Int. J. Proj. Manag. 2010, 29, 591–603. [Google Scholar] [CrossRef]
- Ling, F.Y.Y.; Liu, M. Using neural network to predict performance of design-build projects in Singapore. Build. Environ. 2004, 39, 1263–1274. [Google Scholar] [CrossRef]
- Waziri, B.S. Modelling the performance of traditional contract projects in Nigeria: An artificial neural networks approach. In Proceedings of the 4th West Africa Built Environment Research Conference, Abuja, Nigeria, 24–26 July 2012. [Google Scholar]
- Liu, J.B.; Guo, F. Construction quality risk management of projects on the basis of rough set and neural network. Comput. Model. New Technol. 2014, 18, 791–797. [Google Scholar]
- Bai, L.; Wang, Z.; Wang, H.; Huang, N.; Shi, H. Prediction of multiproject resource conflict risk via an artificial neural network. Eng. Constr. Arch. Manag. 2020, 28, 2857–2883. [Google Scholar] [CrossRef]
- Costantino, F.; Di Gravio, G.; Nonino, F. Project selection in project portfolio management: An artificial neural network model based on critical success factors. Int. J. Proj. Manag. 2015, 33, 1744–1754. [Google Scholar] [CrossRef]
- Lam, K.C.; Hu, T.; Ng, S.T.; Skitmore, M.; Cheung, S.O. A fuzzy neural network approach for contractor prequalification. Constr. Manag. Econ. 2001, 19, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Oztekin, E. Prediction of confined compressive strength of square concrete columns by Artificial Neural Networks. Int. J. Eng. Appl. Sci. 2012, 4, 17–35. [Google Scholar]
- Yadollahi, M.M.; Demirboğa, R.; Kaygusuz, M.A.; Polat, R. Estimating of FRP-confined compressive strength of elevated temperature damaged concrete using ANN. Arch. Des Sci. 2012, 65, 384–393. [Google Scholar]
- Xie, J.; Qiu, J.-F.; Li, W.; Wang, J.-W. The Application of Neural Network Model in Earthquake Prediction in East China. Adv. Intell. Soft Comput. 2011, 106, 79–84. [Google Scholar] [CrossRef]
- Chen, H.M.; Tsai, K.H.; Qi, G.Z.; Yang, J.C.S.; Amini, F. Neural Network for Structure Control. J. Comput. Civ. Eng. 1995, 9, 168–176. [Google Scholar] [CrossRef]
- Lee, C.; Sterling, R. Identifying probable failure modes for underground openings using a neural network. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1992, 29, 49–67. [Google Scholar] [CrossRef]
- Watson, J.N.; Wan, F.C.; Sibbald, A. The Use of Artificial Neural Networks in Pile Integrity Testing, Developments in Neural Networks and Evolutionary Computing for Civil and Structural Engineering (CIVIL-COMP95); Topping, B.H.V., Ed.; CIVIL-COMP Press: Edinburgh, UK, 1995; pp. 7–13. [Google Scholar]
- Mangalathu, S.; Heo, G.; Jeon, J.-S. Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes. Eng. Struct. 2018, 162, 166–176. [Google Scholar] [CrossRef]
- Kao, C.-Y.; Loh, C.-H. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct. Control Health Monit. 2011, 20, 282–303. [Google Scholar] [CrossRef]
- Mata, J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng. Struct. 2011, 33, 903–910. [Google Scholar] [CrossRef]
- Pinar, E.; Paydas, K.; Seckin, G.; Akilli, H.; Sahin, B.; Cobaner, M.; Kocaman, S.; Akar, M.A. Artificial neural network approaches for prediction of backwater through arched bridge constrictions. Adv. Eng. Softw. 2010, 41, 627–635. [Google Scholar] [CrossRef]
- Hong, T.; Koo, C.; Kim, J.; Lee, M.; Jeong, K. A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase. Appl. Energy 2015, 155, 671–707. [Google Scholar] [CrossRef]
- Ng, C.-T. Application of Bayesian-designed artificial neural networks in Phase II structural health monitoring benchmark studies. Aust. J. Struct. Eng. 2014, 15. [Google Scholar] [CrossRef] [Green Version]
- Salehi, H.; Burgueno, R. Emerging artificial intelligence methods in structural engineering. Engg. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Shakya, A.; Mishra, M.; Maity, D.; Santarsiero, G. Structural health monitoring based on the hybrid ant colony algorithm by using Hooke–Jeeves pattern search. SN Appl. Sci. 2019, 1, 799. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Venkiteela, G.; Gregori, A.; Najm, H. Advanced Quality Control Models for Concrete Admixtures. J. Mater. Civ. Eng. 2020, 32, 04019349. [Google Scholar] [CrossRef]
- Bouabdallaoui, Y.; Lafhaj, Z.; Yim, P.; Ducoulombier, L.; Bennadji, B. Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors 2021, 21, 1044. [Google Scholar] [CrossRef]
- Davtalab, O.; Kazemian, A.; Yuan, X.; Khoshnevis, B. Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection. J. Intell. Manuf. 2020, 33, 771–784. [Google Scholar] [CrossRef]
- Shi, H. Application of Unascertained Method and Neural Networks to Quality Assessment of Construction Project. In Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation (ICICTA 2009), Zhangjiajie, China, 10–11 October 2009. [Google Scholar] [CrossRef]
- Stephens, J.E.; VanLuchene, R.D. Integrated Assessment of Seismic Damage in Structures. Comput. Civ. Infrastruct. Eng. 1994, 9, 119–128. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, R. Measurement of reinforcement corrosion in concrete adopting ultrasonic tests and artificial neural network. Constr. Build. Mater. 2018, 177, 125–133. [Google Scholar] [CrossRef]
- Begum, R.; Chamberlain, B.; Hirson, A. Integrity Testing of Concrete Surfaces Using Artificial Neural Networks. Developments in Neural Networks and Evolutionary Computing for Civil and Structural Engineering (CIVIL-COMP95); Topping, B.H.V., Ed.; CIVILCOMP Press: Edinburgh, UK, 1995; pp. 1–6. [Google Scholar]
- Elkordy, M.F.; Chang, K.C.; Lee, G.C. A Structural Damage Neural Network Monitoring System. Comput. Civ. Infrastruct. Eng. 1994, 9, 83–96. [Google Scholar] [CrossRef]
- Chiwiacowsky, L.D.; Shiguemori, E.H.; Velho, H.F.C.; Gasbarri, P.; Silva, J.D.S. A comparison of two different approaches for the damage identification problem. J. Phys. Conf. Ser. 2008, 124, 012017. [Google Scholar] [CrossRef] [Green Version]
- Meruane, V.; Mahu, J. Damage Assessment of a Beam Using Artificial Neural Networks and Antiresonant Frequencies. In Special Topics in Structural Dynamics; Allemang, R., De Clerck, J., Niezrecki, C., Wicks, A., Eds.; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: New York, NY, USA, 2013; Volume 6, p. 6. [Google Scholar]
- Sony, S.; Dunphy, K.; Sadhu, A.; Capretz, M. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng. Struct. 2020, 226, 111347. [Google Scholar] [CrossRef]
- Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2018, 99, 52–58. [Google Scholar] [CrossRef]
- Neves, A.C.; González, I.; Leander, J.; Karoumi, R. Structural health monitoring of bridges: A model-free ANN-based approach to damage detection. J. Civ. Struct. Health Monit. 2017, 7, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Khademi, F.; Liu, Y.; Akbari, M.; Wang, C.; Bond, P.L.; Keller, J.; Jiang, G. Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. J. Environ. Manag. 2019, 234, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Wang, M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Autom. Constr. 2018, 95, 155–171. [Google Scholar] [CrossRef]
- Ganesapillai, M.; Sinha, A.; Mehta, R.; Tiwari, A.; Chellappa, V.; Drewnowski, J. Design and Analysis of Artificial Neural Network (ANN) Models for Achieving Self-Sustainability in Sanitation. Appl. Sci. 2022, 12, 3384. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O. Integrating construction supply chains within a circular economy: An ANFIS-based waste analytics system (A-WAS). J. Clean. Prod. 2019, 229, 863–873. [Google Scholar] [CrossRef]
- Mahamid, I. Critical Determinants of Public Construction Tendering Costs. Int. J. Arch. Eng. Constr. 2018, 7, 34–42. [Google Scholar] [CrossRef]
- Elmousalami, H.H. Artificial Intelligence and Parametric Construction Cost Estimate Modeling: State-of-the-Art Review. J. Constr. Eng. Manag. 2020, 146, 03119008. [Google Scholar] [CrossRef]
- Oduyemi, O.; Okoroh, M.; Dean, A. Developing an artificial neural network model for life cycle costing in buildings. In Proceedings of the 31st Annual ARCOM Conference, Lincoln, UK, 7–9 September 2015; Raidén, A.B., Aboagye-Nimo, E., Eds.; ARCOM: Lincoln, UK, 2015; pp. 843–852. [Google Scholar]
- Chao, L.-C.; Kuo, C.-P. Neural-Network-Centered Approach to Determining Lower Limit of Combined Rate of Overheads and Markup. J. Constr. Eng. Manag. 2018, 144, 04017117. [Google Scholar] [CrossRef]
- Shiha, A.; Dorra, E.M.; Nassar, K. Neural Networks Model for Prediction of Construction Material Prices in Egypt Using Macroeconomic Indicators. J. Constr. Eng. Manag. 2020, 146, 04020010. [Google Scholar] [CrossRef]
- Alshahethi, A.A.A.; Radhika, K.L. Estimating the Final Cost of Construction Project Using Neural Networks: A Case of Yemen Construction Projects. Int. J. Res. Appl. Sci. Eng. Tech. 2018, 6, 2141–2151. [Google Scholar]
- Juszczyk, M. The Challenges of Nonparametric Cost Estimation of Construction Works with the use of Artificial Intelligence Tools. Procedia Eng. 2017, 196, 415–422. [Google Scholar] [CrossRef]
- Abdul, A.M.; Jasim, N.A.; Naseef, F.S. Predicting the final cost of Iraqi construction project using Artificial Neural Network (ANN). Indian J. Sci. Technol. 2019, 12, 28–35. [Google Scholar]
- Pessoa, A.; Sousa, G.; Maués, L.; Alvarenga, F.; Santos, D. Cost Forecasting of Public Construction Projects Using Multilayer Perceptron Artificial Neural Networks: A Case Study. Ing. Investig. 2021, 41, e87737. [Google Scholar] [CrossRef]
- Sitthikankun, S.; Rinchumphu, D.; Buachart, C.; Pacharawongsakda, E. Construction Cost Estimation for Government Building Using Artificial Neural Network Technique. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Bala, K.; Bustani, S.; Waziri, B. A computer-based cost prediction model for institutional building projects in Nigeria: An artificial neural networks approach. J. Eng. Des. Technol. 2014, 12, 518–529. [Google Scholar] [CrossRef]
- Juszczyk, M. The use of artificial neural networks for residential buildings conceptual cost estimation. In Proceedings of the 11th International Conference of Numerical Analysis and Applied Mathematics 2013, ICNAAM 2013, Rhodes, Greece, 21–27 September 2013; pp. 1302–1306. [Google Scholar]
- Wang, X.-Z.; Duan, X.-C.; Liu, J.-Y. Application of Neural Network in the Cost Estimation of Highway Engineering. J. Comput. 2010, 5, 1762–1766. [Google Scholar] [CrossRef]
- Arafa, M.; Alqedra, M. Early Stage Cost Estimation of Buildings Construction Projects using Artificial Neural Networks. J. Artif. Intell. 2010, 4, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Roxas, C.L.C.; Ongpeng, J.M.C. An Artificial Neural Network Approach to Structural Cost Estimation of Building Projects in the Philippines. In Proceedings of the DLSU Research Congress, Manila, Philippines, 6–8 March 2014; p. 1. [Google Scholar]
- Leśniak, A.; Juszczyk, M. Prediction of site overhead costs with the use of artificial neural network based model. Arch. Civ. Mech. Eng. 2018, 18, 973–982. [Google Scholar] [CrossRef]
- Li, H.; Love, P.E. Combining rule-based expert systems and artificial neural networks for mark-up estimation. Constr. Manag. Econ. 1999, 17, 169–176. [Google Scholar] [CrossRef]
- Lhee, S.C.; Flood, I.; Issa, R. Development of a two-step neural network-based model to predict construction cost contingency. J. Inf. Technol. Constr. 2014, 1, 399–411. [Google Scholar]
- Alqahtani, A.; Whyte, A. Artificial neural networks incorporating cost significant Items towards enhancing estimation for (life-cycle) costing of construction projects. Constr. Econ. Build. 2013, 13, 51–64. [Google Scholar] [CrossRef] [Green Version]
- El-Sawah, H.; Moselhi, O. Comparative study in the use of neural networks for order of magnitude cost estimating in construction. J. Inf. Technol. Constr. 2014, 19, 462–473. [Google Scholar]
- Matel, E.; Vahdatikhaki, F.; Hosseinyalamdary, S.; Evers, T.; Voordijk, H. An artificial neural network approach for cost estimation of engineering services. Int. J. Constr. Manag. 2019, 22, 1274–1287. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Hammad, A.W.; Akbarnezhad, A.; Arashpour, M. A neural network approach to predicting the net costs associated with BIM adoption. Autom. Constr. 2020, 119, 103306. [Google Scholar] [CrossRef]
- Alex, D.P.; Al Hussein, M.; Bouferguene, A.; Fernando, S. Artificial Neural Network Model for Cost Estimation: City of Edmonton’s Water and Sewer Installation Services. J. Constr. Eng. Manag. 2010, 136, 745–756. [Google Scholar] [CrossRef]
- Jose, C.M.; Ambili, S. Prediction of Cost of Quality Using Artificial Neural Network in Construction Projects. Int. J. Recent Trends Eng. Res. 2016, 3, 54–64. [Google Scholar]
- Hola, B.; Schabowicz, K. Estimation of earthworks execution time cost by means of artificial neural networks. Autom. Constr. 2010, 19, 570–579. [Google Scholar] [CrossRef]
- Portas, J.; AbouRiz, S. Neural network model for estimating construction productivity. J. Constr. Eng. Manag. 1997, 123, 399–410. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Kabir, H.D.; Akbari, M.; Khosravi, A.; Nahavandi, S.; Carmichael, D.G. ANN-based prediction intervals to forecast labour productivity. Eng. Constr. Arch. Manag. 2020, 27, 2335–2351. [Google Scholar] [CrossRef]
- Golnaraghi, S.; Zangenehmadar, Z.; Moselhi, O.; Alkass, S. Application of Artificial Neural Network(s) in Predicting Formwork Labour Productivity. Adv. Civ. Eng. 2019, 2019, 5972620. [Google Scholar] [CrossRef] [Green Version]
- El-Gohary, K.M.; Aziz, R.F.; Abdel-Khalek, H.A. Engineering Approach Using ANN to Improve and Predict Construction Labor Productivity under Different Influences. J. Constr. Eng. Manag. 2017, 143, 04017045. [Google Scholar] [CrossRef]
- Al-Zwainy, F.M.S.; Rasheed, H.A.; Ibraheem, H.F. Development of the construction estimation model using artificial neural networks for finishing works for floors with marble. J. Eng. Appl. Sci. 2012, 7, 714–722. [Google Scholar]
- Ok, S.C.; Sinha, S.K. Construction equipment productivity estimation using artificial neural network model. Constr. Manag. Econ. 2006, 24, 1029–1044. [Google Scholar] [CrossRef]
- Sinha, S.K.; McKim, R.A. Artificial Neural Network for Measuring Organizational Effectiveness. J. Comput. Civ. Eng. 2000, 14, 9–14. [Google Scholar] [CrossRef]
- Di Franco, G.; Santurro, M. Machine learning, artificial neural networks and social research. Qual. Quant. 2020, 55, 1007–1025. [Google Scholar] [CrossRef]
- Wang, D.; Arditi, D.; Damci, A. Construction Project Managers’ Motivators and Human Values. J. Constr. Eng. Manag. 2017, 143. [Google Scholar] [CrossRef]
- Assaf, S.; Srour, I. Using a data driven neural network approach to forecast building occupant complaints. Build. Environ. 2021, 200, 107972. [Google Scholar] [CrossRef]
- Patel, D.A.; Jha, K.N. Neural Network Model for the Prediction of Safe Work Behavior in Construction Projects. J. Constr. Eng. Manag. 2015, 141, 04014066. [Google Scholar] [CrossRef]
- Xiang, P.C.; Luo, K. The evaluation for the behavioural risk of participants in construction projects based on back propagation neural network. Adv. Inf. Sci. Serv. Sci. 2012, 4, 97–107. [Google Scholar]
- Amiruddin, A.A.A.M.; Zabiri, H.; Taqvi, S.A.A.; Tufa, L.D. Neural network applications in fault diagnosis and detection: An overview of implementations in engineering-related systems. Neural Comput. Appl. 2018, 32, 447–472. [Google Scholar] [CrossRef]
- D’Oca, S.; Hong, T.; Langevin, J. The human dimensions of energy use in buildings: A review. Renew. Sustain. Energy Rev. 2018, 81, 731–742. [Google Scholar] [CrossRef] [Green Version]
- Albahussain, S.A.; El Garaihy, W.H.; Mobarak, A.-K.M. The Prediction of Corporate Social Responsibility Impact on Competitive Advantage: An Artificial Neural Network Approach. Int. J. Acad. Res. Econ. Manag. Sci. 2014, 3, 129. [Google Scholar] [CrossRef]
- Goh, Y.M.; Chua, D. Neural network analysis of construction safety management systems: A case study in Singapore. Constr. Manag. Econ. 2013, 31, 460–470. [Google Scholar] [CrossRef]
- Ayhan, B.U.; Tokdemir, O.B. Predicting the outcome of construction incidents. Saf. Sci. 2018, 113, 91–104. [Google Scholar] [CrossRef]
- Shen, T.; Nagai, Y.; Gao, C. Design of building construction safety prediction model based on optimized BP neural network algorithm. Soft Comput. 2019, 24, 7839–7850. [Google Scholar] [CrossRef]
- Ayhan, B.U.; Tokdemir, O.B. Accident Analysis for Construction Safety Using Latent Class Clustering and Artificial Neural Networks. J. Constr. Eng. Manag. 2020, 146. [Google Scholar] [CrossRef]
- Jahangiri, M.; Solukloei, H.R.J.; Kamalinia, M. A neuro-fuzzy risk prediction methodology for falling from scaffold. Saf. Sci. 2019, 117, 88–99. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, T.; Zhao, X. Using Smartphones to Detect and Identify Construction Workers’ Near-Miss Falls Based on ANN. J. Constr. Eng. Manag. 2019, 145, 04018120. [Google Scholar] [CrossRef]
- Testa, E.; Barros, R.C.; Musse, S.R. CrowdEst: A method for estimating (and not simulating) crowd evacuation parameters in generic environments. Vis. Comput. 2019, 35, 1119–1130. [Google Scholar] [CrossRef]
- Yi, W.; Chan, A.P.; Wang, X.; Wang, J. Development of an early-warning system for site work in hot and humid environments: A case study. Autom. Constr. 2016, 62, 101–113. [Google Scholar] [CrossRef]
- Ren, C.; Cao, S.-J. Implementation and visualization of artificial intelligent ventilation control system using fast prediction models and limited monitoring data. Sustain. Cities Soc. 2019, 52, 101860. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; AlQadhi, S.; Mallick, J.; Kahla, N.B.; Le, H.A.; Singh, C.K.; Hang, H.T. Artificial Neural Networks for Sustainable Development of the Construction Industry. Sustainability 2022, 14, 14738. https://doi.org/10.3390/su142214738
Ahmed M, AlQadhi S, Mallick J, Kahla NB, Le HA, Singh CK, Hang HT. Artificial Neural Networks for Sustainable Development of the Construction Industry. Sustainability. 2022; 14(22):14738. https://doi.org/10.3390/su142214738
Chicago/Turabian StyleAhmed, Mohd., Saeed AlQadhi, Javed Mallick, Nabil Ben Kahla, Hoang Anh Le, Chander Kumar Singh, and Hoang Thi Hang. 2022. "Artificial Neural Networks for Sustainable Development of the Construction Industry" Sustainability 14, no. 22: 14738. https://doi.org/10.3390/su142214738
APA StyleAhmed, M., AlQadhi, S., Mallick, J., Kahla, N. B., Le, H. A., Singh, C. K., & Hang, H. T. (2022). Artificial Neural Networks for Sustainable Development of the Construction Industry. Sustainability, 14(22), 14738. https://doi.org/10.3390/su142214738