Knowledge Spillovers, Institutional Environment, and Entrepreneurship: Evidence from China
Abstract
:1. Introduction
2. Hypothesis Development
2.1. KSTE
2.2. Role of Institutional Environment
2.2.1. Market Reforms
2.2.2. Opening-up
3. Data and Variables
3.1. Data Source
3.2. Dependent Variable
3.3. Explanatory and Instrumental Variables
3.4. Institutional Environment Variables
3.5. Control Variables
4. Empirical Analysis
4.1. Baseline Model
4.2. Applicability of the KSTE in China
4.3. Role of Regional Institutional Environment
4.4. Robustness Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
FIRMS | 1820 | −0.5861 | 0.7162 | −3.4982 | 1.4440 |
PATENT | 1820 | 0.7870 | 0.8386 | −2.6989 | 5.3216 |
PATENTIV | 1820 | 1.4916 | 0.9503 | −2.0339 | 4.9152 |
SOEI | 1820 | 0.2625 | 0.2012 | 0.0004 | 0.9486 |
OPEN | 1820 | 0.1014 | 0.1004 | 0.0000 | 0.5124 |
RS | 1820 | 0.4281 | 0.0412 | 0.2956 | 0.5642 |
RV | 1820 | 1.5901 | 0.5770 | 0.0280 | 3.0915 |
UV | 1820 | 3.5958 | 0.5873 | 0.5777 | 4.4600 |
lnPD | 1820 | −1.1119 | 0.8044 | −4.1997 | 0.9958 |
lnHC | 1820 | 3.3383 | 0.9974 | −0.2284 | 6.2787 |
lnSALARY | 1820 | 2.5935 | 0.4454 | −4.6244 | 3.8981 |
GDPGR | 1820 | 0.1591 | 0.0898 | −0.2741 | 0.9327 |
UNEMP | 1820 | 0.0649 | 0.0392 | 0.0031 | 0.4792 |
GOV | 1820 | 0.0159 | 0.0334 | 0.0000 | 0.5950 |
SERVICE | 1820 | 36.1107 | 7.7606 | 8.6100 | 72.0900 |
COMP | 1820 | 1.0463 | 0.7311 | 0.0148 | 7.8497 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1)FIRMS | 1 | |||||||||||||||
(2)PATENT | −0.05 | 1 | ||||||||||||||
(3)PATENTIV | −0.07 | 0.79 | 1 | |||||||||||||
(4)SOEI | −0.19 | −0.06 | −0.12 | 1 | ||||||||||||
(5)OPEN | −0.02 | 0.03 | −0.07 | −0.44 | 1.00 | |||||||||||
(6)RS | −0.25 | 0.01 | 0.06 | 0.09 | −0.09 | 1 | ||||||||||
(7)RV | 0.09 | 0.21 | 0.18 | −0.39 | 0.47 | −0.34 | 1 | |||||||||
(8)UV | 0.23 | 0.13 | 0.12 | −0.36 | 0.27 | −0.50 | 0.69 | 1 | ||||||||
(9)lnPD | 0.07 | 0.04 | −0.02 | −0.26 | 0.35 | −0.17 | 0.51 | 0.42 | 1 | |||||||
(10)lnHC | 0.04 | 0.41 | 0.46 | 0.22 | −0.38 | −0.07 | −0.19 | 0.03 | −0.31 | 1 | ||||||
(11)lnSALARY | −0.21 | 0.39 | 0.43 | −0.28 | 0.31 | 0.11 | 0.29 | 0.08 | 0.13 | −0.06 | 1 | |||||
(12)GDPGR | −0.13 | 0.12 | 0.23 | −0.12 | 0.01 | 0.11 | −0.01 | −0.12 | −0.07 | 0.03 | 0.32 | 1 | ||||
(13)UNEMP | 0.16 | 0.02 | 0.13 | 0.03 | −0.11 | −0.09 | −0.10 | 0.01 | −0.14 | 0.13 | −0.07 | −0.04 | 1 | |||
(14)GOV | −0.05 | 0.07 | 0.20 | −0.16 | −0.03 | 0.04 | 0.02 | 0.01 | −0.07 | 0.02 | 0.15 | 0.11 | 0.01 | 1 | ||
(15)SERVICE | −0.09 | 0.30 | 0.27 | −0.03 | 0.20 | −0.17 | 0.28 | 0.33 | 0.10 | 0.36 | 0.12 | −0.11 | 0.08 | −0.04 | 1 | |
(16)COMP | 0.50 | 0.05 | 0.12 | −0.36 | 0.06 | −0.07 | 0.15 | 0.21 | 0.03 | −0.01 | 0.10 | 0.03 | 0.13 | 0.09 | −0.03 | 1 |
References
- Carree, M.A.; Thurik, A.R. The Lag Structure of the Impact of Business Ownership on Economic Performance in OECD Countries. Small Bus. Econ. 2007, 30, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Audretsch, D.B.; Keilbach, M. Resolving the knowledge paradox: Knowledge-spillover entrepreneurship and economic growth. Res. Policy 2008, 37, 1697–1705. [Google Scholar] [CrossRef]
- Galindo-Martín, M.; Castaño-Martínez, M.; Méndez-Picazo, M. The role of entrepreneurship in different economic phases. J. Bus. Res. 2021, 122, 171–179. [Google Scholar] [CrossRef]
- Van Praag, C.M.; Versloot, P.H. What is the value of entrepreneurship? A review of recent research. Small Bus. Econ. 2007, 29, 351–382. [Google Scholar] [CrossRef] [Green Version]
- Haltiwanger, J.; Jarmin, R.S.; Miranda, J. Who Creates Jobs? Small versus Large versus Young. Rev. Econ. Stat. 2013, 95, 347–361. [Google Scholar] [CrossRef]
- Shane, S. Prior Knowledge and the Discovery of Entrepreneurial Opportunities. Organ. Sci. 2000, 11, 448–469. [Google Scholar] [CrossRef]
- Baron, R.A.; Ensley, M.D. Opportunity Recognition as the Detection of Meaningful Patterns: Evidence from Comparisons of Novice and Experienced Entrepreneurs. Manag. Sci 2006, 52, 1331–1344. [Google Scholar] [CrossRef] [Green Version]
- Dimov, D. Nascent Entrepreneurs and Venture Emergence: Opportunity Confidence, Human Capital, and Early Planning. J. Manag. Stud. 2010, 47, 1123–1153. [Google Scholar] [CrossRef]
- Andersson, M.; Baltzopoulos, A.; Lööf, H. R&D strategies and entrepreneurial spawning. Res. Policy 2012, 41, 54–68. [Google Scholar]
- Baltzopoulos, A.; Braunerhjelm, P.; Tikoudis, I. Spin-offs: Why geography matters. J. Econ. Geogr. 2016, 16, 273–303. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.; Porter, M.E.; Stern, S. Clusters and entrepreneurship. J. Econ. Geogr. 2010, 10, 495–518. [Google Scholar] [CrossRef]
- Fotopoulos, G. On the spatial stickiness of UK new firm formation rates. J. Econ. Geogr. 2014, 14, 651–679. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Du, R. How does urban agglomeration integration promote entrepreneurship in China? Evidence from regional human capital spillovers and market integration. Cities 2020, 97, 102529. [Google Scholar] [CrossRef]
- Suddaby, R.; Bruton, G.D.; Si, S.X. Entrepreneurship through a qualitative lens: Insights on the construction and/or discovery of entrepreneurial opportunity. J. Bus. Ventur. 2015, 30, 1–10. [Google Scholar] [CrossRef]
- Alvarez, S.A.; Barney, J.B. Discovery and creation: Alternative theories of entrepreneurial action. Strat. Entrep. J. 2007, 1, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Audretsch, D.B.; Keilbach, M. The Theory of Knowledge Spillover Entrepreneurship. J. Manag. Stud. 2007, 44, 1242–1254. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Acs, Z.J. An absorptive capacity theory of knowledge spillover entrepreneurship. Small Bus. Econ. 2013, 40, 185–197. [Google Scholar] [CrossRef]
- Plummer, L.A.; Acs, Z.J. Localized competition in the knowledge spillover theory of entrepreneurship. J. Bus. Ventur. 2014, 29, 121–136. [Google Scholar] [CrossRef]
- Colombelli, A. The impact of local knowledge bases on the creation of innovative start-ups in Italy. Small Bus. Econ. 2016, 47, 383–396. [Google Scholar] [CrossRef]
- Kanellopoulos, V.; Fotopoulos, G. The effect of knowledge spillovers on regional new firm formation: The Greek manufacturing case. Environ. Plan. A Econ. Space 2019, 51, 1005–1030. [Google Scholar] [CrossRef]
- Colombelli, A.; Orsatti, G.; Quatraro, F. Local knowledge composition and the emergence of entrepreneurial activities across industries: Evidence from Italian NUTS-3 regions. Small Bus. Econ. 2021, 56, 613–635. [Google Scholar] [CrossRef]
- Qian, H.; Acs, Z.J.; Stough, R.R. Regional systems of entrepreneurship: The nexus of human capital, knowledge and new firm formation. J. Econ. Geogr. 2013, 13, 559–587. [Google Scholar] [CrossRef] [Green Version]
- Ejdemo, T.; Örtqvist, D. Related variety as a driver of regional innovation and entrepreneurship: A moderated and mediated model with non-linear effects. Res. Policy 2020, 49, 104073. [Google Scholar] [CrossRef]
- Tsvetkova, A.; Partridge, M. Knowledge-based service economy and firm entry: An alternative to the knowledge spillover theory of entrepreneurship. Small Bus. Econ. 2019, 56, 637–657. [Google Scholar] [CrossRef]
- Welter, F.; Baker, T.; Wirsching, K. Three waves and counting: The rising tide of contextualization in entrepreneurship research. Small Bus. Econ. 2019, 52, 319–330. [Google Scholar] [CrossRef]
- Iftikhar, M.N.; Ahmad, M.; Audretsch, D.B. The knowledge spillover theory of entrepreneurship: The developing country context. Int. Entrep. Manag. J. 2020, 16, 1327–1346. [Google Scholar] [CrossRef]
- Jian, J.; Fan, X.; Zhao, S.; Zhou, D. Business creation, innovation, and economic growth: Evidence from China’s economic transition, 1978–2017. Econ. Model 2021, 96, 371–378. [Google Scholar] [CrossRef]
- Hall, J.K.; Daneke, G.A.; Lenox, M.J. Sustainable development and entrepreneurship: Past contributions and future directions. J. Bus. Ventur. 2010, 25, 439–448. [Google Scholar] [CrossRef]
- Maier, D.; Maier, A.; Așchilean, I.; Anastasiu, L.; Gavriș, O. The Relationship between Innovation and Sustainability: A Bibliometric Review of the Literature. Sustainability 2020, 12, 4083. [Google Scholar] [CrossRef]
- Al-Qudah, A.A.; Al-Okaily, M.; Alqudah, H. The relationship between social entrepreneurship and sustainable development from economic growth perspective: 15 ‘RCEP’ countries. J. Sustain. Financ. Investig. 2022, 12, 44–61. [Google Scholar] [CrossRef]
- Li, X. Exploring the spatial heterogeneity of entrepreneurship in Chinese manufacturing industries. J. Technol. Transf. 2017, 42, 1077–1099. [Google Scholar] [CrossRef]
- Lai, Y.; Vonortas, N.S. Regional entrepreneurial ecosystems in China. Ind. Corp. Chang. 2019, 28, 875–897. [Google Scholar] [CrossRef]
- Pan, F.; Yang, B. Financial development and the geographies of startup cities: Evidence from China. Small Bus. Econ. 2019, 52, 743–758. [Google Scholar] [CrossRef]
- Sun, B.; Zhu, P.; Li, W. Cultural diversity and new firm formation in China. Reg. Stud. 2019, 53, 1371–1384. [Google Scholar] [CrossRef]
- He, C.; Pan, F. Economic Transition, Dynamic Externalities and City-industry Growth in China. Urban Stud. 2010, 47, 121–144. [Google Scholar] [CrossRef]
- Poncet, S. Measuring Chinese domestic and international integration. China Econ. Rev. 2003, 14, 1–21. [Google Scholar] [CrossRef]
- Mcmillan, J.; Naughton, B. HOW TO REFORM A PLANNED ECONOMY: LESSONS FROM CHINA. Oxf. Rev. Econ. Policy 1992, 8, 130–143. [Google Scholar] [CrossRef]
- Boudreaux, C.J.; Nikolaev, B.N.; Klein, P. Socio-cognitive traits and entrepreneurship: The moderating role of economic institutions. J. Bus. Ventur. 2019, 34, 178–196. [Google Scholar] [CrossRef]
- Agarwal, R.; Audretsch, D.; Sarkar, M. Knowledge spillovers and strategic entrepreneurship. Strat. Entrep. J. 2010, 4, 271–283. [Google Scholar] [CrossRef]
- Jaffe, A.B. The Real Effects of Academic Research. Am. Econ. Rev. 1989, 79, 957–970. [Google Scholar]
- Feldman, M.P.; Audretsch, D.B. Innovation in cities: Science-based diversity, specialization and localized competition. Eur. Econ. Rev. 1999, 43, 409–429. [Google Scholar] [CrossRef]
- Howells, J.R.L. Tacit Knowledge, Innovation and Economic Geography. Urban Stud. 2002, 39, 871–884. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Lehmann, E.E. Does the Knowledge Spillover Theory of Entrepreneurship hold for regions? Res. Policy 2005, 34, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.H.; Hong, E.; Sun, L. Regional knowledge production and entrepreneurial firm creation: Spatial Dynamic Analyses. J. Bus. Res. 2013, 66, 2106–2115. [Google Scholar] [CrossRef]
- De Carolis, D.M.; Saparito, P. Social Capital, Cognition, and Entrepreneurial Opportunities: A Theoretical Framework. Entrep. Theory Pract. 2006, 30, 41–56. [Google Scholar] [CrossRef]
- Grégoire, D.A.; Barr, P.S.; Shepherd, D.A. Cognitive Processes of Opportunity Recognition: The Role of Structural Alignment. Organ. Sci. 2010, 21, 413–431. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.A. Behavioral and cognitive factors in entrepreneurship: Entrepreneurs as the active element in new venture creation. Strat. Entrep. J. 2007, 1, 167–182. [Google Scholar] [CrossRef]
- Acs, Z.J.; Audretsch, D.B.; Lehmann, E.E. The knowledge spillover theory of entrepreneurship. Small Bus. Econ. 2013, 41, 757–774. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yang, X.; Li, K. Effects of the terms and characteristics of cadres on environmental pollution: Evidence from 230 cities in China. J. Environ. Manag. 2019, 232, 179–187. [Google Scholar] [CrossRef]
- Szerb, L.A.; Acs, Z.; Autio, E. Entrepreneurship and Policy: The National System of Entrepreneurship in the European Union and in Its Member Countries. Entrep. Res. J. 2013, 3, 9–34. [Google Scholar] [CrossRef]
- Wright, M. Academic entrepreneurship, technology transfer and society: Where next? J. Technol. Transf. 2014, 39, 322–334. [Google Scholar] [CrossRef]
- Anokhin, S.; Schulze, W.S. Entrepreneurship, innovation, and corruption. J. Bus. Ventur. 2009, 24, 465–476. [Google Scholar] [CrossRef]
- Tavassoli, S.; Obschonka, M.; Audretsch, D.B. Entrepreneurship in Cities. Res. Policy 2021, 50, 104255. [Google Scholar] [CrossRef]
- Sobel, R.S. Testing Baumol: Institutional quality and the productivity of entrepreneurship. J. Bus. Ventur. 2008, 23, 641–655. [Google Scholar] [CrossRef]
- Boudreaux, C.J. Jumping off of the Great Gatsby curve: How institutions facilitate entrepreneurship and intergenerational mobility. J. Inst. Econ. 2014, 10, 231–255. [Google Scholar] [CrossRef] [Green Version]
- Audretsch, D.B.; Belitski, M.; Caiazza, R.; Desai, S. The role of institutions in latent and emergent entrepreneurship. Technol. Soc. 2022, 174, 121263. [Google Scholar] [CrossRef]
- Howell, A.; He, C.; Yang, R.; Fan, C. Technological relatedness and asymmetrical firm productivity gains under market reforms in China. Camb. J. Reg. Econ. Soc. 2016, 9, 499–515. [Google Scholar]
- Hao, Y.; Johnston, M. China’s Surge of Corruption. J. Democr. 1995, 6, 80–94. [Google Scholar] [CrossRef]
- Shleifer, A.; Vishny, R.W. Corruption. Q. J. Econ. 1993, 108, 599–617. [Google Scholar] [CrossRef]
- Bliss, C.; Di Tella, R. Does Competition Kill Corruption? J. Political Econ. 1997, 105, 1001–1023. [Google Scholar] [CrossRef]
- Gauthier, B.; Goyette, J.; Kouamé, W.A.K. Why do firms pay bribes? Evidence on the demand and supply sides of corruption in developing countries. J. Econ. Behav. Organ. 2021, 190, 463–479. [Google Scholar] [CrossRef]
- Aidis, R.; Estrin, S.; Mickiewicz, T. Institutions and entrepreneurship development in Russia: A comparative perspective. J. Bus. Ventur. 2008, 23, 656–672. [Google Scholar] [CrossRef] [Green Version]
- Wu, X. Determinants of Bribery in Asian Firms: Evidence from the World Business Environment Survey. J. Bus. Ethics 2009, 87, 75–88. [Google Scholar] [CrossRef]
- Asheim, B.T.; Boschma, R.; Cooke, P. Constructing Regional Advantage: Platform Policies Based on Related Variety and Differentiated Knowledge Bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Lin, J.Y. State-owned enterprise reform in China: The new structural economics perspective. Struct. Chang. Econ. Dyn. 2021, 58, 106–111. [Google Scholar] [CrossRef]
- Sheng, S.; Zhou, K.Z.; Li, J.J. The Effects of Business and Political Ties on Firm Performance: Evidence from China. J. Mark. 2011, 75, 1–15. [Google Scholar] [CrossRef]
- Berkowitz, D.; Ma, H.; Nishioka, S. Recasting the Iron Rice Bowl: The Reform of China’s State-Owned Enterprises. Rev. Econ. Stat. 2017, 99, 735–747. [Google Scholar] [CrossRef]
- Chen, V.Z.; Li, J.; Shapiro, D.M.; Zhang, X. Ownership structure and innovation: An emerging market perspective. Asia Pac. J. Manag. 2014, 31, 1–24. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Gao, G.Y.; Zhao, H. State Ownership and Firm Innovation in China: An Integrated View of Institutional and Efficiency Logics. Admin. Sci. Q. 2017, 62, 375–404. [Google Scholar] [CrossRef]
- Liu, Y.; Miletkov, M.K.; Wei, Z.; Yang, T. Board independence and firm performance in China. J. Corp. Financ. 2015, 30, 223–244. [Google Scholar] [CrossRef]
- Shleifer, A. State versus Private Ownership. J. Econ. Perspect. 1998, 12, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Freund, E.M. FIZZ, FROTH, FLAT: The Challenge of Converting China’s SOEs into Shareholding Corporations. Policy Stud. Rev. 2001, 18, 96–111. [Google Scholar] [CrossRef]
- Xiao, S.S.; Park, B.I. Bring institutions into FDI spillover research: Exploring the impact of ownership restructuring and institutional development in emerging economies. Int. Bus. Rev. 2018, 27, 289–308. [Google Scholar] [CrossRef]
- Stojčić, N.; Orlić, E. Spatial dependence, foreign investment and productivity spillovers in new EU member states. Reg. Stud. 2020, 54, 1057–1068. [Google Scholar] [CrossRef]
- Cheung, K.; Lin, P. Spillover effects of FDI on innovation in China: Evidence from the provincial data. China Econ. Rev. 2004, 15, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Smeets, R. Collecting the Pieces of the FDI Knowledge Spillovers Puzzle. World Bank Res. Obs. 2008, 23, 107–138. [Google Scholar] [CrossRef] [Green Version]
- Fu, X. Foreign Direct Investment and Managerial Knowledge Spillovers through the Diffusion of Management Practices. J. Manag. Stud. 2012, 49, 970–999. [Google Scholar] [CrossRef]
- Meyer, K.E. Perspectives on Multinational Enterprises in Emerging Economies. J. Int. Bus. Stud. 2004, 35, 259–276. [Google Scholar] [CrossRef]
- He, M.; Walheer, B. Spillovers and Path Dependences in the Chinese Manufacturing Industry: A Firm-Level Analysis. J. Dev. Stud. 2019, 56, 817–839. [Google Scholar] [CrossRef]
- Fracasso, A.; Vittucci Marzetti, G. International trade and R&D spillovers. J. Int. Econ. 2015, 96, 138–149. [Google Scholar]
- Ma, H.; Qiao, X.; Xu, Y. Job creation and job destruction in China during 1998–2007. J. Comp. Econ. 2015, 43, 1085–1100. [Google Scholar] [CrossRef]
- Feenstra, R.C.; Liz, Z.; Yux, M. Exports and Credit Constraints under Incomplete Information: Theory and Evidence from China. Rev. Econ. Stat. 2014, 96, 729–744. [Google Scholar] [CrossRef]
- Audretsch, D.B.; Fritsch, M. The Geography of Firm Births in Germany. Reg. Stud. 1994, 28, 359–365. [Google Scholar] [CrossRef]
- Garofoli, G. New firm formation and regional development: The Italian case. Reg. Stud. 1994, 28, 381–393. [Google Scholar] [CrossRef]
- Acs, Z.J.; Anselin, L.; Varga, A. Patents and innovation counts as measures of regional production of new knowledge. Res. Policy 2002, 31, 1069–1085. [Google Scholar] [CrossRef]
- Clemens, M.A.; Radelet, S.; Bhavnani, R.R.; Bazzi, S. Counting Chickens when they Hatch: Timing and the Effects of Aid on Growth. Econ. J. 2012, 122, 590–617. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith-Pinkham, P.; Sorkin, I.; Swift, H. Bartik Instruments: What, When, Why, and How. Am. Econ. Rev. 2020, 110, 2586–2624. [Google Scholar] [CrossRef]
- Boustan, L.; Ferreira, F.; Winkler, H.; Zolt, E.M. The Effect of Rising Income Inequality on Taxation and Public Expenditures: Evidence from U.S. Municipalities and School Districts, 1970–2000. Rev. Econ. Stat. 2013, 95, 1291–1302. [Google Scholar] [CrossRef] [Green Version]
- Enamorado, T.; López-Calva, L.F.; Rodríguez-Castelán, C.; Winkler, H. Income inequality and violent crime: Evidence from Mexico’s drug war. J. Dev. Econ. 2016, 120, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkova, A.; Partridge, M.D. Economics of modern energy boomtowns: Do oil and gas shocks differ from shocks in the rest of the economy? Energy Econ. 2016, 59, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Kroll, H.; Liefner, I. Spin-off enterprises as a means of technology commercialisation in a transforming economy—Evidence from three universities in China. Technovation 2008, 28, 298–313. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, S.; He, C. Industry relatedness and new firm survival in China: Do regional institutions and firm heterogeneity matter? Post-Communist Econ. 2018, 30, 735–754. [Google Scholar] [CrossRef]
- McCann, B.T.; Folta, T.B. Location Matters: Where We Have Been and Where We Might Go in Agglomeration Research. J. Manag. 2008, 34, 532–565. [Google Scholar] [CrossRef]
- Li, X. Specialization, institutions and innovation within China’s regional innovation systems. Technol. Soc. 2015, 100, 130–139. [Google Scholar] [CrossRef]
- Ascani, A.; Bettarelli, L.; Resmini, L.; Balland, P. Global networks, local specialisation and regional patterns of innovation. Res. Policy 2020, 49, 104031. [Google Scholar] [CrossRef]
- Castaldi, C.; Frenken, K.; Los, B. Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting. Reg. Stud. 2015, 49, 767–781. [Google Scholar] [CrossRef] [Green Version]
- Frenken, K.; Van Oort, F.; Verburg, T. Related Variety, Unrelated Variety and Regional Economic Growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Acs, Z.J.; Armington, C.; Zhang, T. The determinants of new-firm survival across regional economies: The role of human capital stock and knowledge spillover. Pap. Reg. Sci. 2007, 86, 367–391. [Google Scholar] [CrossRef]
- Boschma, R.; Minondo, A.; Navarro, M. Related variety and regional growth in Spain. Pap. Reg. Sci. 2011, 91, 241–256. [Google Scholar] [CrossRef]
- Reynolds, P.D.; Miller, B.; MakiSource, W.R. Explaining Regional Variation in Business Births and Deaths: U.S. 1976-88. Small Bus. Econ. 1995, 7, 389–407. [Google Scholar] [CrossRef]
- Acs, Z.J.; Armington, C. The impact of geographic differences in human capital on service firm formation rates. J. Urban Econ. 2004, 56, 244–278. [Google Scholar] [CrossRef] [Green Version]
- Storey, D.J. The birth of new firms? Does unemployment matter? A review of the evidence. Small Bus. Econ. 1991, 3, 167–178. [Google Scholar] [CrossRef]
- Tervo, H.; Niittykangas, H. The impact of unemployment on new firm formation in Finland. Int. Small Bus. J. 1994, 13, 38–53. [Google Scholar] [CrossRef]
- Yoon, H.D.; Kim, N.; Buisson, B.; Phillips, F. A cross-national study of knowledge, government intervention, and innovative nascent entrepreneurship. J. Bus. Res. 2018, 84, 243–252. [Google Scholar] [CrossRef]
- Colombelli, A.; Quatraro, F. New firm formation and regional knowledge production modes: Italian evidence. Res. Policy 2018, 47, 139–157. [Google Scholar] [CrossRef]
- Eren, O.; Onda, M.; Unel, B. Effects of FDI on entrepreneurship: Evidence from Right-to-Work and non-Right-to-Work states. Labour Econ. 2019, 58, 98–109. [Google Scholar] [CrossRef]
- Ayyagari, M.; Kosová, R. Does FDI Facilitate Domestic Entry? Evidence from the Czech Republic. Rev. Int. Econ. 2010, 18, 14–29. [Google Scholar] [CrossRef]
- Mencinger, J. Does Foreign Direct Investment Always Enhance Economic Growth? Kyklos (Basel) 2003, 56, 491–508. [Google Scholar] [CrossRef]
- De Backer, K.; Sleuwaegen, L. Does Foreign Direct Investment Crowd Out Domestic Entrepreneurship? Rev. Ind. Organ. 2003, 22, 67–84. [Google Scholar] [CrossRef]
- Hoetker, G. The use of logit and probit models in strategic management research: Critical issues. Strateg. Manag. J 2007, 28, 331–343. [Google Scholar] [CrossRef]
- Cleary, S. The Relationship between Firm Investment and Financial Status. J. Financ. 1999, 54, 673–692. [Google Scholar] [CrossRef]
- Ge, W. Special Economic Zones and the Opening of the Chinese Economy: Some Lessons for Economic Liberalization. World Dev. 1999, 27, 1267–1285. [Google Scholar] [CrossRef]
Variables | Aggregate Industry | High–Tech Industry | Low–Tech Industry | Eastern China | Central and Western China |
---|---|---|---|---|---|
PATENT | 1.184 *** | 1.246 *** | 1.175 *** | 0.763 *** | 0.836 *** |
(0.201) | (0.199) | (0.212) | (0.206) | (0.190) | |
SOEI | −0.471 *** | −0.764 *** | −0.423 ** | −0.338 | −0.229 * |
(0.146) | (0.170) | (0.166) | (0.386) | (0.138) | |
OPEN | −2.027 *** | −2.377 *** | −2.014 *** | −2.367 ** | −0.221 |
(0.765) | (0.891) | (0.768) | (0.940) | (0.792) | |
RS | 0.666 | 2.078 | 0.473 | 2.875 | −2.143 * |
(1.295) | (1.401) | (1.326) | (1.885) | (1.213) | |
RV | 0.229 | 0.494 *** | 0.219 | −0.057 | 0.199 |
(0.156) | (0.182) | (0.161) | (0.263) | (0.168) | |
UV | −0.025 | −0.124 | −0.072 | 0.381 | −0.179 |
(0.184) | (0.178) | (0.192) | (0.335) | (0.152) | |
lnPD | 0.012 | 0.277 | −0.117 | 0.221 | −0.494 ** |
(0.382) | (0.416) | (0.362) | (0.153) | (0.222) | |
lnHC | 0.048 | −0.043 | 0.088 | 0.039 | −0.020 |
(0.062) | (0.069) | (0.063) | (0.097) | (0.059) | |
lnSALARY | −0.024 | −0.019 | −0.019 | −0.052 * | −0.015 |
(0.029) | (0.054) | (0.037) | (0.028) | (0.030) | |
GDPGR | 0.047 | 0.110 | 0.026 | 0.140 | −0.104 |
(0.214) | (0.216) | (0.227) | (0.230) | (0.212) | |
UNEMP | 0.802 | 0.754 | 0.906 | 3.134 ** | 0.548 |
(0.552) | (0.729) | (0.553) | (1.485) | (0.509) | |
GOV | 0.479 | 0.619 | 0.459 | −0.081 | 0.307 |
(0.498) | (0.608) | (0.509) | (1.655) | (0.429) | |
SERVICE | −0.017 ** | −0.019 ** | −0.015 ** | −0.018 | −0.009 |
(0.007) | (0.008) | (0.008) | (0.011) | (0.008) | |
COMP | 0.106 *** | 0.001 | 0.102 *** | 0.084 ** | 0.055 * |
(0.029) | (0.015) | (0.033) | (0.038) | (0.032) | |
R–squared | 0.6438 | 0.6317 | 0.6415 | 0.7709 | 0.7458 |
Observations | 1820 | 1820 | 1820 | 602 | 1218 |
Number of cities | 260 | 260 | 260 | 86 | 174 |
Underidentification test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Kleibergen–Paap rk Wald F statistic | 62.609 | 62.937 | 62.809 | 44.698 | 46.584 |
Endogeneity test | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0025 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | SOEI_0 | SOEI_1 | SOEI_0 | SOEI_1 | SOEI_0 | SOEI_1 |
PATENT | 0.513 *** | 1.522 *** | 0.358 ** | 1.684 *** | 0.563 *** | 1.465 *** |
(0.178) | (0.399) | (0.177) | (0.414) | (0.202) | (0.406) | |
SOEI | −0.275 ** | −0.318 | −0.462 *** | −0.703 * | −0.239 | −0.255 |
(0.132) | (0.392) | (0.176) | (0.402) | (0.164) | (0.400) | |
OPEN | −0.199 | −3.336 ** | −1.643 | −2.758 * | −0.052 | −3.411 *** |
(0.765) | (1.323) | (1.308) | (1.429) | (0.803) | (1.276) | |
RS | −3.112 ** | 2.317 | −2.254 | 3.617 | −3.076 ** | 1.919 |
(1.253) | (2.155) | (1.520) | (2.245) | (1.371) | (2.150) | |
RV | 0.120 | 0.296 | 0.187 | 0.696 ** | 0.097 | 0.286 |
(0.160) | (0.310) | (0.224) | (0.319) | (0.163) | (0.308) | |
UV | −0.082 | 0.264 | −0.144 | 0.174 | −0.151 | 0.233 |
(0.136) | (0.305) | (0.168) | (0.304) | (0.147) | (0.310) | |
lnPD | −0.484 ** | 0.371 | −0.209 | 0.605 ** | −0.607 ** | 0.228 |
(0.205) | (0.285) | (0.223) | (0.306) | (0.247) | (0.270) | |
lnHC | −0.034 | 0.039 | −0.088 | −0.127 | 0.012 | 0.087 |
(0.050) | (0.135) | (0.090) | (0.153) | (0.049) | (0.136) | |
lnSALARY | −0.178 | −0.038 | −0.374 | −0.026 | −0.193 | −0.032 |
(0.252) | (0.031) | (0.249) | (0.041) | (0.271) | (0.051) | |
GDPGR | −0.138 | 0.708 * | −0.058 | 0.808 * | −0.168 | 0.669 * |
(0.207) | (0.396) | (0.229) | (0.423) | (0.218) | (0.398) | |
UNEMP | 0.394 | 0.789 | 0.311 | 0.915 | 0.494 | 0.875 |
(0.695) | (0.777) | (0.814) | (0.872) | (0.731) | (0.795) | |
GOV | 0.589 | 0.568 | 1.425 | −0.048 | 0.450 | 0.688 |
(0.592) | (0.881) | (0.950) | (0.888) | (0.577) | (0.883) | |
SERVICE | −0.010 | −0.015 | −0.004 | −0.023 | −0.010 | −0.012 |
(0.007) | (0.015) | (0.009) | (0.016) | (0.008) | (0.015) | |
COMP | 0.027 | 0.102 *** | −0.032 ** | 0.016 | 0.030 | 0.109 *** |
(0.046) | (0.031) | (0.015) | (0.022) | (0.042) | (0.032) | |
R–squared | 0.7768 | 0.4287 | 0.7262 | 0.5010 | 0.7724 | 0.4349 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 |
Kleibergen–Paap rk Wald F statistic | 41.272 | 21.865 | 41.106 | 22.214 | 41.479 | 21.679 |
Endogeneity test | 0.2980 | 0.0000 | 0.3864 | 0.0000 | 0.2784 | 0.0000 |
Empirical p-value | 0.015 | 0.009 | 0.031 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 |
PATENT | 0.724 *** | 1.352 *** | 0.599 *** | 1.557 *** | 0.719 *** | 1.358 *** |
(0.187) | (0.348) | (0.176) | (0.388) | (0.203) | (0.359) | |
SOEI | −0.217 | −0.519 * | −0.522 *** | −0.687 * | −0.194 | −0.418 |
(0.153) | (0.299) | (0.180) | (0.355) | (0.187) | (0.309) | |
OPEN | −1.045 | −1.576 | −2.490 * | −1.802 | −1.006 | −1.555 |
(1.280) | (1.001) | (1.486) | (1.154) | (1.307) | (1.012) | |
RS | −1.484 | 1.005 | 0.846 | 1.099 | −1.975 | 1.054 |
(1.442) | (1.973) | (1.443) | (2.166) | (1.542) | (2.022) | |
RV | 0.031 | 0.280 | 0.285 | 0.531 | −0.008 | 0.279 |
(0.175) | (0.297) | (0.174) | (0.338) | (0.187) | (0.300) | |
UV | −0.094 | 0.233 | −0.076 | −0.038 | −0.151 | 0.195 |
(0.150) | (0.331) | (0.149) | (0.355) | (0.157) | (0.343) | |
lnPD | −0.548 ** | 0.153 | −0.137 | 0.387 | −0.706 ** | 0.023 |
(0.247) | (0.308) | (0.242) | (0.438) | (0.284) | (0.262) | |
lnHC | −0.030 | 0.017 | −0.166 ** | −0.046 | 0.032 | 0.028 |
(0.055) | (0.142) | (0.071) | (0.159) | (0.057) | (0.145) | |
lnSALARY | −0.147 | −0.047 ** | −0.259 | −0.027 | −0.162 | −0.045 |
(0.266) | (0.022) | (0.260) | (0.047) | (0.289) | (0.043) | |
GDPGR | −0.137 | 0.451 | 0.012 | 0.532 * | −0.175 | 0.448 |
(0.231) | (0.300) | (0.255) | (0.318) | (0.246) | (0.312) | |
UNEMP | 0.535 | 1.403 * | 0.032 | 2.432 ** | 0.697 | 1.364 * |
(0.645) | (0.812) | (0.758) | (1.209) | (0.655) | (0.800) | |
GOV | 0.413 | −1.885 | 0.397 | −0.386 | 0.461 | −2.387 |
(0.445) | (1.717) | (0.533) | (2.156) | (0.459) | (1.754) | |
SERVICE | −0.013 | −0.008 | −0.009 | −0.019 | −0.012 | −0.005 |
(0.009) | (0.013) | (0.009) | (0.015) | (0.009) | (0.013) | |
COMP | 0.035 | 0.161 *** | −0.040 ** | 0.032 * | 0.042 | 0.165 *** |
(0.035) | (0.036) | (0.018) | (0.018) | (0.036) | (0.037) | |
R–squared | 0.7733 | 0.5402 | 0.7188 | 0.5705 | 0.7674 | 0.5306 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Kleibergen–Paap rk Wald F statistic | 38.976 | 38.515 | 39.317 | 38.092 | 39.051 | 38.418 |
Endogeneity test | 0.0307 | 0.0000 | 0.1066 | 0.0000 | 0.0353 | 0.0000 |
Empirical p-value | 0.088 | 0.022 | 0.087 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | SOEI_0 | SOEI_1 | SOEI_0 | SOEI_1 | SOEI_1 | SOEI_0 |
PATENT | 0.513 *** | 1.478 *** | 0.347 ** | 1.671 *** | 0.570 *** | 1.428 *** |
(0.179) | (0.381) | (0.177) | (0.408) | (0.203) | (0.390) | |
SOEI | −0.273 ** | −0.277 | −0.463 ** | −0.649 * | −0.238 | −0.216 |
(0.134) | (0.383) | (0.180) | (0.394) | (0.167) | (0.391) | |
OPEN | −0.032 | −3.083 ** | −1.620 | −2.490 * | 0.111 | −3.167 ** |
(0.757) | (1.292) | (1.289) | (1.411) | (0.798) | (1.246) | |
Control variables | Included | Included | Included | Included | Included | Included |
R–squared | 0.7754 | 0.4624 | 0.7281 | 0.5262 | 0.7695 | 0.4613 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.0001 |
Kleibergen–Paap rk Wald F statistic | 41.272 | 21.865 | 41.106 | 22.214 | 41.479 | 21.679 |
Endogeneity test | 0.3254 | 0.0000 | 0.4271 | 0.0000 | 0.2910 | 0.0000 |
Empirical p-value | 0.013 | 0.011 | 0.037 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 |
PATENT | 0.711 *** | 1.329 *** | 0.591 *** | 1.514 *** | 0.712 *** | 1.348 *** |
(0.188) | (0.339) | (0.176) | (0.374) | (0.203) | (0.353) | |
SOEI | −0.215 | −0.490 * | −0.529 *** | −0.629 * | −0.193 | −0.392 |
(0.155) | (0.296) | (0.182) | (0.352) | (0.190) | (0.307) | |
OPEN | −0.829 | −1.387 | −2.481 * | −1.631 | −0.758 | −1.375 |
(1.278) | (0.985) | (1.506) | (1.120) | (1.306) | (0.998) | |
Control variables | Included | Included | Included | Included | Included | Included |
R–squared | 0.7727 | 0.5522 | 0.7214 | 0.5948 | 0.7656 | 0.5352 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Kleibergen–Paap rk Wald F statistic | 38.976 | 38.515 | 39.317 | 38.092 | 39.051 | 38.418 |
Endogeneity test | 0.0433 | 0.0000 | 0.1155 | 0.0000 | 0.0452 | 0.0000 |
Empirical p-value | 0.081 | 0.024 | 0.089 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | SOEI_0 | SOEI_1 | SOEI_0 | SOEI_1 | SOEI_1 | SOEI_0 |
PATENT | 0.507 *** | 1.498 *** | 0.339 * | 1.710 *** | 0.572 *** | 1.438 *** |
(0.185) | (0.388) | (0.181) | (0.419) | (0.212) | (0.395) | |
SOEI | −0.236 * | −0.270 | −0.476 *** | −0.595 | −0.193 | −0.224 |
(0.140) | (0.395) | (0.179) | (0.404) | (0.167) | (0.402) | |
OPEN | 0.070 | −3.160 ** | −1.513 | −2.570 * | 0.189 | −3.233 ** |
(0.782) | (1.306) | (1.303) | (1.432) | (0.821) | (1.257) | |
Control variables | Included | Included | Included | Included | Included | Included |
R–squared | 0.7777 | 0.4490 | 0.7341 | 0.5082 | 0.7727 | 0.4539 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
Kleibergen–Paap rk Wald F statistic | 41.272 | 21.865 | 41.106 | 22.214 | 41.479 | 21.679 |
Endogeneity test | 0.4408 | 0.0000 | 0.4778 | 0.0000 | 0.3617 | 0.0000 |
Empirical p-value | 0.013 | 0.009 | 0.035 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 |
PATENT | 0.722 *** | 1.350 *** | 0.615 *** | 1.549 *** | 0.721 *** | 1.362 *** |
(0.196) | (0.341) | (0.183) | (0.374) | (0.215) | (0.354) | |
SOEI | −0.182 | −0.463 | −0.530 *** | −0.608 * | −0.155 | −0.363 |
(0.159) | (0.304) | (0.181) | (0.359) | (0.187) | (0.315) | |
OPEN | −0.515 | −1.415 | −1.933 | −1.721 | −0.587 | −1.379 |
(1.342) | (0.997) | (1.524) | (1.135) | (1.357) | (1.009) | |
Control variables | Included | Included | Included | Included | Included | Included |
R–squared | 0.7749 | 0.5432 | 0.7257 | 0.5877 | 0.7680 | 0.5290 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Kleibergen–Paap rk Wald F statistic | 38.976 | 38.515 | 39.317 | 38.092 | 39.051 | 38.418 |
Endogeneity test | 0.0557 | 0.0000 | 0.0860 | 0.0000 | 0.0601 | 0.0000 |
Empirical p-value | 0084 | 0.025 | 0.088 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | SOEI_0 | SOEI_1 | SOEI_0 | SOEI_1 | SOEI_1 | SOEI_0 |
PATENT | 0.518 *** | 1.487 *** | 0.346 ** | 1.648 *** | 0.565 *** | 1.450 *** |
(0.176) | (0.394) | (0.175) | (0.409) | (0.199) | (0.402) | |
SOEI | −0.287 ** | −0.359 | −0.464 *** | −0.684 * | −0.257 | −0.306 |
(0.130) | (0.389) | (0.176) | (0.401) | (0.167) | (0.398) | |
OPEN | −0.362 | −3.319 ** | −1.786 | −2.730 * | −0.268 | −3.417 *** |
(0.757) | (1.300) | (1.330) | (1.411) | (0.793) | (1.262) | |
Control variables | Included | Included | Included | Included | Included | Included |
R–squared | 0.7829 | 0.4252 | 0.7283 | 0.4992 | 0.7759 | 0.4258 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
Kleibergen–Paap rk Wald F statistic | 41.272 | 21.865 | 41.106 | 22.214 | 41.479 | 21.679 |
Endogeneity test | 0.1860 | 0.0000 | 0.3419 | 0.0000 | 0.1842 | 0.0000 |
Empirical p-value | 0.016 | 0.011 | 0.037 |
Aggregate Industry | High–Tech Industry | Low–Tech Industry | ||||
---|---|---|---|---|---|---|
Variables | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 | OPEN_0 | OPEN_1 |
PATENT | 0.692 *** | 1.380 *** | 0.569 *** | 1.587 *** | 0.692 *** | 1.380 *** |
(0.188) | (0.348) | (0.183) | (0.385) | (0.204) | (0.360) | |
SOEI | −0.247 | −0.502 * | −0.547 *** | −0.638 * | −0.231 | −0.410 |
(0.152) | (0.300) | (0.180) | (0.357) | (0.189) | (0.310) | |
OPEN | −1.182 | −1.601 | −2.507 * | −1.898 | −1.246 | −1.576 |
(1.246) | (1.008) | (1.486) | (1.168) | (1.280) | (1.015) | |
Control variables | Included | Included | Included | Included | Included | Included |
R–squared | 0.7827 | 0.5162 | 0.7203 | 0.5541 | 0.7743 | 0.5111 |
Observations | 910 | 910 | 910 | 910 | 910 | 910 |
Number of cities | 130 | 130 | 130 | 130 | 130 | 130 |
Underidentification test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Kleibergen–Paap rk Wald F statistic | 38.976 | 38.515 | 39.317 | 38.092 | 39.051 | 38.418 |
Endogeneity test | 0.0231 | 0.0000 | 0.1056 | 0.0000 | 0.0267 | 0.0000 |
Empirical p-value | 0.069 | 0.014 | 0.074 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Yuan, P.; Jiang, G. Knowledge Spillovers, Institutional Environment, and Entrepreneurship: Evidence from China. Sustainability 2022, 14, 14938. https://doi.org/10.3390/su142214938
Yang F, Yuan P, Jiang G. Knowledge Spillovers, Institutional Environment, and Entrepreneurship: Evidence from China. Sustainability. 2022; 14(22):14938. https://doi.org/10.3390/su142214938
Chicago/Turabian StyleYang, Fandi, Peng Yuan, and Gongxiong Jiang. 2022. "Knowledge Spillovers, Institutional Environment, and Entrepreneurship: Evidence from China" Sustainability 14, no. 22: 14938. https://doi.org/10.3390/su142214938
APA StyleYang, F., Yuan, P., & Jiang, G. (2022). Knowledge Spillovers, Institutional Environment, and Entrepreneurship: Evidence from China. Sustainability, 14(22), 14938. https://doi.org/10.3390/su142214938