Effect of the Rate of Nitrogen Application on Dry Matter Accumulation and Yield Formation of Densely Planted Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Overview
2.2. Test Design
2.3. Field Management
2.4. Measurement Items and Methods
2.4.1. Grain Yield
2.4.2. Dry Matter Determination
2.4.3. Maximum Rate of Accumulation and Amount of Dry Matter
2.4.4. Calculation of the Rate of Contribution
2.5. Statistical Analysis
3. Results
3.1. Effect of the Rate of Nitrogen Application on Maize Yield
3.2. Effect of Nitrogen Application Rate on Maize Yield, Dry Matter Accumulation, and Harvest Index
3.3. Rate of Contribution of Dry Matter and Harvest Index to Yield before and after Anthesis
3.4. Effect of Nitrogen Application Rate on the Characteristics of Dry Matter Accumulation by Maize
3.5. Relationship between the Amount and Time of Dry Matter Accumulation and the Maximum Rate of Accumulation
3.6. Path Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.C.; Ma, W.Q.; Huang, C.D.; Zhang, W.F.; Mi, G.H.; Miao, Y.X.; Li, X.L.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Mckenzie, F.C.; Williams, J. Sustainable food production: Constraints, challenges and choices by 2050. Food Secur. 2015, 7, 221–233. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Jin, J.Y. Fertilizer use and food security in China. Plant Nutr. Fertil. Sci. 2013, 19, 259–273. [Google Scholar]
- Van Wesenbeeck, C.F.A.; Keyzer, M.A.; Van Veen, W.C.M.; Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agr Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
- Amanullah; Khattak, R.A.; Khalil, S.K. Plant density and nitrogen effects on maize phenology and grain yield. J. Plant Nutr. 2009, 32, 246–260. [Google Scholar] [CrossRef]
- Meng, Q.F.; Cui, Z.L.; Yang, H.S.; Zhang, F.S.; Chen, X.P. Establishing high-yielding maize system for sustainable intensification in China. Adv. Agron. 2018, 148, 85–109. [Google Scholar]
- Bojtor, C.; Mousavi, S.M.N.; Illes, A.; Golzardi, F.; Szeles, A.; Szabo, A.; Nagy, J.; Marton, C.L. Nutrient composition analysis of maize hybrids affected by different nitrogen fertilisation systems. Plants 2022, 11, 1593. [Google Scholar] [CrossRef]
- Yang, J.S.; Gao, H.Y.; Liu, P.; Li, G.; Dong, S.T.; Zhang, J.W.; Wang, J.F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron. Sin. 2010, 36, 1226–1233. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Fan, Z.L.; Gou, Z.W.; Hu, F.L.; Yin, W.; Chai, Q. Characteristics of dry matter accumulation and yield formation of dense planting maize in different row spacings. Chin. J. Eco-Agr. 2020, 28, 652–661. [Google Scholar]
- Yu, Y.; Qian, C.R.; Gu, W.R.; Li, C.F. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in northeast China. Agriculture 2021, 11, 308. [Google Scholar] [CrossRef]
- Tollenaar, M.; Lee, E. Yield potential, yield stability and stress tolerance in maize. Field Crops Res. 2002, 75, 161–169. [Google Scholar] [CrossRef]
- Sun, C.; Sun, J.Y.; Gao, J.L.; Liu, J.; Yu, X.F.; Wang, Z.G.; Yang, X.J.; Ji, N. Comprehensive application of bio-char and nitrogen fertilizer in dry-land maize cultivation. Sci. Rep. 2022, 12, 13478. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Fu, J.P.; Liu, H.F.; Li, Z.Z.; Lan, Y.; Wei, X.; Zhai, Y.Q.; Yun, B.Y.; Ma, J.Z.; Zhang, H. Estimation of critical nitrogen concentration based on leaf dry matter in drip irrigation spring maize production in northern China. Sustainability 2022, 14, 9838. [Google Scholar] [CrossRef]
- Liu, W.M.; Hou, P.; Liu, G.Z.; Yang, Y.S.; Guo, X.X.; Ming, B.; Xie, R.Z.; Wang, K.R.; Liu, Y.E.; Li, S.K. Contribution of total dry matter and harvest index to maize grain yield-a multisource data analysis. Food Energy Secure 2020, 9, e256. [Google Scholar] [CrossRef]
- Lv, P.; Zhang, J.W.; Liu, W.; Yang, J.S.; Liu, P.; Dong, S.T.; Li, D.H. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions. Plant Nutr. Fertil. Sci. 2011, 17, 1099–1107. [Google Scholar]
- Cao, Y.J.; Wang, L.C.; Gu, W.R.; Wang, Y.J.; Zhang, J.H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J. Integr. Agr. 2021, 20, 494–510. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Gao, F.; Liu, P.; Zhao, B.; Zhang, J.W. Late harvest improves yield and nitrogen utilization efficiency of summer maize. Field Crops Res. 2019, 232, 88–94. [Google Scholar] [CrossRef]
- Qi, W.Z.; Chen, X.L.; Liu, P.; Liu, H.H.; Li, G.; Shao, L.J.; Wang, F.F.; Dong, S.T.; Zhang, J.W.; Zhao, B. Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize. Plant Nutr. Fertil. Sci. 2013, 19, 26–36. [Google Scholar]
- Ning, P.; Li, S.; Yu, P.; Zhang, Y.; Li, C.J. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res. 2013, 144, 19–27. [Google Scholar] [CrossRef]
- Li, R.F.; Zhang, G.Q.; Liu, G.Z.; Wang, K.R.; Xie, R.Z.; Hou, P.; Ming, B.; Wang, Z.G.; Li, S.K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secure 2021, 10, e312. [Google Scholar] [CrossRef]
- Zhao, Y.N.; Huang, Y.F.; Li, S.; Chu, X.; Ye, Y.L. Improving the growth, lodging and yield of different density-resistance maize by optimising planting density and nitrogen fertilisation. Plant Soil Environ. 2020, 66, 453–460. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Yang, H.S.; Gao, J.L.; Zhang, R.F.; Wang, Z.G.; Xu, S.J.; Fan, X.Y.; Yang, S.H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci. Agric. Sin. 2011, 44, 4367–4376. [Google Scholar]
- Cao, S.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B.; Yang, J. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high-yield summer maize. Plant Nutr. Fertil. Sci. 2012, 18, 1343–1353. [Google Scholar]
- Di Matteo, J.A.; Ferreyra, J.M.; Cerrudo, A.A.; Echarte, L.; Andrade, F.H. Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding. Field Crops Res. 2016, 197, 107–116. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, K.R.; Zhao, R.L.; Wang, K.; Zhao, J.; Wang, X.M.; Li, J.; Liang, M.X.; Li, S.K. Relationship between the source and sink of spring maize with high yield. Sci. Agric. Sin. 2013, 46, 257–269. [Google Scholar]
- Duan, J.Z.; Wu, Y.P.; Zhou, Y.; Ren, X.X.; Shao, Y.H.; Feng, W.; Zhu, Y.J.; He, L.; Guo, T.C. Approach to higher wheat yield in the Huang-Huai plain: Improving post-anthesis productivity to increase harvest index. Front. Plant Sci. 2018, 9, 1457. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Li, R.F.; Wang, K.R.; Xie, R.Z.; Hou, P.; Ming, B.; Xue, J.; Zhang, G.Q.; Liu, G.Z.; Li, S.K. Creation and thinking of China’s spring maize high-yield record. J. Maize Sci. 2021, 29, 56–59. [Google Scholar]
- Zhai, J.; Zhang, Y.M.; Zhang, G.Q.; Xu, W.Q.; Xie, R.Z.; Ming, B.; Hou, P.; Wang, K.R.; Xue, J.; Li, S.K. Nitrogen application and dense planting to obtain high yields from maize. Agronomy 2022, 12, 1308. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Liu, C.W.; Xiao, C.H.; Xie, R.Z.; Ming, B.; Hou, P.; Liu, G.Z.; Xu, W.J.; Shen, D.P.; Wang, K.R.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Xue, J.; Gao, S.; Li, L.L.; Xu, H.G.; Ming, B.; Wang, K.R.; Hou, P.; Xie, R.Z.; Li, S.K. Synergistic development of maize stalk as a strategy to reduce lodging risk. Agron. J. 2020, 112, 4962–4975. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, N.N.; Camberato, J.J.; Gao, J.; Liu, P.; Zhao, B.; Zhang, J.W. Crop production kept stable and sustainable with the decrease of nitrogen rate in North China Plain: An economic and environmental assessment over 8 year. Sci. Rep. 2019, 9, 19335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.B.; Zhang, J.W.; Li, B.; Cui, H.Y.; Dong, S.T.; Liu, P.; Zhao, B. Canopy structure and photosynthetic characteristics of high yield and high nitrogen efficiency summer maize. Sci. Agric. Sin. 2013, 46, 2430–2439. [Google Scholar]
- Liu, T.N.; Gu, L.M.; Dong, S.T.; Zhang, J.W.; Liu, P.; Zhao, B. Optimum leaf removal increases canopy apparent photosynthesis, 13C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Res. 2015, 170, 32–39. [Google Scholar] [CrossRef]
- Song, H.X.; Li, S.X. Dynamics of nutrient accumulation in maize plants under different water and N supply conditions. Sci. Agric. Sin. 2003, 36, 71–76. [Google Scholar]
- Zhao, R.F.; Chen, X.P.; Zhang, F.S.; Zhang, H.L.; Schroder, J.; Roemheld, V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron. J. 2006, 98, 938–945. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, Y.A.; Zhao, H.B. Effects of different N rates on nutrient accumulation, transformation and yield of summer maize. Plant Nutr. Fertil. Sci. 2006, 12, 622–627. [Google Scholar]
- Zhang, J.J.; Dang, Y.; Zhao, G.; Wang, L.; Fan, T.L.; Li, S.Z. Influences of mulching periods and nitrogen application rates on maize yield as well as water and nitrogen use efficiencies in loess plateau of eastern Gansu province. Sci. Agric. Sin. 2022, 55, 479–490. [Google Scholar]
- Ma, L.; Zhang, X.; Lei, Q.Y.; Liu, F. Effects of drip irrigation nitrogen coupling on dry matter accumulation and yield of Summer Maize in arid areas of China. Field Crop Res. 2021, 274, 108321. [Google Scholar] [CrossRef]
- Liimatainen, A.; Sairanen, A.; Jaakkola, S.; Kokkonen, T.; Kuoppala, K.; Jokiniemi, T.; Makela, P.S.A. Yield, quality and nitrogen use of forage maize under different nitrogen application rates in two boreal locations. Agronomy 2022, 12, 887. [Google Scholar] [CrossRef]
- Tian, G.L.; Qi, D.L.; Zhu, J.Q.; Xu, Y. Effects of nitrogen fertilizer rates and waterlogging on leaf physiological characteristics and grain yield of maize. Arch. Agron. Soil Sci. 2021, 67, 863–875. [Google Scholar] [CrossRef]
- Zhao, B.; Niu, X.L.; Ata-Ul-Karim, S.T.; Wang, L.G.; Duan, A.W.; Liu, Z.D.; Lemaire, G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. Eur. J. Agron. 2020, 113, 125967. [Google Scholar] [CrossRef]
- Guo, J.J.; Fan, J.L.; Xiang, F.C.; Zhang, Y.Z.; Zhang, X.Y.; Yan, S.C.; Zhang, C.Y.; Zhang, J.M.; Zheng, J.; Yan, F.L. Synchronizing nitrogen supply and uptake by rainfed maize using mixed urea and slow-release nitrogen fertilizer. Nutr. Cycl. Agroecosys 2022, 122, 157–171. [Google Scholar] [CrossRef]
- Yang, H.S.; Zhang, Y.Q.; Xu, S.J.; Li, G.H.; Gao, J.L.; Wang, Z.G. Characteristics of dry matter and nutrient accumulation and transportation of super-high yield spring maize. Plant Nutr. Fertil. Sci. 2012, 18, 315–323. [Google Scholar]
- Tan, D.C.; Guo, L.L.; Liu, J.M.; Fan, Y.L.; Li, Q.Q. Response of dry matter translocation and grain yield of summer maize to biodegradable film in the North China Plain. Int. Agrophys. 2020, 34, 87–94. [Google Scholar] [CrossRef]
- Ren, H.; Jiang, Y.; Zhao, M.; Qi, H.; Li, C.F. Nitrogen supply regulates vascular bundle structure and matter transport characteristics of spring maize under high plant density. Front. Plant Sci. 2021, 11, 602739. [Google Scholar] [CrossRef]
- Guan, Z.H.; Wang, L.; Turner, N.C.; Li, X.G. Plastic-film mulch affects partitioning of maize biomass and nutrients to grain. Crops Sci. 2022, 62, 315–325. [Google Scholar] [CrossRef]
- Nasielski, J.; Earl, H.; Deen, B. Luxury vegetative nitrogen uptake in maize buffers grain yield under post-silking water and nitrogen stress: A mechanistic understanding. Front. Plant Sci. 2019, 10, 318. [Google Scholar] [CrossRef]
- Hou, Y.P.; Kong, L.L.; Cai, H.G.; Liu, H.T.; Gao, Y.S.; Wang, Y.J.; Wang, L.C. The accumulation and distribution characteristics on dry matter and nutrients of high-yielding maize under drip irrigation and fertilization conditions in semi-arid region of Northeastern China. Sci. Agric. Sin. 2019, 52, 3559–3572. [Google Scholar]
Year | 2019 | 2020 | 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Density (×104 Plants ha−1) | 7.5 | 12.0 | 7.5 | 12.0 | 7.5 | 12.0 | ||||
Varieties | DH618 | XY335 | DH618 | XY335 | DH618 | XY335 | DH618 | XY335 | XY335 | XY335 |
Nitrogen Application (kg ha−1) | t ha−1 | |||||||||
0 | 13.02 g | 12.23 g | 12.12 h | 12.70 g | 9.97 f | 11.33 f | 8.76 h | 9.56 g | 8.42 j | 8.7 h |
45 | 13.28 g | 12.69 g | 12.66 h | 12.99 g | 10.10 f | 12.12 f | 9.23 h | 11.65 f | 9.58 i | 9.56 h |
90 | 13.81 f | 14.00 f | 13.55 g | 13.99 f | 12.84 e | 14.63 e | 10.99 g | 14.34 e | 11.08 h | 11.51 g |
135 | 14.81 e | 15.77 e | 14.33 f | 14.84 e | 14.91 d | 17.34 d | 13.03 f | 17.28 d | 12.62 g | 13.92 f |
180 | 15.49 d | 16.47 d | 14.88 e | 15.11 e | 16.72 c | 18.24 c | 14.91 e | 18.92 c | 14.58 f | 15.71 e |
225 | 16.87 c | 17.28 c | 15.85 d | 16.26 d | 18.16 b | 19.38 b | 16.42 d | 20.49 b | 16.05 e | 16.74 de |
270 | 17.26 bc | 18.13 b | 17.15 c | 16.86 c | 19.42 a | 20.26 ab | 17.76 c | 21.68 a | 16.85 de | 17.25 cd |
315 | 17.84 a | 18.88 a | 18.15 b | 18.40 b | 19.40 a | 20.70 a | 18.85 b | 22.25 a | 17.83 cd | 18.00 c |
360 | 17.62 ab | 18.69 ab | 18.53 ab | 19.32 a | 19.36 a | 20.49 a | 20.50 a | 22.65 a | 19.65 a | 19.24 b |
405 | 17.46 ab | 18.69 ab | 18.89 a | 19.10 a | 19.10 a | 20.68 a | 20.37 a | 21.85 a | 19.37 ab | 20.91 a |
450 | 17.42 ab | 18.42 ab | 18.75 ab | 19.17 a | 19.41 a | 20.14 ab | 20.48 a | 22.02 a | 19.34 ab | 20.53 a |
495 | 17.41 ab | 18.52 ab | 18.63 ab | 19.17 a | 19.11 a | 20.31 a | 20.19 a | 21.92 a | 18.96 abc | 20.27 ab |
540 | 17.61 ab | 18.64 ab | 18.83 a | 19.07 a | 18.89 ab | 20.25 ab | 20.48 a | 22.04 a | 18.97 abc | 20.86 a |
585 | 17.61 ab | 18.48 ab | 18.69 ab | 19.11 a | 18.96 a | 20.31 a | 20.22 a | 21.83 a | 18.54 abc | 20.78 a |
630 | 17.71 ab | 18.56 ab | 18.75 ab | 19.23 a | 18.87 ab | 19.85 ab | 20.42 a | 21.81 a | 19.43 ab | 20.56 a |
675 | 17.68 ab | 18.59 ab | 18.73 ab | 19.12 a | 18.88 ab | 20.13 ab | 20.19 a | 21.79 a | 19.17 ab | 20.41 ab |
720 | 17.80 ab | 18.39 ab | 18.67 ab | 19.11 a | 18.98 a | 19.85 ab | 20.22 a | 21.72 a | 18.66 abc | 20.35 ab |
765 | 17.56 ab | 18.58 ab | 18.68 ab | 19.11 a | 19.09 a | 19.98 ab | 20.31 a | 21.69 a | 18.25 bc | 19.99 ab |
Plant Density (×104 plants ha−1) | Indicators | Fitting Equation | R2 |
---|---|---|---|
7.5 | Yield | Y = 10.82 + 0.03 × N, N < 279; Y = 18.86, N ≥ 279 | 0.994 ** |
HI | Y = 0.44 + 0.0002 × N, N < 300; Y = 0.51, N ≥ 300 | 0.854 ** | |
Pre-R1 DM | Y = 8.98 + 0.007 × N, N < 350; Y = 11.32, N ≥ 350 | 0.969 ** | |
Post-R1 DM | Y = 11.8 + 0.02 × N, N < 363; Y = 19.61, N ≥ 363 | 0.997 ** | |
DM at R6 | Y = 20.58 + 0.03 × N, N < 362; Y = 31.09, N ≥ 362 | 0.997 ** | |
12.0 | Yield | Y = 10.26 + 0.03 × N, N < 319; Y = 20.14, N ≥ 319 | 0.994 ** |
HI | Y = 0.45 + 0.0002 × N, N < 390; Y = 0.53, N ≥ 390 | 0.973 ** | |
Pre-R1 DM | Y = 11.62 + 0.01 × N, N < 507; Y = 14.85, N ≥ 507 | 0.993 ** | |
Post-R1 DM | Y = 12.46 + 0.02 × N, N < 423; Y = 21.85, N ≥ 423 | 0.984 ** | |
DM at R6 | Y = 23.8 + 0.03 × N, N < 402; Y = 35.97, N ≥ 402 | 0.977 ** |
Nitrogen Application Amount (kg ha−1) | Model | R2 | Calculated Values | ||||
---|---|---|---|---|---|---|---|
t1 (d) | t2 (d) | T (d) | Vmax (t ha−1 d−1) | Wmax (t ha−1) | |||
0 | Y = 20.52/(1 + 296.75e−0.06t) | 0.998 ** | 69.3 | 111.0 | 41.7 | 0.32 | 20.52 |
45 | Y = 22.78/(1 + 254.88e−0.06t) | 0.998 ** | 69.9 | 113.5 | 43.6 | 0.34 | 22.78 |
90 | Y = 24.39/(1 + 239.23e−0.06t) | 0.998 ** | 70.5 | 115.1 | 44.6 | 0.36 | 24.38 |
135 | Y = 24.93/(1 + 238.15e−0.06t) | 0.999 ** | 70.4 | 115.1 | 44.6 | 0.37 | 24.93 |
180 | Y = 25.72/(1 + 264.49e−0.06t) | 0.999 ** | 70.9 | 114.7 | 43.8 | 0.39 | 25.72 |
225 | Y = 27.45/(1 + 237.47e−0.06t) | 0.998 ** | 71.6 | 117.0 | 45.4 | 0.40 | 27.45 |
270 | Y = 28.54/(1 + 237.23e−0.06t) | 0.998 ** | 71.4 | 116.7 | 45.3 | 0.41 | 28.54 |
315 | Y = 29.87/(1 + 222.30e−0.06t) | 0.998 ** | 71.1 | 116.9 | 45.8 | 0.43 | 29.87 |
360 | Y = 29.94/(1 + 247.50e−0.06t) | 0.998 ** | 71.5 | 116.4 | 44.9 | 0.44 | 29.94 |
405 | Y = 30.62/(1 + 229.53e−0.06t) | 0.999 ** | 71.6 | 117.4 | 45.8 | 0.44 | 30.62 |
450 | Y = 30.95/(1 + 228.73e−0.06t) | 0.998 ** | 71.9 | 118.0 | 46.0 | 0.44 | 30.95 |
495 | Y = 30.56/(1 + 255.84e−0.06t) | 0.999 ** | 71.1 | 115.4 | 44.3 | 0.45 | 30.56 |
540 | Y = 30.72/(1 + 222.01e−0.06t) | 0.998 ** | 71.4 | 117.5 | 46.1 | 0.44 | 30.72 |
585 | Y = 31.01/(1 + 264.38e−0.06t) | 0.999 ** | 71.7 | 116.0 | 44.3 | 0.46 | 31.01 |
630 | Y = 30.54/(1 + 230.71e−0.06t) | 0.999 ** | 71.4 | 116.9 | 45.6 | 0.44 | 30.54 |
675 | Y = 30.82/(1 + 227.23e−0.06t) | 0.999 ** | 71.5 | 117.4 | 45.9 | 0.44 | 30.82 |
720 | Y = 30.89/(1 + 238.43e−0.06t) | 0.999 ** | 71.6 | 117.0 | 45.4 | 0.45 | 30.89 |
765 | Y = 31.09/(1 + 229.13e−0.06t) | 0.999 ** | 71.8 | 117.7 | 45.9 | 0.45 | 31.09 |
Nitrogen Application Amount (kg ha—1) | Model | R2 | Calculated Values | ||||
---|---|---|---|---|---|---|---|
t1 (d) | t2 (d) | T (d) | Vmax (t ha−1 d−1) | Wmax (t ha−1) | |||
0 | Y = 23.50/(1 + 228.70e−0.06t) | 0.997 ** | 65.8 | 107.9 | 42.1 | 0.37 | 23.50 |
45 | Y = 25.30/(1 + 184.9e−0.06t) | 0.996 ** | 65.8 | 110.2 | 44.4 | 0.38 | 25.30 |
90 | Y = 27.53/(1 + 152.02e−0.06t) | 0.995 ** | 66.9 | 114.4 | 47.5 | 0.38 | 27.53 |
135 | Y = 28.22/(1 + 161.55e−0.06t) | 0.996 ** | 66.8 | 113.4 | 46.7 | 0.40 | 28.22 |
180 | Y = 30.40/(1 + 141.93e−0.05t) | 0.996 ** | 67.8 | 116.8 | 49.0 | 0.41 | 30.40 |
225 | Y = 31.58/(1 + 141.90e−0.05t) | 0.996 ** | 68.0 | 117.2 | 49.2 | 0.42 | 31.58 |
270 | Y = 33.04/(1 + 150.13e−0.05t) | 0.996 ** | 68.4 | 117.2 | 48.7 | 0.45 | 33.04 |
315 | Y = 33.11/(1 + 185.85e−0.06t) | 0.997 ** | 68.1 | 113.9 | 45.9 | 0.48 | 33.11 |
360 | Y = 34.17/(1 + 208.97e−0.06t) | 0.997 ** | 68.3 | 113.0 | 44.7 | 0.50 | 34.17 |
405 | Y = 35.80/(1 + 199.88e−0.06t) | 0.997 ** | 69.0 | 114.6 | 45.6 | 0.52 | 35.80 |
450 | Y = 35.91/(1 + 198.72e−0.06t) | 0.998 ** | 69.2 | 115.0 | 45.8 | 0.52 | 35.91 |
495 | Y = 36.82/(1 + 169.88e−0.05t) | 0.997 ** | 69.4 | 117.3 | 47.9 | 0.51 | 36.82 |
540 | Y = 37.22/(1 + 158.728e−0.05t) | 0.997 ** | 69.9 | 118.9 | 49.1 | 0.50 | 37.22 |
585 | Y = 36.73/(1 + 186.37e−0.06t) | 0.998 ** | 69.2 | 115.8 | 46.6 | 0.52 | 36.73 |
630 | Y = 36.82/(1 + 184.78e−0.06t) | 0.998 ** | 69.7 | 116.7 | 47.0 | 0.52 | 36.82 |
675 | Y = 37.50/(1 + 162.24e−0.05t) | 0.997 ** | 70.3 | 119.3 | 49.1 | 0.50 | 37.50 |
720 | Y = 36.83/(1 + 179.79e−0.06t) | 0.997 ** | 70.0 | 117.5 | 47.6 | 0.51 | 36.83 |
765 | Y = 36.97/(1 + 173.73e−0.06t) | 0.997 ** | 69.7 | 117.6 | 47.8 | 0.51 | 36.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, J.; Zhang, G.; Zhang, Y.; Xu, W.; Xie, R.; Ming, B.; Hou, P.; Wang, K.; Xue, J.; Li, S. Effect of the Rate of Nitrogen Application on Dry Matter Accumulation and Yield Formation of Densely Planted Maize. Sustainability 2022, 14, 14940. https://doi.org/10.3390/su142214940
Zhai J, Zhang G, Zhang Y, Xu W, Xie R, Ming B, Hou P, Wang K, Xue J, Li S. Effect of the Rate of Nitrogen Application on Dry Matter Accumulation and Yield Formation of Densely Planted Maize. Sustainability. 2022; 14(22):14940. https://doi.org/10.3390/su142214940
Chicago/Turabian StyleZhai, Juan, Guoqiang Zhang, Yuanmeng Zhang, Wenqian Xu, Ruizhi Xie, Bo Ming, Peng Hou, Keru Wang, Jun Xue, and Shaokun Li. 2022. "Effect of the Rate of Nitrogen Application on Dry Matter Accumulation and Yield Formation of Densely Planted Maize" Sustainability 14, no. 22: 14940. https://doi.org/10.3390/su142214940
APA StyleZhai, J., Zhang, G., Zhang, Y., Xu, W., Xie, R., Ming, B., Hou, P., Wang, K., Xue, J., & Li, S. (2022). Effect of the Rate of Nitrogen Application on Dry Matter Accumulation and Yield Formation of Densely Planted Maize. Sustainability, 14(22), 14940. https://doi.org/10.3390/su142214940