Algorithm for Measuring the Outer Contour Dimension of Trucks Using UAV Binocular Stereo Vision
Abstract
:1. Introduction
- (1)
- A method is proposed to solve the ground plane equation by iteratively correcting the ground plane normal vector using the least square method. This method is verified to be robust in the over-limit detection scenario;
- (2)
- Considering the efficiency of applying UAVs for over-limit detection, this study proposes a point cloud segmentation algorithm based on FOF clustering. This approach is computationally efficient, and the number of clusters does not need to be artificially set;
- (3)
- To address the characteristics of the large length–width ratios and symmetries associated with truck bodies, this study proposes a method for calculating length and width using the principal component analysis and the Gaussian kernel density estimation.
2. Vehicle 3D Point Cloud Acquisition
3. Methods
3.1. Truck Point Cloud Segmentation
3.1.1. Ground Plane Identification
Algorithm 1 Ground plane identification |
Input: ; threshold
|
3.1.2. Target Vehicle Point Cloud Segmentation Based on FoF Clustering
Algorithm 2 FoF clustering |
Input: Sample set ; Neighborhood parameter
|
3.2. Measurement of the Outer Contour Dimension of the Truck
3.2.1. Coordinate Transformation of Target Vehicle Point Clouds Based on the Ground Plane Equation
3.2.2. Vehicle Length and Width Solution Based on Principal Component Analysis and KDE
4. Experiments and Results
4.1. Experiments’ Preparation
Construction of the UAV Platform and Experimental Implementation Scheme
4.2. Algorithm Implementation
4.2.1. Determination of Optimal Ground Thickness Parameters in the Ground Plane Identification
4.2.2. Determination of Threshold Parameters in FOF Clustering
4.2.3. Error Estimation of the Outer Contour Dimension Measurement Algorithm
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wardhana, K.; Hadipriono, F.C. Analysis of Recent Bridge Failures in the United States. J. Perform. Constr. Facil. 2003, 17, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Corral-Soto, E.R.; Elder, J.H. Slot Cars: 3D Modelling for Improved Visual Traffic Analytics. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 889–897. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Shen, X.; Jia, J. DSGN: Deep Stereo Geometry Network for 3D Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Li, S.; Bie, Y. Gradient illumination scheme design at the highway intersection entrance considering driver’s light adaption. Traffic Inj. Prev. 2022, 23, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Kocur, V.; Ftáčnik, M. Detection of 3D bounding boxes of vehicles using perspective transformation for accurate speed measurement. Mach. Vis. Appl. 2020, 31, 1–15. [Google Scholar] [CrossRef]
- Sochor, J.; Spanhel, J.; Herout, A. BoxCars: Improving Fine-Grained Recognition of Vehicles Using 3-D Bounding Boxes in Traffic Surveillance. IEEE Trans. Intell. Transp. Syst. 2018, 20, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Chabot, F.; Chaouch, M.; Rabarisoa, J.; Teuliere, C.; Chateau, T. Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3D bounding box estimation using deep learning and geometry. In Proceedings of the IEEE 2017 Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Scherer, S. CubeSLAM: Monocular 3-D Object SLAM. IEEE Trans. Robot. 2019, 35, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Pan, H.; Liu, H.; Sun, Y. IDA-3D: Instance-Depth-Aware 3D Object Detection From Stereo Vision for Autonomous Driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, W.-L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Shen, S. Stereo R-CNN Based 3D Object Detection for Autonomous Driving. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Guo, Y.; Mi, Z.; Li, X. Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2021, 471, 219–229. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, L.; Wang, X.; Sun, D. Resilient UAV Traffic Congestion Control Using Fluid Queuing Models. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7561–7572. [Google Scholar] [CrossRef]
- Estevez, J.; Lopez-Guede, J.M.; Graña, M. Quasi-stationary state transportation of a hose with quadrotors. Robot. Auton. Syst. 2015, 63, 187–194. [Google Scholar] [CrossRef]
- Drones: A Vision Has Become Reality. 2019. Available online: http://www.swisspost.ch/drones (accessed on 1 July 2019).
- Wang, S.; Jiang, F.; Zhang, B.; Ma, R.; Hao, Q. Development of UAV-Based Target Tracking and Recognition Systems. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3409–3422. [Google Scholar] [CrossRef]
- Boudjit, K.; Larbes, C. Detection and Implementation Autonomous Target Tracking with a Quadrotor AR.Drone. In Proceedings of the Icimco 2015—12th International Conference on Informatics in Control, Automation and Robotics, Alsace, France, 21–23 July 2015. [Google Scholar] [CrossRef]
- Liu, S.; Wang, S.; Shi, W.; Liu, H.; Li, Z.; Mao, T. Vehicle tracking by detection in UAV aerial video. Sci. China Inf. Sci. 2019, 62, 24101. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, F.; Yin, H. Detecting and tracking vehicles in traffic by unmanned aerial vehicles. Autom. Constr. 2016, 72, 294–308. [Google Scholar] [CrossRef]
- Guido, G.; Gallelli, V.; Rogano, D.; Vitale, A. Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles. Int. J. Transp. Sci. Technol. 2016, 5, 136–151. [Google Scholar] [CrossRef]
- Kanistras, K.; Martins, G.; Rutherford, M.J.; Valavanis, K.P. Survey of Unmanned Aerial Vehicles (UAVs) for Traffic Monitoring. In Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Elloumi, M.; Dhaou, R.; Escrig, B.; Idoudi, H.; Saidane, L.A. Monitoring road traffic with a UAV-based system. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, Y.; Li, X.; Meng, Z.; Luo, H. Efficient plane extraction using normal estimation and RANSAC from 3D point cloud. Comput. Stand. Interfaces 2021, 82, 103608. [Google Scholar] [CrossRef]
- Kwon, Y.; Nunley, D.; Gardner, J.P.; Balazinska, M.; Howe, B.; Loebman, S. Scalable Clustering Algorithm for N-Body Simulations in a Shared-Nothing Cluster. In Proceedings of the Scientific and Statistical Database Management, Heidelberg, Germany, 30 June–2 July 2010. [Google Scholar] [CrossRef] [Green Version]
- Bentley, J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Jiang, J.; Zhang, Y.; Liu, X.; Cai, Z. Spectral–Spatial and Superpixelwise PCA for Unsupervised Feature Extraction of Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on Some Nonparametric Estimates of a Density Function. Ann. Math. Stat. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Ahamada, I.; Flachaire, E. Non-Parametric Econometrics; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Härdle, W.; Werwatz, A.; Müller, M.; Sperlich, S. Nonparametric and Semiparametric Models; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Qin, Z.; Li, W.; Xiong, X. Estimating wind speed probability distribution using kernel density method. Electr. Power Syst. Res. 2011, 81, 2139–2146. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Dimensions | 175 × 30 × 33 mm |
Weight | 166 g |
Field of View | 110° (H) × 70° (V) × 120° (D) |
Depth Range | 0.2–20 m |
Output Resolution (side by side) | HD720: 1280 × 720 (60/30/15 FPS) |
Operating Temperature | −10 °C to +45 °C |
Subject | Standard Size | Predicted Size | Relative Error | Average Error | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Length/m | Width/m | Height/m | Length/m | Width/m | Height/m | Length Error | Width Error | Height Error | ||
1 | 1.157 | 0.180 | 0.307 | 1.184 | 0.184 | 0.31 | 2.28% | 2.17% | 0.97% | 1.81% |
2 | 1.151 | 0.179 | 0.316 | 1.184 | 0.184 | 0.32 | 2.80% | 2.72% | 1.27% | 2.26% |
3 | 1.084 | 0.183 | 0.308 | 1.106 | 0.184 | 0.315 | 1.99% | 0.54% | 2.22% | 1.58% |
4 | 1.071 | 0.177 | 0.324 | 1.106 | 0.184 | 0.325 | 3.18% | 3.80% | 0.32% | 2.43% |
5 | 1.071 | 0.177 | 0.307 | 1.102 | 0.184 | 0.315 | 2.81% | 3.70% | 2.56% | 3.02% |
6 | 1.065 | 0.182 | 0.323 | 1.102 | 0.184 | 0.325 | 3.32% | 1.08% | 0.64% | 1.68% |
7 | 2.184 | 0.384 | 0.375 | 2.161 | 0.372 | 0.377 | 1.05% | 3.13% | 0.53% | 1.57% |
8 | 2.184 | 0.384 | 0.385 | 2.112 | 0.372 | 0.394 | 3.30% | 3.13% | 2.34% | 2.92% |
9 | 2.308 | 0.324 | 0.335 | 2.242 | 0.334 | 0.341 | 2.86% | 3.09% | 1.79% | 2.58% |
10 | 2.106 | 0.384 | 0.38 | 2.025 | 0.371 | 0.375 | 3.85% | 3.39% | 1.32% | 2.85% |
11 | 2.106 | 0.384 | 0.37 | 2.056 | 0.38 | 0.373 | 2.37% | 1.04% | 0.81% | 1.41% |
12 | 2.102 | 0.384 | 0.335 | 2.098 | 0.374 | 0.331 | 0.19% | 2.60% | 1.19% | 1.33% |
13 | 2.102 | 0.384 | 0.355 | 2.061 | 0.379 | 0.359 | 1.95% | 1.30% | 1.13% | 1.46% |
14 | 2.384 | 0.352 | 0.42 | 2.357 | 0.361 | 0.411 | 1.13% | 2.56% | 2.14% | 1.94% |
15 | 2.384 | 0.352 | 0.42 | 2.351 | 0.361 | 0.427 | 1.38% | 2.56% | 1.67% | 1.87% |
16 | 2.408 | 0.352 | 0.42 | 2.351 | 0.345 | 0.431 | 2.45% | 1.99% | 2.62% | 2.35% |
17 | 2.307 | 0.361 | 0.415 | 2.269 | 0.37 | 0.41 | 1.65% | 2.43% | 1.20% | 1.76% |
18 | 2.307 | 0.37 | 0.415 | 2.262 | 0.378 | 0.406 | 1.95% | 2.16% | 2.17% | 2.09% |
19 | 2.172 | 0.37 | 0.415 | 2.099 | 0.362 | 0.419 | 3.36% | 2.16% | 0.96% | 2.16% |
20 | 2.172 | 0.37 | 0.415 | 2.097 | 0.367 | 0.421 | 3.45% | 0.81% | 1.45% | 1.90% |
Average | 2.37% | 2.32% | 1.47% | 2.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Han, L.; Dong, P.; Sun, W. Algorithm for Measuring the Outer Contour Dimension of Trucks Using UAV Binocular Stereo Vision. Sustainability 2022, 14, 14978. https://doi.org/10.3390/su142214978
Li S, Han L, Dong P, Sun W. Algorithm for Measuring the Outer Contour Dimension of Trucks Using UAV Binocular Stereo Vision. Sustainability. 2022; 14(22):14978. https://doi.org/10.3390/su142214978
Chicago/Turabian StyleLi, Shiwu, Lihong Han, Ping Dong, and Wencai Sun. 2022. "Algorithm for Measuring the Outer Contour Dimension of Trucks Using UAV Binocular Stereo Vision" Sustainability 14, no. 22: 14978. https://doi.org/10.3390/su142214978
APA StyleLi, S., Han, L., Dong, P., & Sun, W. (2022). Algorithm for Measuring the Outer Contour Dimension of Trucks Using UAV Binocular Stereo Vision. Sustainability, 14(22), 14978. https://doi.org/10.3390/su142214978