More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration
Abstract
:1. Circular, Green and Adaptive City
- Section 2 provides a literature review that focuses on the challenge of the circular city in the twin transitions (Section 2.1); the energy demand in cities, developments and future challenges (Section 2.2); smart grid in the digital—energy transition (Section 2.3);
- Section 3 focuses on the materials, with particular attention to the management of public real estate in Italy (Section 3.1) and the current state of the military estate and energy transition (Section 3.2);
- Section 4 describes the proposed methodology to define the Key Performance Indicators (KPIs) used for Renewable Energy Communities (REC) (Section 4.1), the Circular City Index (Section 4.2) and the application to the study area (Section 4.3);
- Section 5 discusses the results of the case study;
- Section 6 contains the conclusion.
2. Literature Review
2.1. The Challenge of the Circular City in the Twin Transitions
- SDG 4 (quality education): the circular transition is related to increased environmental and civic education of all the citizens, who must actively contribute to its implementation;
- SDG 8 (decent work and economic growth): shifting the economic model from a linear one to a new one based on the low cost of materials, lack of externalities and costs and strong automation of processes toward a circular one based on maintenance, reuse, regeneration and recycle would create knowledge-based jobs not replaceable from robots;
- SDG 9 (industry, innovation, and infrastructure): the circular economy represents an overall vision that shapes all specific initiatives (industry 4.0).
2.2. Energy Demand in Cities: Developments and Future Challenges
2.3. Smart Grid in the Digital—Energy Transition
3. Materials
3.1. Public Real Estate Management in Italy
3.2. Military Estate and Energy Transition
4. Methodology and Data
4.1. Renewable Energy Communities (REC): The Key Performance Indicators (KPIs)
4.2. The Circular City Index
- Green and recycled materials—in particular the concrete, plaster and steel;
- CO2 uptake-both from: green areas (phenomenon of photosynthesis) and cement and plaster (phenomenon of carbonation);
- Renewable Energy Communities REC—City district;
- 15 Minute City and Proximity services—accessibility to the main urban facilities.
4.3. Study Area
5. Results
- -
- the cognitive phase, because it describes the ex-ante condition of PREA;
- -
- in the urban and economic planning phase;
- -
- in the design phase, as it supports design choices in coherence with the Minimum Environmental Criteria (MEC) [97], which in Italy should be respected in all interventions on PREA. The MEC are green criteria introduced to support public bodies in the ecological transition phase, which requires the implementation of the life-cycle approach in public governance;
- -
- in the monitoring phase, which is after the conclusion of the regeneration project.
6. Conclusions
- -
- the construction of an open dataset functional to the construction of CCI;
- -
- a periodic review of key performance themes and indicators to improve the reliability of the CCI
- -
- develop CCI integration processes within the framework of public policies for sustainable development (performance indicator)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
CCI | Circular City Index |
CDW | Construction and demolition waste |
DSI | Demand Side Integration |
GBP | Green Barracks Project |
MB | Military Building |
US | Urban Scale |
MoD | Ministry of Defence |
PREA | Public Real-Estate Assets |
REC | Renewable Energy Communities |
EFET | Ratio between energy fed to the grid and energy withdrawn from the grid over a set period |
SCSTC | Ratio between the sum of self-consumed and shared energy over the total energy consumption of the community over a set period |
SCP | Self-consumed over the total energy produced over a set period in the city district |
STC | Shared energy over total energy consumption of the community over a set period in the city district. |
References
- Vanhuyse, F.; Haddaway, N.R.; Henrysson, M. Circular cities: An evidence map of research between 2010 and 2020. Discov. Sustain. 2021, 2, 50. [Google Scholar] [CrossRef]
- Williams, J. Circular Cities: A Revolution in Urban Sustainability, 1st ed.; Routledge: London, UK; New York, NY, USA, 2021. [Google Scholar]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The circular economy: An interdisciplinary exploration of the concept and application in a global context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Bîrgovan, A.L.; Lakatos, E.S.; Szilagyi, A.; Cioca, L.I.; Pacurariu, R.L.; Ciobanu, G.; Rada, E.C. How should we measure? A review of circular cities indicators. Int. J. Environ. Res. Public Health 2022, 19, 5177. [Google Scholar] [CrossRef] [PubMed]
- Paiho, S.; Mäki, E.; Wessberg, N.; Paavola, M.; Tuominen, P.; Antikainen, M.; Heikkilä, J.; Rozado, C.A.; Jung, N. Towards circular cities—Conceptualizing core aspects. Sustain. Cities Soc. 2020, 59, 102143. [Google Scholar] [CrossRef]
- United Nation. World Population Prospects 2019; 2019. Available online: https://population.un.org/wup/ (accessed on 23 September 2022).
- Harris, S.; Weinzettel, J.; Bigano, A.; Källmén, A. Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. J. Clean. Prod. 2020, 248, 119206. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Miao, Y.; Ma, H.; Zhang, Q.; Zhou, Q. Spatio-temporal evolution of population and urbanization in the countries along the Belt and Road 1950–2050. J. Geogr. Sci. 2018, 28, 919–936. [Google Scholar] [CrossRef] [Green Version]
- Swilling, M.; Hajer, M.; Baynes, T.; Bergesen, J.; Labbé, F.; Musango, J.K.; Ramaswami, A.; Robinson, B.; Salat, S.; Suh, S. The Weight of Cities: Resource Requirements of Future Urbanization. IRP Reports. 2018. Available online: https://www.resourcepanel.org/sites/default/files/documents/document/media/report_the_weight_of_cities_summry_web.compressed_230218.pdf (accessed on 23 September 2022).
- Marin, J.; De Meulder, B. Interpreting Circularity. Circular City Representations Concealing Transition Drivers. Sustainability 2018, 10, 1310. [Google Scholar] [CrossRef] [Green Version]
- Balletto, G.; Naitza, S.; Desogus, G. Stone in the city. Extraction sites and spoliation of stone materials in the city of Nora (South-West Sardinia). In Proceedings of the 21st IPSAPA/ISPALEM International Scientific Conference, Venice, Italy, 6–7 July 2017, Paradise Lost of the Landscape-Cultural Mosaic. Attractiveness, Harmony, Atarassia, 1st ed.; Piccinini, L.C., Reho, M., Chang, T.F.M., Taverna, M., Isepp, L., Eds.; IPSAPA/ISPALEM: Udine, Italy, 2018; Volume 4, pp. 397–408. [Google Scholar]
- Musti, K.S. Circular economy in energizing smart cities. In Handbook of Research on Entrepreneurship Development and Opportunities in Circular Economy, 1st ed.; Baporikar, N., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 251–269. [Google Scholar]
- Ellen MacArthur Foundation. Available online: https://ellenmacarthurfoundation.org/ (accessed on 22 September 2022).
- Kirchherr, J. Circular economy and growth: A critical review of “post-growth” circularity and a plea for a circular economy that grows. Resour. Conserv. Recycl. 2022, 179, 1–2. [Google Scholar] [CrossRef]
- Balletto, G.; Borruso, G.; Donato, C. City dashboards and the Achilles’ heel of smart cities: Putting governance in action and in space. In Computational Science and Its Applications–ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science, 1st ed.; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer: Cham, Switzerland, 2018; Volume 10962, pp. 654–668. [Google Scholar]
- Foster, G.; Saleh, R. The adaptive reuse of cultural heritage in European circular city plans: A systematic review. Sustainability 2021, 13, 2889. [Google Scholar] [CrossRef]
- Dóci, G.; Vasileiadou, E.; Petersen, A.C. Exploring the transition potential of renewable energy communities. Futures 2015, 66, 85–95. [Google Scholar] [CrossRef] [Green Version]
- D’Alpaos, C.; Andreolli, F. Renewable Energy Communities: The Challenge for New Policy and Regulatory Frameworks Design. In New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies, 1st ed.; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 500–509. [Google Scholar]
- Fusco Girard, L.; Nocca, F. Moving Towards the Circular Economy/City Model: Which Tools for Operationalizing This Model? Sustainability 2019, 11, 6253. [Google Scholar] [CrossRef] [Green Version]
- Murgante, B.; Balletto, G.; Borruso, G.; Saganeiti, L.; Pilogallo, A.; Scorza, F.; Castiglia, P.; Arghittu, A.; Dettori, M.A. Methodological proposal to evaluate the health hazard scenario from COVID-19 in Italy. Environ. Res. 2022, 209, 112873. [Google Scholar]
- Cifuentes-Faura, J. Circular economy and sustainability as a basis for economic recovery post-COVID-19. Circ. Econ. Sustain. 2022, 2, 1–7. [Google Scholar] [CrossRef]
- Naidoo, D.; Nhamo, L.; Lottering, S.; Mpandeli, S.; Liphadzi, S.; Modi, A.T.; Trois, C.; Mabhaudhi, T. Transitional pathways towards achieving a circular economy in the water, energy, and food sectors. Sustainability 2021, 13, 9978. [Google Scholar] [CrossRef]
- European Commission. Italy’s Recovery and Resilience Plan. 2021. Available online: https://ec.europa.eu/info/business-economy-euro/recovery-coronavirus/recovery-and-resilience-facility/italys-recovery-and-resilience-plan_en (accessed on 22 September 2022).
- Muscillo, A.; Re, S.; Gambacorta, S.; Ferrara, G.; Tagliafierro, N.; Borello, E.; Rubino, A.; Facchini, A. Circular City Index: An Open Data Analysis to Assess the Urban Circularity Preparedness of Cities to Address the Green Transition—A Study on the Italian Municipalities. arXiv Preprint 2021, arXiv:2109.10832. Available online: https://arxiv.org/ftp/arxiv/papers/2109/2109.10832.pdf (accessed on 22 September 2022).
- Balletto, G.; Borruso, G.; Murgante, B.; Milesi, A.; Ladu, M. Resistance and Resilience. A Methodological Approach for Cities and Territories in Italy. In Computational Science and Its Applications–ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science, 1st ed.; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., Eds.; Springer: Cham, Switzerland, 2021; Volume 12952, pp. 218–229. [Google Scholar]
- Prendeville, S.; Cherim, E.; Bocken, N. Circular cities: Mapping six cities in transition. Environ. Innov. Soc. Transit. 2018, 26, 171–194. [Google Scholar] [CrossRef] [Green Version]
- Pani, L.; Francesconi, L.; Rombi, J.; Mistretta, F.; Sassu, M.; Stochino, F. Effect of Parent Concrete on the Performance of Recycled Aggregate Concrete. Sustainability 2020, 12, 9399. [Google Scholar] [CrossRef]
- Pani, L.; Balletto, G.; Naitza, S.; Francesconi, L.; Trulli, N.; Mei, G.; Furcas, C. Evaluation of mechanical, physical and chemical properties of recycled aggregates for structural concrete. In Proceedings of the Proceedings Sardinia 2013, Fourteenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy, 30 September–4 October 2013; p. 2282-0027. [Google Scholar]
- Pani, L.; Francesconi, L.; Rombi, J.; Stochino, F.; Mistretta, F. The Role of Parent Concrete in Recycled Aggregate Concrete. In Computational Science and Its Applications–ICCSA 2020; Springer: Cham, Switzerland, 2020; Volume 12255, pp. 1–11. [Google Scholar] [CrossRef]
- International Energy Agency. Cities, Towns & Renewable Energy. 2009. Available online: https://www.iea.org/reports/cities-towns-and-renewable-energy-yes-in-my-front-yard (accessed on 22 September 2022).
- Soares, J.; Borges, N.; Ghazvini, M.A.F.; Vale, Z.; de Moura Oliveira, P.B. Scenario generation for electric vehicles’ uncertain behavior in a smart city environment. Energy 2016, 111, 664–675. [Google Scholar] [CrossRef] [Green Version]
- Teng, F.; Aunedi, M.; Strbac, G. Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system. Appl. Energy 2016, 167, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Cassarino, T.G.; Sharp, E.; Barrett, M. The impact of social and weather drivers on the historical electricity demand in Europe. Appl. Energy 2018, 229, 176–185. [Google Scholar] [CrossRef]
- Cabeza, L.F.; de Gracia, A.; Pisello, A.L. Integration of renewable technologies in historical and heritage buildings: A review. Energy Build. 2018, 177, 96–111. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Li, W. Integrating high share of renewable energy into power system using customer-sited energy storage. Renew. Sustain. Energy Rev. 2021, 143, 110893. [Google Scholar] [CrossRef]
- Torriti, J. Appraising the Economics of Smart Meters: Costs and Benefits, 1st ed.; Routledge: London, UK; New York, NY, USA, 2020. [Google Scholar]
- Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Coker, P.; Torriti, J. Energy interactions: The growing interplay between buildings and energy networks. In Sustainable Futures in the Built Environment to 2050: A Foresight Approach to Construction and Development, 1st ed.; Dixon, T., Connaughton, J., Green, S., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 287–309. [Google Scholar]
- Romero-Lankao, P.; Wilson, A.; Sperling, J.; Miller, C.; Zimny-Schmitt, D.; Sovacool, B.; Gearhart, C.; Muratori, M.; Bazilian, M.; Zünd, D.; et al. Of actors, cities and energy systems: Advancing the transformative potential of urban electrification. Prog. Energy 2021, 3, 032002. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Bindzár, P. Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030. Energies 2021, 14, 1767. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 20 September 2022).
- Official Journal of the European Union. Directive (EU) 2019/944 of the European Parliament and of the Council of 5 June 2019 on Common Rules for the Internal Market for Electricity and Amending Directive 2012/27/EU. Available online: https://eur-lex.europa.eu/eli/dir/2019/944/oj (accessed on 22 September 2022).
- Gazzetta Ufficiale della Repubblica Italiana. L. 8, Feb. 28 2020- Conversione in Legge, con Modificazioni, del Decreto-Legge 30 Dicembre 2019, n. 162, Recante Disposizioni Urgenti in Materia di Proroga di Termini Legislativi, di Organizzazione delle Pubbliche Amministrazioni, Nonche’ di Innovazione Tecnologica. Available online: https://www.gazzettaufficiale.it/eli/id/2020/02/29/20G00021/sg (accessed on 22 September 2022).
- Gazzetta Ufficiale della Repubblica Italiana. D.L. n. 199, Nov 8 2021, Attuazione della Direttiva (UE) 2018/2001 del Parlamento Europeo e del Consiglio, dell’11 Dicembre 2018, Sulla Promozione dell’uso Dell’energia da Fonti Rinnovabili. Available online: https://www.gazzettaufficiale.it/eli/id/2021/11/30/21G00214/sg (accessed on 22 September 2022).
- Minuto, F.D.; Lanzini, A. Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles. Renew. Sustain. Energy Rev. 2022, 168, 112859. [Google Scholar] [CrossRef]
- White, A.D. A review of UK public sector real estate asset management. J. Corp. Real Estate 2011, 13, 6–15. [Google Scholar] [CrossRef]
- Wojewnik-Filipkowska, A.; Rymarzak, M.; Lausberg, C. Current managerial topics in public real estate asset management. Świat Nieruchom. 2015, 94, 5–10. [Google Scholar]
- Nickelsburg, J. Employment Dynamics in Local Labor Markets: Evidence from U. S. Post Cold War Base Closures. Def. Peace Econ. 2020, 31, 990–1005. [Google Scholar] [CrossRef]
- Manganelli, B.; Tataranna, S.; Vona, M.; Del Giudice, F.P. An Innovative Approach for the Enhancement of Public Real Estate Assets. Sustainability 2022, 14, 8309. [Google Scholar] [CrossRef]
- Ladu, M. The role of city dashboards in managing public real estate in Italy: Proposals for a conceptual framework. J. Urban Plan. Dev. 2020, 146, 04020047. [Google Scholar] [CrossRef]
- Carbonara, S.; Stefano, D. An Operational Protocol for the Valorisation of Public Real Estate Assets in Italy. Sustainability 2020, 12, 732. [Google Scholar] [CrossRef]
- Settis, S. Italia S.p.A: L’assalto al Patrimonio Culturale, 1st ed.; Einaudi: Turin, Italy, 2007. [Google Scholar]
- Ladu, M.; Balletto, G.; Milesi, A.; Mundula, L.; Borruso, G. Public Real Estate Assets and the Metropolitan Strategic Plan in Italy. The Two Cases of Milan and Cagliari. In Computational Science and Its Applications–ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, 1st ed.; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., et al., Eds.; Springer: Cham, Switzerland, 2020; Volume 12255, pp. 472–486. [Google Scholar]
- Balletto, G.; Milesi, A.; Fenu, N.; Borruso, G.; Mundula, L. Military training areas as semicommons: The territorial valorization of Quirra (Sardinia) from easements to ecosystem services. Sustainability 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
- Difesa Servizi. Available online: https://www.difesaservizi.it/home (accessed on 22 September 2022).
- Stato Maggiore dell’Esercito, Dipartimento delle Infrastrutture. Caserme Verdi Esercito—Studio per la Realizzazione di Grandi Infrasrutture. 2019. Available online: http://www.esercito.difesa.it/comunicazione/editoria/Rivista-Militare/Documents/2019/3/FASCICOLO_Caserme_Verdi_web.pdf (accessed on 22 September 2022).
- Ladu, M.; Bernardini, S. Opportunities and Challenges of Social Innovation Practices in Urban Development and Public Real Estate Management. Italy as a Case Study. In New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies; Bevilacqua, C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Switzerland, 2021; Volume 178, pp. 1012–1022. [Google Scholar]
- Balletto, G.; Ladu, M.; Milesi, A.; Borruso, G. A Methodological Approach on Disused Public Properties in the 15-Minute City Perspective. Sustainability 2021, 13, 593. [Google Scholar] [CrossRef]
- Commissione IV Difesa. Resoconto Stenografico Indagine Conoscitiva 25 Ottobre 2006, 1st ed.; Camera dei Deputati: Rome, Italy, 2006. [Google Scholar]
- Turri, F.; Zamperini, E. The military engineers and hygiene in barracks in the second half of the 19th century. In Nuts and Bolts of Construction History. Culture, Technology and Society; Carvais, R., Guillerme, A., Nègre, V., Sakarovitch, J., Eds.; Picard: Paris, France, 2012; Volume 3, pp. 309–316. [Google Scholar]
- Camerin, F.; Camatti, N.; Gastaldi, F. Military Barracks as Cultural Heritage in Italy: A Comparison between before-1900- and 1900-to-1950-Built Barracks. Sustainability 2021, 13, 782. [Google Scholar] [CrossRef]
- Camerin, F. Regenerating Former Military Sites in Italy. The Dichotomy between ‘Profit-Driven Spaces’ and ‘Urban Commons’. Glob. Jurist 2021, 21, 497–523. [Google Scholar] [CrossRef]
- Adisson, F.; Artioli, F. Four types of urban austerity: Public land privatisations in French and Italian cities. Urban Stud. 2020, 57, 75–92. [Google Scholar] [CrossRef]
- Touchton, M.; Ashley, A.J. Salvaging Community: How American Cities Rebuild Closed Military Bases, 1st ed.; Cornell University Press: Ithaca, NY, USA, 2019. [Google Scholar]
- Ministry of Defence. Climate Change and Sustainability Strategic Approach. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/973707/20210326_Climate_Change_Sust_Strategy_v1.pdf (accessed on 22 September 2022).
- Stato Maggiore della Difesa. Piano per la Strategia Energetica della Difesa. Edizione 2019. Available online: https://www.difesa.it/Content/Struttura_progetto_energia/Documents/Piano_SED_2019.pdf (accessed on 22 September 2022).
- Camera dei Deputati-Servizio Studi. La Transizione Ecologica della Difesa. Available online: https://www.camera.it/temiap/documentazione/temi/pdf/1263014.pdf?_1655048813031 (accessed on 22 September 2022).
- Barberini, P. The Ecological Transition in the Italian Defence. In Innovative Technologies and Renewed Policies for Achieving a Greener Defence. NATO Science for Peace and Security Series C: Environmental Security, 1st ed.; Iacovino, G., Wigell, M., Eds.; Springer: Dordrecht, The Netherlands, 2022; pp. 95–112. [Google Scholar]
- Noto, F.M. Sostegno alle Attività Produttive Mediante L’impiego di Sistemi di Generazione, Accumulo e Autoconsumo di Energia Elettrica. Available online: https://www.senato.it/application/xmanager/projects/leg18/attachments/documento_evento_procedura_commissione/files/000/000/548/2018_10_23_-_Ministero_difesa.pdf (accessed on 22 September 2022).
- Commissione IV Difesa. Bollettino delle Giunte e delle Commissioni Parlamentari. Available online: http://documenti.camera.it/leg18/resoconti/commissioni/bollettini/pdf/2020/09/23/leg.18.bol0440.data20200923.com04.pdf (accessed on 25 September 2022).
- Omer, M.M.; Rahman, R.A.; Almutairi, S. Construction waste recycling: Enhancement strategies and organization size. Phys. Chem. Earth Parts A/B/C 2022, 126, 103114. [Google Scholar] [CrossRef]
- Balletto, G.; Borruso, G.; Mei, G.; Milesi, A. Strategic Circular Economy in Construction: Case Study in Sardinia, Italy. J. Urban Plan.Dev. 2021, 147, 05021034. [Google Scholar] [CrossRef]
- Burghardt, T.E.; Pashkevich, A. Green Public Procurement criteria for road marking materials from insiders’ perspective. J. Clean. Prod. 2021, 298, 126521. [Google Scholar] [CrossRef]
- Shafique, M.; Xue, X.; Luo, X. An overview of carbon sequestration of green roofs in urban areas. Urban For. Urban Green. 2020, 47, 126515. [Google Scholar] [CrossRef]
- Furcas, C.; Balletto, G.; Naitza, S.; Mazzella, A. Evaluation of CO2 uptake under mild accelerated carbonation conditions in cement-based and lime-based mortars. Adv. Mater. Res. 2014, 980, 57–61. [Google Scholar]
- Carrus, A.S.; Galici, M.; Ghiani, E.; Mundula, L.; Pilo, F. Multi-Energy Planning of Urban District Retrofitting. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 6–8 September 2021. [Google Scholar]
- Di Silvestre, M.L.; Ippolito, M.G.; Sanseverino, E.R.; Sciumè, G.; Vasile, A. Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems. Renew. Sustain. Energy Rev. 2021, 151, 111565. [Google Scholar] [CrossRef]
- Ghiani, E.; Giordano, A.; Nieddu, A.; Rosetti, L.; Pilo, F. Planning of a smart local energy community: The case of Berchidda municipality (Italy). Energies 2019, 12, 4629. [Google Scholar] [CrossRef] [Green Version]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; Zhang, Y. Study on the layout of 15-minute community-life circle in third-tier cities based on POI: Baoding City of Hebei Province. Engineering 2019, 11, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Balletto, G.; Ladu, M.; Milesi, A.; Camerin, F.; Borruso, G. Walkable City and Military Enclaves: Analysis and Decision-Making Approach to Support the Proximity Connection in Urban Regeneration. Sustainability 2022, 14, 457. [Google Scholar] [CrossRef]
- Badii, C.; Bellini, P.; Cenni, D.; Chiordi, S.; Mitolo, N.; Nesi, P.; Paolucci, M. Computing 15Min City Indexes on the Basis of Open Data and Services. In Computational Science and Its Applications–ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science, 1st ed.; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., Eds.; Springer: Cham, Switzerland, 2021; Volume 12952, pp. 565–579. [Google Scholar]
- Williams, J. The role of spatial planning in transitioning to circular urban development. Urban Geogr. 2020, 41, 915–919. [Google Scholar] [CrossRef]
- Feiferytė-Skirienė, A.; Stasiškienė, Ž. Seeking circularity: Circular urban metabolism in the context of industrial symbiosis. Sustainability 2021, 13, 9094. [Google Scholar] [CrossRef]
- Kębłowski, W.; Lambert, D.; Bassens, D. Circular economy and the city: An urban political economy agenda. Cult. Organ. 2020, 26, 142–158. [Google Scholar] [CrossRef]
- Granstrand, O.; Holgersson, M. Innovation ecosystems: A conceptual review and a new definition. Technovation 2020, 90, 102098. [Google Scholar] [CrossRef]
- Appio, F.P.; Lima, M.; Paroutis, S. Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges. Technol. Forecast. Soc. Change 2019, 142, 1–14. [Google Scholar] [CrossRef]
- Regione Autonoma Sardegna. I beni del Demanio Militare: Le Schede, le Carte, le Foto. Available online: http://www.regione.sardegna.it/j/v/2568?s=32660&v=2&c=3696&t=1 (accessed on 22 September 2022).
- Codonesu, F. Servitù militari modello di sviluppo e sovranità in Sardegna, 1st ed.; CUEC: Cagliari, Italy, 2013. [Google Scholar]
- Istat. Popolazione Residente al 1° Gennaio 2022: Sardegna. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 (accessed on 22 September 2022).
- Regione Autonoma Sardegna. Demanio Militare Cagliari. Available online: https://www.regione.sardegna.it/documenti/1_26_20061113125813.pdf (accessed on 22 September 2022).
- Palumbo, M.E.; Mundula, L.; Balletto, G.; Bazzato, E.; Marignani, M. Environmental Dimension into Strategic Planning. The Case of Metropolitan City of Cagliari. In Computational Science and Its Applications–ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, 1st ed.; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M., Tarantino, E., Torre, C.M., et al., Eds.; Springer: Cham, Switzerland, 2020; Volume 12255, pp. 456–471. [Google Scholar]
- Balletto, G.; Borruso, G.; Mei, G.; Milesi, A. Recycled aggregates in constructions. A case of circular economy in Sardinia (Italy). TeMA-J. Land Use Mobil. Environ. 2021, 14, 51–68. [Google Scholar]
- Comune di Cagliari. Atlante Demografico di Cagliari 2021. Tav 1.1 Popolazione Residente-Serie Storica. Available online: https://www.comune.cagliari.it/portale/protected/112647/0/def/ref/DOC112641/ (accessed on 22 September 2022).
- Comune di Cagliari. Piano Urbanistico Comunale in Adeguamento al Piano Paesaggistico Regionale (PPR), nella sua Stesura Preliminare. Archivio atti, Comune di Cagliari. Available online: https://www.comune.cagliari.it/portale/page/it/pubblicati_da_agosto_2016?anno=2022&numero=5&dataRegistro=25%2F01%2F2022&annoRicerca=2022&dalNumero=&prev=https%3A%2F%2Fwww.comune.cagliari.it%2Fportale%2Fpage%2Fit%2Fpubblicati_da_agosto_2016%3FannoRicerca%) (accessed on 25 September 2022).
- Ministero Dell’ambiente e della Tutela del Territorio e del Mare. Decreto 11 Gennaio 2017. Adozione dei Criteri Ambientali Minimi per Gli Arredi per Interni, per L’edilizia e per i Prodotti Tessili. Available online: https://www.gazzettaufficiale.it/eli/id/2017/01/28/17A00506/sg (accessed on 22 September 2022).
Performance Indicator | Description | Range |
---|---|---|
SCP (%) | Self-consumed over the total energy produced over a set period in the city district | 0–50 |
STC (%) | Shared energy over total energy consumption of the community over a set period in the city district | 0–50 |
EFET (%) | Ratio between energy fed to the grid and energy with-drawn from the grid over a set period | 0–100 |
SCSTC (%) | Ratio between the sum of self-consumed and shared energy over the total energy consumption of the community over a set period | 0–100 |
Pillar of Circular Economy | Focus | SDGs | Literature | Key Performance Indicators (KPIs) | Ratio % |
---|---|---|---|---|---|
Recycled materials | (1) Green and recycled materials | 12 | Omer, et al. (2022) [72] | (1.1) All recycled material | UD/UD |
Balletto, et al. (2021) [73] | |||||
Innovation & Value | Burghardt, et al. (2021) [74] | ||||
Protects biodiversity | (2) CO2 uptake | 13 | Shafique, et al. (2020) [75] | (2.1) Green area | UD/UD |
Innovation & Value | Furcas, et al. (2014) [76] | (2.2) Recycled materials (cement-lime) | |||
Sustainable energy | (3) REC | 7 | Carrus, et al. (2021) [77] | (3.1) SCP | UD/city district of REC |
Di Silvestre. et al. (2021) [78] | (3.2) STC | ||||
Innovation & Value | (3.3) EFET | ||||
Ghiani et al. (2019) [79] | (3.4) SCSTC | ||||
Culture & society | (4) 15 Minute and Proximity City | 11 | Moreno, et al. (2021) [80] | Central places: | 15 min of UD/city district of REC |
Health and wellness | Li, Z., Zheng, et al. (2019) [81] | (4.1) of movement | |||
Adaptive and resilient | Balletto, et al. (2021) [82]; | (4.2) of welfare | |||
Innovation & Value | Badii, et al. (2021) [83] | (4.3) of commerce |
Key Performance Indicators (KPIs) | Ratio % | Ex Ante Scenario | Ratio % |
---|---|---|---|
(1.1) All recycled material | cluster/cluster | 0 | 30 |
(2.1) Green area; | cluster/cluster | 5 | 30 |
(2.2) Recycled materials (cement-lime); | 0 | 80 | |
(3.1) SCP | cluster/city district of REC | 0 | 50 |
(3.2) STC | 0 | 50 | |
(3.3) EFET | 0 | 90 | |
(3.4) SCSTC | 0 | 90 | |
(4.1) Places of movement (local public transport, sharing mobility) | 15 min area/city district | 20 | 45 |
(4.2) Central places of welfare (school, park, health care) | 21 | 42 | |
(4.3) Central places of commerce (market, bar-restaurant, urban trade) | 24 | 43 |
Ex-Ante Scenario | Ex-Post Scenario | ||||
---|---|---|---|---|---|
CCI | Beneficiary population (proximity city) | CCI | Beneficiary population (proximity city) | Beneficiary population (REC—Renewable Energy Communities) city district [95] | |
Cluster of Military Buildings | 0.81 | / | 0.98 | / | |
Beneficiary population | / | 12,126 | / | 16,937 | 20,091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balletto, G.; Ladu, M.; Camerin, F.; Ghiani, E.; Torriti, J. More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration. Sustainability 2022, 14, 14995. https://doi.org/10.3390/su142214995
Balletto G, Ladu M, Camerin F, Ghiani E, Torriti J. More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration. Sustainability. 2022; 14(22):14995. https://doi.org/10.3390/su142214995
Chicago/Turabian StyleBalletto, Ginevra, Mara Ladu, Federico Camerin, Emilio Ghiani, and Jacopo Torriti. 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration" Sustainability 14, no. 22: 14995. https://doi.org/10.3390/su142214995
APA StyleBalletto, G., Ladu, M., Camerin, F., Ghiani, E., & Torriti, J. (2022). More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration. Sustainability, 14(22), 14995. https://doi.org/10.3390/su142214995