Influences of Power Structure Evolution on Coffee Commodity Markets: Insights from Price Discovery and Volatility Spillovers
Abstract
:1. Introduction
2. Global Coffee Market and Its Power Structure Evolution
3. Literature Review
4. Data Selection and Unit Root Tests with Structural Breaks
4.1. Data Selection
4.2. Unit Roots Test with Structural Breaks
4.3. Johansen’s Cointegration Test
5. The Empirical Model
5.1. Vector Error Correction Model
5.2. Price Discovery Measures
5.3. The Bivariate EGARCH Model
6. Empirical Results and Discussion
6.1. VECM Estimates
6.2. Price Discovery Analysis
6.3. Volatility Spillover Analysis
6.4. Discussion of the Findings
7. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Groups | EU | U.S. |
---|---|---|
Colombian Milds | 0.43 | 0.57 |
Brazilian Naturals | 0.61 | 0.39 |
Other Milds | 0.73 | 0.27 |
Robusta | 0.82 | 0.18 |
References
- USAID (U.S. Agency for International Development). Price Risk Management in the Coffee and Cocoa Sectors; USAID: Washington, DC, USA, 2019.
- Li, X.L. Price Analysis Under Production Differentiation in Green Coffee Markets (No. 44). Doctoral Thesis, University of Kentucky, Lexington, KY, USA, 2016. Available online: https://uknowledge.uky.edu/agecon_etds/44 (accessed on 5 June 2022).
- Grabs, J.; Ponte, S. The evolution of power in the global coffee value chain and production network. J. Econ. Geogr. 2019, 19, 803–828. [Google Scholar] [CrossRef]
- Shihabudheen, M.T.; Padhi, P. Price discovery and volatility spillover effect in Indian commodity market. Indian J. Agric. Econ. 2010, 65, 902-2016-67367. [Google Scholar]
- Apergis, N.; Rezitis, A. Agricultural price volatility spillover effects: The case of Greece. Eur. Rev. Agric. Econ. 2003, 30, 389–406. [Google Scholar] [CrossRef]
- Khapre, Y.; Kyamuhangire, W.; Njoroge, E.K.; Kathurima, C.W. Analysis of the Diversity of Some Arabica and Robusta Coffee from Kenya and Uganda by Sensory and Biochemical Components and Their Correlation to Taste. IOSR J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 39–43. [Google Scholar]
- Dallas, M.; Ponte, S.; Sturgeon, T. A Typology of Power in Global Value Chains; Working Paper in Business and Politics 92; Copenhagen Business School, Department of Business and Politics: Frederiksberg, Denmark, 2017. [Google Scholar]
- Dallas, M.; Ponte, S.; Sturgeon, T. Power in global value chains. Rev. Int. Political Econ. 2019, 26, 666–694. [Google Scholar] [CrossRef]
- Ponte, S. The latte revolution? Regulation, markets and consumption in the global coffee chain. World Dev. 2002, 30, 1099–1122. [Google Scholar] [CrossRef]
- Mehta, A.; Chavas, J.P. Responding to the coffee crisis: What can we learn from price dynamics? J. Dev. Econ. 2008, 85, 282–311. [Google Scholar] [CrossRef] [Green Version]
- Ghoshray, A. On price dynamics for different qualities of coffee. Rev. Mark. Integr. 2009, 1, 103–118. [Google Scholar] [CrossRef]
- Lewin, B.; Giovannucci, D.; Varangis, P. Coffee markets: New paradigms in global supply and demand. In World Bank Agriculture and Rural Development Discussion Paper; The World Bank: Washington, DC, USA, 2004; Volume 3. [Google Scholar]
- Feleke, S.T.; Walters, L.M. Global Coffee Import Demand in a New Era: Implications for Developing Countries. Rev. Appl. Econ. 2005, 1, 223–237. [Google Scholar]
- Grabs, J. The Rise of Buyer-Driven Sustainability Governance: Emerging Trends in the Global Coffee Sector. Available online: http://ssrn.com/abstract=3015166 (accessed on 15 July 2022).
- Hasbrouck, J. One security, many markets: Determining the contributions to price discovery. J. Financ. 1995, 50, 1175–1199. [Google Scholar] [CrossRef]
- Gonzalo, J.; Granger, C. Estimation of common long-memory components in cointegrated systems. J. Bus. Econ. Stat. 1995, 13, 27–35. [Google Scholar]
- Baillie, R.T.; Booth, G.G.; Tse, Y.; Zabotina, T. Price discovery and common factor models. J. Financ. Mark. 2002, 5, 309–321. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica J. Econom. Soc. 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Rezitis, A.N. Volatility spillover effects in Greek consumer meat prices. Agric. Econ. Rev. 2003, 4, 29–36. [Google Scholar]
- Nelson, D.B. Conditional heteroskedasticity in asset returns: A new approach. Econom. J. Econom. Soc. 1991, 59, 347–370. [Google Scholar] [CrossRef]
- Buguk, C.; Hudson, D.; Hanson, T. Price volatility spillover in agricultural markets: An examination of US catfish markets. J. Agric. Resour. Econ. 2003, 28, 86–99. [Google Scholar]
- Boydell, H. What Should We Have Learned from The 2001 Coffee Price Crisis? Perfect Daily Grind. 25 September 2018. Available online: https://www.perfectdailygrind.com/2018/09/what-should-we-have-learned-from-the-2001-coffee-price-crisis/ (accessed on 15 July 2022).
- Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econom. J. Econom. Soc. 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration—With applications to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [Google Scholar] [CrossRef]
- Bai, J.; Perron, P. Estimating and testing linear models with multiple structural changes. Econometrica 1998, 66, 47–78. [Google Scholar] [CrossRef] [Green Version]
- Andrews, D.W.; Ploberger, W. Optimal tests when a nuisance parameter is present only under the alternative. Econom. J. Econom. Soc. 1994, 62, 1383–1414. [Google Scholar] [CrossRef] [Green Version]
- Stromberg, J. Why You’re Going to be Paying More for Coffee Soon. Vox. 2014. Available online: https://www.vox.com/2014/5/30/5746272/why-youre-going-to-be-paying-more-for-coffee-soon (accessed on 20 July 2022).
- Tran, Q.; Ward, M. Vietnam Coffee Semi-Annual. Global Agricultural Information Network Report, USDA-FAS. 2015. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Coffee%20Semi-annual_Hanoi_Vietnam_11-18-2015.pdf (accessed on 3 August 2022).
- Entrop, O.; Frijns, B.; Seruset, M. The determinants of price discovery on bitcoin markets. J. Futures Mark. 2020, 40, 816–837. [Google Scholar] [CrossRef]
- Cabrera, J.; Wang, T.; Yang, J. Do futures lead price discovery in electronic foreign exchange markets? J. Futures Mark. Futures Options Other Deriv. Prod. 2009, 29, 137–156. [Google Scholar] [CrossRef]
- Mahalik, M.K.; Acharya, D.; Babu, M.S. Price discovery and volatility spillovers in futures and spot commodity markets: Some empirical evidence from India. IGIDR Proc./Proj. Rep. Ser. 2009, PP-062-10. Available online: www.igidr.ac.in/pdf/publication/PP-062-10.pdf (accessed on 22 September 2022).
- International Coffee Organization (ICO). The Role of the Coffee Futures Market in Discovering Prices for Latin American Producers; International Coffee Council 122nd Session: London, UK, 2018. [Google Scholar]
- Dolatabadi, S.; Nielsen M, Ø.; Xu, K. A fractionally cointegrated VAR analysis of price discovery in commodity futures markets. J. Futures Mark. 2015, 35, 339–356. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, R.P.; Hall, J.H.; Du Toit, E. The lead–lag relationship between spot and futures prices: Empirical evidence from the Indian commodity market. Resour. Policy 2021, 70, 101934. [Google Scholar] [CrossRef]
- Go, Y.H.; Lau, W.Y. Investor demand, market efficiency and spot-futures relation: Further evidence from crude palm oil. Resour. Policy 2017, 53, 135–146. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Mishra, S. Regulatory reform and market efficiency: The case of Indian agricultural commodity futures markets. Res. Int. Bus. Financ. 2020, 52, 101145. [Google Scholar] [CrossRef]
- Bhaumik, S.; Karanasos, M.; Kartsaklas, A. The informative role of trading volume in an expanding spot and futures market. J. Multinatl. Financ. Manag. 2016, 35, 24–40. [Google Scholar] [CrossRef]
- Inoue, T.; Hamori, S. Market efficiency of commodity futures in India. Appl. Econ. Lett. 2014, 21, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Bohl, M.T.; Siklos, P.L.; Stefan, M.; Wellenreuther, C. Price discovery in agricultural commodity markets: Do speculators contribute? J. Commod. Mark. 2020, 18, 100092. [Google Scholar] [CrossRef]
ICA Regime Phase (1962–1989) | Liberalization Phase (1990–2007) | Diversification and Reconsolidation Phase (2008–present) | |
Geography of production | Concentrated in a few large producers (Brazil, Colombia, etc.) | Fragmentation began and dispersed across the globe | Re-concentrated in large producers (Brazil, Vietnam, Colombia, etc.) |
Geography of consumption | Mostly consumed in North America, Western Europe, and Japan | Consumption increased in emerging markets such as Eastern Europe and East Asia | Saturation in traditional markets; growth in new markets and in producing markets (Brazil, Colombia) |
Institutional framework (international) | Strong: international trade regulated by ICAs | Weak: ICA collapsed; effective quota system disintegrated; futures market began to de-link from market fundamentals | Weak: ICO only provides advisory function; no quota schemes and allowed voluntary industry platform to re-emerge; price volatility increases |
Institutional framework (domestic) | Strong: market dominated by marketing board or regulated by quasi-governmental producer associations | Weak: government and quasi-government lost their control of coffee value chain | Mixed: Most governments and quasi-government institutions still possess limited responsibilities; a few reinvented themselves as international value chain actors |
Characteristics of international traded products | Relatively homogenous | Increased homogenization of low-quality coffee; increased heterogeneity of high-end-quality coffee | Increased differentiation in regional, quality, varietal, and sustainability attributes of high-quality coffee |
Generated total income distribution | Farmers take a relatively stable share (20%) | Consuming country marketers take a higher share | Consuming countries continue to take the advantage |
Producer–Consumer country relations | The ICA kept the relations in equilibrium | Dominated by the consuming countries | Cooperation initiated through development financing, public private partnership, and private roasters’ engagement |
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
U.S. Coffee C Futures | 7628 | 119.24 | 46.85 | 41.5 | 314.8 |
Colombian Milds | 7650 | 136.43 | 53.37 | 53.00 | 332.07 |
Brazilian Naturals | 7683 | 113.89 | 47.11 | 36.57 | 296.75 |
Other Milds | 7683 | 130.11 | 51.60 | 50.14 | 325.98 |
London Robusta Futures | 3134 | 81.49 | 14.53 | 49.17 | 124.78 |
Robusta | 3175 | 91.10 | 14.35 | 60.78 | 133.89 |
Statistics | p-Value | Estimated Break Date | |
---|---|---|---|
Arabica | 10,537.56 | 0.00 | 6 February 2014 |
Robusta | 743.39 | 0.00 | 15 June 2015 |
Variable | Test Statistic | 1% Critical Value | 5% Critical Value | 10% Critical Value |
---|---|---|---|---|
Level | ||||
U.S. Coffee C futures | −2.34 | −3.43 | −2.86 | −2.57 |
Colombian Milds | −4.10 *** | −3.43 | −2.86 | −2.57 |
Brazilian Naturals | −2.19 | −3.43 | −2.86 | −2.57 |
Other Milds | −2.06 | −3.43 | −2.86 | −2.57 |
Robusta | −1.84 | −3.43 | −2.86 | −2.57 |
London Robusta Coffee Futures | −2.13 | −3.43 | −2.86 | −2.57 |
First-order Difference | ||||
U.S. Coffee C futures | −61.32 *** | −3.43 | −2.86 | −2.57 |
Colombian Milds | −40.34 *** | −3.43 | −2.86 | −2.57 |
Brazilian Naturals | −60.45 *** | −3.43 | −2.86 | −2.57 |
Other Milds | −40.63 *** | −3.43 | −2.86 | −2.57 |
Robusta | −32.78 *** | −3.43 | −2.86 | −2.57 |
London Robusta Coffee Futures | −32.11 *** | −3.43 | −2.86 | −2.57 |
Variable | Test Statistic | 1% Critical Value | 5% Critical Value | 10% Critical Value |
---|---|---|---|---|
Level | ||||
U.S. Coffee C futures | −2.38 | −3.43 | −2.86 | −2.57 |
Colombian Milds | −5.67 *** | −3.43 | −2.86 | −2.57 |
Brazilian Naturals | −1.68 | −3.43 | −2.86 | −2.57 |
Other Milds | −1.74 | −3.43 | −2.86 | −2.57 |
First-order Difference | ||||
U.S. Coffee C futures | −39.85 *** | −3.43 | −2.86 | −2.57 |
Colombian Milds | −31.56 *** | −3.43 | −2.86 | −2.57 |
Brazilian Naturals | −39.66 *** | −3.43 | −2.86 | −2.57 |
Other Milds | −33.44 *** | −3.43 | −2.86 | −2.57 |
Variable | Test Statistic | 1% Critical Value | 5% Critical Value | 10% Critical Value |
---|---|---|---|---|
Level | ||||
U.S. Coffee C futures | −2.60 * | −3.43 | −2.86 | −2.57 |
Colombian Milds | −2.35 | −3.43 | −2.86 | −2.57 |
Brazilian Naturals | −2.23 | −3.43 | −2.86 | −2.57 |
Other Milds | −2.46 | −3.43 | −2.86 | −2.57 |
Robusta | −2.00 | −3.43 | −2.86 | −2.57 |
London Robusta Coffee Futures | −2.06 | −3.43 | −2.86 | −2.57 |
First-order Difference | ||||
U.S. Coffee C futures | −40.62 *** | −3.43 | −2.86 | −2.57 |
Colombian Milds | −26.29 *** | −3.43 | −2.86 | −2.57 |
Brazilian Naturals | −26.56 *** | −3.43 | −2.86 | −2.57 |
Other Milds | −26.84 *** | −3.43 | −2.86 | −2.57 |
Robusta | −33.54 *** | −3.43 | −2.86 | −2.57 |
London Robusta Coffee Futures | −40.46 *** | −3.43 | −2.86 | −2.57 |
Null Hypothesis b | Trace Statistics | 5% Critical Value | Eigenvalue | |
---|---|---|---|---|
r = 0 | 61.342 | 39.89 | - | |
r ≤ 1 | 22.112 * | 24.31 | 0.005 | |
Arabica | r ≤ 2 | 7.798 | 12.53 | 0.002 |
r ≤ 3 | 0.424 | 3.84 | 0.001 | |
r ≤ 4 | - | - | 0.000 | |
r = 0 | 18.961 | 12.53 | - | |
Robusta | r ≤ 1 | 0.317 * | 3.84 | 0.006 |
r ≤ 2 | - | - | 0.000 |
Null Hypothesis b | Trace Statistics | 5% Critical Value | Eigenvalue | |
---|---|---|---|---|
r = 0 | 64.226 | 39.89 | - | |
r ≤ 1 | 29.956 | 24.31 | 0.007 | |
Arabica | r ≤ 2 | 8.598 * | 12.53 | 0.005 |
r ≤ 3 | 0.099 | 3.84 | 0.002 | |
r ≤ 4 | - | - | 0.000 |
Null Hypothesis b | Trace Statistics | 5% Critical Value | Eigenvalue | |
---|---|---|---|---|
r = 0 | 46.588 | 39.89 | - | |
r ≤ 1 | 21.331 * | 24.31 | 0.008 | |
Arabica | r ≤ 2 | 4.144 | 12.53 | 0.005 |
r ≤ 3 | 0.493 | 3.84 | 0.001 | |
r ≤ 4 | - | - | 0.000 | |
r = 0 | 18.961 | 12.53 | - | |
Robusta | r ≤ 1 | 0.317 * | 3.84 | 0.006 |
r ≤ 2 | - | - | 0.000 |
Parameter Estimates | U.S. Coffee C Futures | Colombian Milds | Brazilian Naturals | Other Milds |
---|---|---|---|---|
Estimated Cointegrating Parameter | 1(−) | −0.796 *** (0.212) | −0.356 *** (0.121) | 0.160 (0.246) |
Speed of Price Adjustment | −0.013** (0.006) | 0.004 (0.005) | −0.003 (0.005) | −0.006 (0.004) |
LFutures(−1) | −0.168*** (0.037) | 0.006 (0.031) | −0.003 (0.036) | 0.018 (0.030) |
LFutures(−2) | −0.081** (0.038) | −0.023 (0.032) | −0.038 (0.037) | −0.027 (0.030) |
LFutures(−3) | −0.010 (0.038) | 0.025 (0.032) | 0.032 (0.037) | 0.017 (0.030) |
LFutures(−4) | −0.106 *** (0.038) | −0.084 *** (0.032) | −0.094 ** (0.037) | −0.071 ** (0.030) |
LFutures(−5) | −0.069 * (0.038) | −0.032 (0.032) | −0.051 (0.037) | −0.043 (0.030) |
LFutures(−6) | −0.043 (0.038) | −0.022 (0.032) | −0.034 (0.037) | −0.037 (0.030) |
LFutures(−7) | 0.033 (0.038) | 0.040 (0.032) | 0.041 (0.037) | 0.034 (0.030) |
LFutures(−8) | −0.010 (0.038) | −0.076 ** (0.032) | −0.008 (0.037) | 0.001 (0.030) |
LFutures(−9) | −0.050 (0.037) | −0.075 ** (0.031) | −0.010 (0.036) | −0.011 (0.030) |
LColombian(−1) | −0.080 ** (0.034) | −0.136 *** (0.029) | 0.017 (0.033) | −0.067 ** (0.027) |
LColombian(−2) | 0.009 (0.035) | −0.071 ** (0.029) | 0.001 (0.034) | 0.005 (0.027) |
LColombian(−3) | −0.039 (0.035) | −0.099 *** (0.029) | 0.009 (0.034) | −0.016 (0.027) |
LColombian(−4) | −0.055 (0.034) | −0.087 *** (0.029) | 0.021 (0.033) | −0.049 * (0.027) |
LColombian(−5) | 0.011 (0.035) | −0.022 (0.029) | −0.007 (0.034) | 0.001 (0.027) |
LColombian(−6) | 0.104 *** (0.035) | 0.022 (0.029) | 0.054 (0.034) | 0.073 *** (0.027) |
LColombian(−7) | −0.137 *** (0.034) | −0.149 *** (0.029) | −0.112 *** (0.033) | −0.103 *** (0.027) |
LColombian(−8) | −0.087 ** (0.034) | −0.040 (0.029) | −0.034 (0.033) | −0.051 * (0.027) |
LColombian(−9) | −0.032 (0.034) | 0.028 (0.029) | 0.022 (0.033) | 0.006 (0.027) |
LBrazilian(−1) | 0.154 *** (0.047) | −0.004 (0.039) | −0.041 (0.046) | 0.090 ** (0.037) |
LBrazilian(−2) | −0.078 * (0.048) | −0.023 (0.040) | −0.036 (0.046) | −0.015 (0.038) |
LBrazilian(−3) | −0.139 *** (0.048) | −0.046 (0.040) | −0.093 ** (0.046) | −0.074 ** (0.038) |
LBrazilian(−4) | 0.047 (0.048) | 0.008 (0.040) | −0.058 (0.046) | −0.036 (0.038) |
LBrazilian(−5) | 0.026 (0.048) | 0.018 (0.040) | 0.009 (0.046) | −0.017 (0.038) |
LBrazilian(−6) | −0.013 (0.047) | −0.128 *** (0.040) | 0.059 (0.046) | 0.018 (0.037) |
LBrazilian(−7) | −0.034 (0.047) | −0.025 (0.040) | −0.044 (0.046) | −0.034 (0.037) |
LBrazilian(−8) | −0.053 (0.047) | −0.028 (0.040) | −0.021 (0.046) | −0.034 (0.037) |
LBrazilian(−9) | −0.035 (0.047) | −0.048 (0.039) | −0.041 (0.045) | −0.051 (0.037) |
LOther(−1) | 0.109 (0.071) | 0.192 *** (0.060) | 0.081 (0.069) | 0.015 (0.056) |
LOther(−2) | 0.139 * (0.072) | 0.048 (0.060) | 0.034 (0.070) | 0.011 (0.057) |
LOther(−3) | 0.234 *** (0.072) | 0.174 *** (0.060) | 0.086 (0.070) | 0.121 ** (0.057) |
LOther(−4) | 0.229 *** (0.072) | 0.166 *** (0.060) | 0.145 ** (0.070) | 0.165 *** (0.057) |
LOther(−5) | −0.015 (0.072) | −0.005 (0.060) | −0.005 (0.070) | 0.030 (0.057) |
LOther(−6) | −0.048 (0.072) | 0.164 *** (0.060) | −0.083 (0.070) | −0.038 (0.057) |
LOther(−7) | 0.047 (0.072) | 0.079 (0.060) | 0.035 (0.070) | 0.040 (0.057) |
LOther(−8) | 0.186 *** (0.072) | 0.164 *** (0.060) | 0.071 (0.070) | 0.102 * (0.057) |
LOther(−9) | 0.129 (0.070) | 0.101 * (0.059) | −0.038 (0.068) | 0.058 (0.055) |
Number of Obs. | 4685 | 4685 | 4685 | 4685 |
Parameter Estimates | U.S. Coffee C Futures | Colombian Milds | Brazilian Naturals | Other Milds |
---|---|---|---|---|
Estimated Cointegrating Parameter | 1(−) | −0.399 *** (0.077) | −0.806 *** (0.090) | 0.210 * (0.127) |
Speed of Price Adjustment | −0.021 * (0.012) | −0.005 (0.009) | −0.002 (0.010) | −0.011 (0.009) |
LFutures(−1) | −0.303 *** (0.052) | 0.091 ** (0.038) | 0.178 *** (0.045) | 0.092 ** (0.040) |
LFutures(−2) | −0.100 * (0.057) | 0.073 * (0.042) | 0.143 *** (0.049) | 0.082 * (0.044) |
LFutures(−3) | −0.030 (0.058) | 0.051 (0.042) | 0.093 * (0.050) | 0.053 (0.044) |
LFutures(−4) | −0.024 (0.058) | 0.061 (0.043) | 0.101 ** (0.050) | 0.062 (0.045) |
LFutures(−5) | −0.020 (0.058) | 0.015 (0.043) | 0.069 (0.050) | 0.028 (0.045) |
LFutures(−6) | −0.020 (0.058) | 0.004 (0.043) | 0.019 (0.050) | 0.006 (0.045) |
LFutures(−7) | 0.007 (0.057) | 0.007 (0.043) | 0.033 (0.050) | 0.032 (0.044) |
LFutures(−8) | −0.001 (0.056) | −0.052 (0.041) | −0.027 (0.048) | −0.024 (0.043) |
LFutures(−9) | 0.029 (0.051) | 0.006 (0.037) | 0.031 (0.044) | 0.023 (0.039) |
LColombian(−1) | −0.031 (0.094) | −0.036 (0.070) | −0.029 (0.081) | 0.013 (0.072) |
LColombian(−2) | 0.038 (0.094) | 0.023 (0.070) | −0.056 (0.081) | −0.022 (0.072) |
LColombian(−3) | 0.217 ** (0.094) | 0.233 *** (0.070) | 0.186 ** (0.081) | 0.172 ** (0.072) |
LColombian(−4) | 0.039 (0.094) | 0.036 (0.070) | 0.011 (0.082) | 0.028 (0.072) |
LColombian(−5) | −0.039 (0.094) | 0.011 (0.070) | −0.061 (0.082) | −0.017 (0.072) |
LColombian(−6) | 0.166 * (0.094) | 0.137 ** (0.070) | 0.140 * (0.082) | 0.115 (0.072) |
LColombian(−7) | −0.059 (0.094) | 0.020 (0.070) | −0.022 *** (0.081) | −0.044 (0.072) |
LColombian(−8) | 0.034 (0.094) | 0.096 (0.070) | 0.031 (0.081) | 0.041 (0.072) |
LColombian(−9) | 0.067 (0.094) | 0.082 (0.070) | 0.074 (0.081) | 0.061 (0.072) |
LBrazilian(−1) | 0.038 (0.091) | −0.263 *** (0.067) | −0.456 *** (0.078) | −0.197 *** (0.070) |
LBrazilian(−2) | 0.119 (0.095) | −0.093 (0.070) | −0.144 * (0.082) | −0.048 (0.073) |
LBrazilian(−3) | 0.152 (0.096) | −0.009 (0.071) | −0.045 (0.083) | 0.006 (0.073) |
LBrazilian(−4) | 0.259 *** (0.096) | 0.087 (0.071) | 0.087 (0.083) | 0.093 (0.074) |
LBrazilian(−5) | 0.082 (0.096) | −0.047 (0.071) | −0.021 (0.083) | −0.035 (0.074) |
LBrazilian(−6) | −0.086 (0.096) | −0.137 * (0.071) | −0.138 * (0.083) | −0.114 (0.074) |
LBrazilian(−7) | −0.051 (0.096) | −0.066 (0.071) | −0.063 (0.083) | −0.054 (0.073) |
LBrazilian(−8) | −0.046 (0.094) | −0.026 (0.070) | 0.037 (0.082) | −0.001 (0.072) |
LBrazilian(−9) | −0.031 (0.089) | 0.026 (0.066) | 0.049 (0.077) | 0.016 (0.068) |
LOther(−1) | 0.303 *** (0.116) | 0.257 *** (0.086) | 0.385 *** (0.100) | 0.111 (0.089) |
LOther(−2) | −0.047 (0.118) | 0.028 (0.087) | 0.089 (0.102) | 0.012 (0.091) |
LOther(−3) | −0.306 *** (0.118) | −0.217 ** (0.087) | −0.174 * (0.102) | −0.179 ** (0.091) |
LOther(−4) | −0.312 *** (0.118) | −0.206 ** (0.087) | −0.226 ** (0.102) | −0.203 ** (0.091) |
LOther(−5) | −0.058 (0.118) | 0.015 (0.087) | −0.018 (0.102) | 0.019 (0.091) |
LOther(−6) | −0.041 (0.118) | 0.022 *** (0.087) | 0.003 (0.102) | 0.023 (0.091) |
LOther(−7) | 0.117 (0.118) | 0.037 (0.087) | 0.041 (0.102) | 0.057 (0.091) |
LOther(−8) | −0.078 (0.118) | 0.003 (0.087) | −0.038 (0.102) | −0.003 (0.091) |
LOther(−9) | −0.171 (0.115) | −0.138 (0.085) | −0.190 * (0.100) | −0.133 (0.089) |
Number of Obs. | 3207 | 3207 | 3207 | 3207 |
Parameter Estimates | U.S. Coffee C Futures | Colombian Milds | Brazilian Naturals | Other Milds |
---|---|---|---|---|
Estimated Cointegrating Parameter | 1(−) | −0.984 *** (0.202) | −0.720 *** (0.155) | 0.711 *** (0.261) |
Speed of Price Adjustment | −0.006 ** (0.003) | 0.001 (0.003) | −0.001 (0.003) | −0.004 (0.002) |
LFutures(−1) | −0.199 *** (0.029) | 0.029 (0.024) | 0.042 (0.028) | 0.034 (0.023) |
LFutures(−2) | −0.075 ** (0.030) | −0.002 (0.024) | −0.002 (0.028) | −0.004 (0.024) |
LFutures(−3) | −0.008 (0.030) | 0.025 (0.024) | 0.034 (0.028) | 0.018 (0.024) |
LFutures(−4) | −0.076 ** (0.030) | −0.043 * (0.024) | −0.044 (0.028) | −0.035 (0.024) |
LFutures(−5) | −0.054 * (0.030) | −0.024 (0.024) | −0.028 (0.028) | −0.031 (0.024) |
LFutures(−6) | −0.030 (0.030) | −0.013 (0.024) | −0.021 (0.028) | −0.026 (0.024) |
LFutures(−7) | 0.029 (0.030) | 0.036 (0.024) | 0.044 (0.028) | 0.037 (0.024) |
LFutures(−8) | −0.008 (0.030) | −0.069 *** (0.024) | −0.013 (0.028) | −0.006 (0.024) |
LFutures(−9) | −0.027 (0.029) | −0.051 ** (0.023) | 0.006 (0.027) | 0.002 (0.023) |
LColombian(−1) | −0.065 ** (0.030) | −0.124 *** (0.024) | 0.014 (0.028) | −0.060 ** (0.024) |
LColombian(−2) | 0.024 (0.030) | −0.054 ** (0.025) | 0.008 (0.029) | 0.011 (0.024) |
LColombian(−3) | −0.009 (0.030) | −0.060 ** (0.025) | 0.032 (0.029) | 0.007 (0.024) |
LColombian(−4) | −0.044 (0.030) | −0.071 *** (0.024) | 0.024 (0.028) | −0.041 * (0.024) |
LColombian(−5) | 0.016 (0.030) | −0.005 (0.025) | −0.001 (0.029) | 0.007 (0.024) |
LColombian(−6) | 0.120 *** (0.030) | 0.045 * (0.025) | 0.068 ** (0.029) | 0.085 *** (0.024) |
LColombian(−7) | −0.126 *** (0.030) | −0.132 *** (0.024) | −0.104 *** (0.029) | −0.094 *** (0.024) |
LColombian(−8) | −0.072 ** (0.030) | −0.022 (0.024) | −0.027 (0.028) | −0.044 * (0.024) |
LColombian(−9) | −0.017 (0.030) | 0.045 * (0.024) | 0.036 (0.028) | 0.017 (0.024) |
LBrazilian(−1) | 0.137 *** (0.039) | −0.037 (0.032) | −0.097 *** (0.037) | 0.061 ** (0.031) |
LBrazilian(−2) | −0.062 (0.040) | −0.002 (0.032) | −0.055 (0.038) | −0.023 (0.031) |
LBrazilian(−3) | −0.096 ** (0.040) | −0.027 (0.032) | −0.068 * (0.038) | −0.051 (0.031) |
LBrazilian(−4) | 0.004 (0.040) | 0.028 (0.032) | −0.019 (0.038) | −0.006 (0.031) |
LBrazilian(−5) | 0.018 (0.040) | −0.004 (0.032) | 0.004 (0.038) | −0.024 (0.031) |
LBrazilian(−6) | −0.001 (0.040) | −0.128 *** (0.032) | 0.037 (0.037) | 0.000 (0.031) |
LBrazilian(−7) | −0.046 (0.040) | −0.027 (0.032) | −0.044 (0.038) | −0.039 (0.031) |
LBrazilian(−8) | −0.039 (0.040) | −0.027 (0.032) | −0.014 (0.037) | −0.030 (0.031) |
LBrazilian(−9) | −0.020 (0.039) | −0.036 (0.032) | −0.022 (0.037) | −0.037 (0.031) |
LOther(−1) | 0.153 *** (0.058) | 0.186 *** (0.047) | 0.104 * (0.054) | 0.007 (0.045) |
LOther(−2) | 0.106 * (0.058) | 0.051 (0.047) | 0.031 (0.055) | 0.004 (0.046) |
LOther(−3) | 0.155 *** (0.058) | 0.112 ** (0.047) | 0.039 (0.055) | 0.072 (0.046) |
LOther(−4) | 0.126 ** (0.058) | 0.083 * (0.047) | 0.045 (0.055) | 0.084 * (0.046) |
LOther(−5) | −0.008 (0.058) | 0.010 (0.047) | −0.012 (0.055) | 0.036 (0.046) |
LOther(−6) | −0.067 (0.058) | 0.126 *** (0.047) | −0.084 (0.055) | −0.041 (0.046) |
LOther(−7) | 0.077 (0.058) | 0.081 * (0.047) | 0.038 (0.055) | 0.045 (0.046) |
LOther(−8) | 0.139 ** (0.058) | 0.136 *** (0.047) | 0.059 (0.055) | 0.091 ** (0.046) |
LOther(−9) | 0.063 (0.057) | 0.042 (0.046) | −0.022 (0.054) | 0.011 (0.045) |
Number of Obs. | 7903 | 7903 | 7903 | 7903 |
Parameter Estimates | London Robusta Coffee Futures | Robusta |
---|---|---|
Estimated Cointegrating Parameter | 1 (−) | −0.974 *** (0.002) |
Speed of Price Adjustment | −0.019 ** (0.008) | 0.003 (0.007) |
LFutures(−1) | −0.060 ** (0.030) | 0.358 *** (0.025) |
LFutures(−2) | −0.074 ** (0.033) | 0.142 *** (0.027) |
LFutures(−3) | −0.066 ** (0.033) | 0.069 ** (0.027) |
LFutures(−4) | −0.042 (0.030) | 0.018 (0.025) |
LRobusta(−1) | 0.138 *** (0.036) | −0.310 *** (0.030) |
LRobusta(−2) | 0.051 (0.038) | −0.180 *** (0.032) |
LRobusta(−3) | 0.067 * (0.038) | −0.087 *** (0.032) |
LRobusta(−4) | 0.067 * (0.025) | −0.022 (0.028) |
Number of Obs. | 3204 | 3204 |
Arabica | ||||||
---|---|---|---|---|---|---|
Arabica Futures | Colombian Milds | Arabica Futures | Brazilian Naturals | Arabica Futures | Other Milds | |
IS Upper Bond | 0.612 | 0.992 | 0.592 | 0.999 | 0.675 | 0.994 |
IS Lower Bond | 0.009 | 0.388 | 0.001 | 0.408 | 0.006 | 0.325 |
IS Mean | 0.311 | 0.690 | 0.297 | 0.704 | 0.341 | 0.660 |
PT | 0.249 | 0.751 | 0.163 | 0.837 | 0.305 | 0.695 |
Arabica | ||||||
---|---|---|---|---|---|---|
Arabica Futures | Colombian Milds | Arabica Futures | Brazilian Naturals | Arabica Futures | Other Milds | |
IS Upper Bond | 0.539 | 0.997 | 0.597 | 1.000 | 0.573 | 0.984 |
IS Lower Bond | 0.003 | 0.461 | 0.000 | 0.403 | 0.016 | 0.427 |
IS Mean | 0.271 | 0.729 | 0.299 | 0.702 | 0.295 | 0.706 |
PT | 0.182 | 0.818 | 0.076 | 0.924 | 0.337 | 0.663 |
Robusta | ||||||
London Robusta Futures | Robusta | |||||
IS Upper Bond | 0.774 | 0.996 | ||||
IS Lower Bond | 0.004 | 0.226 | ||||
IS Mean | 0.389 | 0.611 | ||||
PT | 0.123 | 0.877 |
Arabica | ||||||
---|---|---|---|---|---|---|
Arabica Futures | Colombian Milds | Arabica Futures | Brazilian Naturals | Arabica Futures | Other Milds | |
IS Upper Bond | 0.537 | 0.998 | 0.620 | 1.000 | 0.710 | 0.992 |
IS Lower Bond | 0.002 | 0.463 | 0.000 | 0.380 | 0.008 | 0.290 |
IS Mean | 0.270 | 0.731 | 0.310 | 0.690 | 0.359 | 0.641 |
PT | 0.188 | 0.812 | 0.102 | 0.898 | 0.387 | 0.613 |
Robusta | ||||||
London Robusta Futures | Robusta | |||||
IS Upper Bond | 0.774 | 0.996 | ||||
IS Lower Bond | 0.004 | 0.226 | ||||
IS Mean | 0.389 | 0.611 | ||||
PT | 0.123 | 0.877 |
Colombian Milds | Brazilian Naturals | Other Milds | ||||
---|---|---|---|---|---|---|
Parameters | Futures | Spot | Futures | Spot | Futures | Spot |
ωi | −1.873 *** (0.105) | 0.024 *** (0.004) | −1.588 *** (0.098) | −0.347 *** (0.031) | −0.631 *** (0.187) | −0.518 *** (0.173) |
θi | 0.772 *** (0.013) | 1.002 *** (0.000) | 0.806 *** (0.012) | 0.955 *** (0.004) | 0.909 *** (0.025) | 0.931 *** (0.023) |
δi | 0.620 *** (0.024) | 0.064 *** (0.003) | 0.578 *** (0.023) | 0.212 *** (0.010) | 1.933 *** (0.154) | 1.685 *** (0.116) |
λi | 0.045 *** (0.013) | 0.030 *** (0.003) | 0.049 *** (0.012) | 0.057 *** (0.006) | −0.029 (0.088) | −0.027 (0.075) |
vi | 0.533 *** (0.004) | 0.327 *** (0.005) | 0.533 *** (0.004) | 0.385 *** (0.005) | 0.494 *** (0.016) | 0.253 *** (0.017) |
Colombian Milds | Brazilian Naturals | Other Milds | Robusta | |||||
---|---|---|---|---|---|---|---|---|
Parameters | Futures | Spot | Futures | Spot | Futures | Spot | Futures | Spot |
ωi | −5.100 *** (0.358) | −0.246 *** (0.047) | −5.260 *** (0.354) | −0.248 *** (0.044) | −0.815 *** (0.215) | −0.783 *** (0.258) | −0.859 *** (0.285) | −0.692 *** (0.129) |
θi | 0.413 *** (0.042) | 0.972 *** (0.005) | 0.394 *** (0.041) | 0.971 *** (0.005) | 0.882 *** (0.028) | 0.903 *** (0.033) | 0.887 *** (0.037) | 0.906 *** (0.017) |
δi | 0.609 *** (0.036) | 0.140 *** (0.015) | 0.619 *** (0.038) | 0.120 *** (0.014) | 1.959 *** (0.147) | 1.971 *** (0.169) | 2.079 *** (0.195) | 1.481 *** (0.100) |
λi | 0.054 ** (0.024) | 0.029 *** (0.006) | 0.053 ** (0.024) | 0.033 *** (0.006) | 0.052 (0.094) | 0.061 (0.096) | −0.024 (0.110) | −0.070 (0.065) |
vi | 0.526 *** (0.006) | 0.318 *** (0.006) | 0.525 *** (0.006) | 0.370 *** (0.007) | 0.555 *** (0.016) | 0.302 *** (0.021) | 0.559 *** (0.022) | 0.271 *** (0.018) |
Colombian Milds | Brazilian Naturals | Other Milds | Robusta | |||||
---|---|---|---|---|---|---|---|---|
Parameters | Futures | Spot | Futures | Spot | Futures | Spot | Futures | Spot |
ωi | −2.474 *** (0.105) | 0.023 *** (0.003) | −2.351 *** (0.105) | −0.207 *** (0.017) | −0.536 *** (0.109) | −0.483 *** (0.129) | −0.859 *** (0.285) | −0.692 *** (0.129) |
θi | 0.705 *** (0.013) | 1.002 *** (0.000) | 0.720 *** (0.013) | 0.974 *** (0.002) | 0.928 *** (0.015) | 0.943 *** (0.017) | 0.887 *** (0.037) | 0.906 *** (0.017) |
δi | 0.621 *** (0.019) | 0.067 *** (0.003) | 0.608 *** (0.019) | 0.173 *** (0.007) | 1.716 *** (0.098) | 1.656 *** (0.079) | 2.079 *** (0.195) | 1.481 *** (0.100) |
λi | 0.043 *** (0.011) | 0.025 *** (0.002) | 0.043 *** (0.011) | 0.041 *** (0.004) | −0.015 (0.051) | −0.025 (0.062) | −0.024 (0.110) | −0.070 (0.065) |
vi | 0.532 *** (0.003) | 0.320 *** (0.004) | 0.532 *** (0.003) | 0.376 *** (0.004) | 0.553 *** (0.014) | 0.397 *** (0.012) | 0.559 *** (0.022) | 0.271 *** (0.018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Saghaian, S.; Reed, M. Influences of Power Structure Evolution on Coffee Commodity Markets: Insights from Price Discovery and Volatility Spillovers. Sustainability 2022, 14, 15268. https://doi.org/10.3390/su142215268
Zhang W, Saghaian S, Reed M. Influences of Power Structure Evolution on Coffee Commodity Markets: Insights from Price Discovery and Volatility Spillovers. Sustainability. 2022; 14(22):15268. https://doi.org/10.3390/su142215268
Chicago/Turabian StyleZhang, Wei, Sayed Saghaian, and Michael Reed. 2022. "Influences of Power Structure Evolution on Coffee Commodity Markets: Insights from Price Discovery and Volatility Spillovers" Sustainability 14, no. 22: 15268. https://doi.org/10.3390/su142215268
APA StyleZhang, W., Saghaian, S., & Reed, M. (2022). Influences of Power Structure Evolution on Coffee Commodity Markets: Insights from Price Discovery and Volatility Spillovers. Sustainability, 14(22), 15268. https://doi.org/10.3390/su142215268