An Enhanced Electrokinetic/Waste Fe(OH)3 Permeable Reactive Barrier System for Soil Remediation in Sulfide Mine Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Soil, and Characterization
2.2. Chemical Analysis
2.2.1. pH and Electrical Conductivity (EC)
2.2.2. Determination of Cd Concentration
2.2.3. Determination of Sulfate Concentration
2.2.4. Removal Efficiency and Accumulated Energy Consumption
2.2.5. EK Experimental Setup
3. Results and Discussion
3.1. Soil pH and EC after EK Remediation
3.2. pH in the Anode and Cathode Chambers during EK Process
3.3. Distribution of Cd in Contaminated Soil after EK Remediation
3.4. Distribution of Sulfate in Contaminated Soil after EK Remediation
3.5. Electric Current across the Soil Chamber and Accumulated Energy Consumption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Galán, M.; Baena-Moreno, F.M.; Vázquez, S.; Arroyo-Torralvo, F.; Vilches, L.F.; Zhang, Z. Remediation of acid mine drainage. Environ. Chem. Lett. 2019, 17, 1529–1538. [Google Scholar] [CrossRef]
- Dang, V.M.; Van, H.T.; Vinh, N.D.; Hoa Duong, T.M.; Hanh Nguyen, T.B.; Nguyen, T.T.; Ha Tran, T.N.; Hoang, T.K.; Tran, T.P.; Nguyen, L.H.; et al. Enhancement of exchangeable Cd and Pb immobilization in contaminated soil using Mg/Al LDH-zeolite as an effective adsorbent. RSC Adv. 2021, 11, 17007–17019. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.A.M.; Liu, G.; Yousaf, B.; Mian, M.M.; Ali, M.U.; Ahmed, R.; Cheema, A.I.; Naushad, M. Contrasting effects of biochar and hydrothermally treated coal gangue on leachability, bioavailability, speciation and accumulation of heavy metals by rapeseed in copper mine tailings. Ecotox. Environ. Safe 2020, 191, 110244. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.A.M.; Irshad, S.; Yousaf, B.; Ali, M.U.; Dan, C.; Abbas, Q.; Liu, G.; Yang, X. Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing. Sci. Total Environ. 2021, 779, 146536. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; Dovì, V.; Ferro, S. Sustainability in ElectroKinetic Remediation Processes: A Critical Analysis. Sustainability 2021, 13, 770. [Google Scholar] [CrossRef]
- Yang, J.; Kwon, M.J.; Choi, J.; Baek, K.; O Loughlin, E.J. The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere 2014, 117, 79–86. [Google Scholar] [CrossRef]
- Cameselle, C. Enhancement Of Electro-Osmotic Flow During The Electrokinetic Treatment Of A Contaminated Soil. Electrochim. Acta 2015, 181, 31–38. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Cui, C. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere 2021, 265, 129071. [Google Scholar] [CrossRef]
- Ha, H.; Olson, J.R.; Bian, L.; Rogerson, P.A. Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environ. Sci. Technol. 2014, 48, 4999–5007. [Google Scholar] [CrossRef]
- Suzuki, T.; Niinae, M.; Koga, T.; Akita, T.; Ohta, M.; Choso, T. EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 440, 145–150. [Google Scholar] [CrossRef]
- Song, Y.; Ammami, M.; Benamar, A.; Mezazigh, S.; Wang, H. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ. Sci. Pollut. Res. 2016, 23, 10577–10586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Xu, X.; Li, H.; Wang, N.; Guo, N.; Yu, H. Development of novel assisting agents for the electrokinetic remediation of heavy metal-contaminated kaolin. Electrochim. Acta 2016, 218, 140–148. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, D.H.; Yoo, J.C.; Baek, K. Electrokinetic extraction of heavy metals from dredged marine sediment. Sep. Purif. Technol. 2011, 79, 164–169. [Google Scholar] [CrossRef]
- Peng, G.; Tian, G. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge. Chem. Eng. J. 2010, 165, 388–394. [Google Scholar] [CrossRef]
- Li, Y.; Hu, P.; Zhao, J.; Dong, C. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid. Environ. Sci. Pollut. Res. 2015, 22, 5563–5571. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Y.; Guo, Q.; Zhu, Y.; Dong, C.; Hu, P. Remediation of Cadmium and Lead Contaminated Farmland Soil by Washing with Combined Organic Acids and FeCl3. J. Agro-Environ. Sci. 2014, 2335–2342. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, J.; Lv, S.; Liu, Z.; Liu, W. Removal of cadmium in contaminated kaolin by new-style electrokinetic remediation using array electrodes coupled with permeable reactive barrier. Sep. Purif. Technol. 2020, 239, 116544. [Google Scholar] [CrossRef]
- Jiang, D.; Zeng, G.; Huang, D.; Chen, M.; Zhang, C.; Huang, C.; Wan, J. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ. Res. 2018, 163, 217–227. [Google Scholar] [CrossRef]
- Meng, X.; Letterman, R.D. Modeling cadmium and sulfate adsorption by Fe(OH)/SiO2 mixed oxides. Water Res. 1996, 30, 2148–2154. [Google Scholar] [CrossRef]
- Li, X.; Reich, T.; Kersten, M.; Jing, C. Low-Molecular-Weight Organic Acid Complexation Affects Antimony(III) Adsorption by Granular Ferric Hydroxide. Environ. Sci. Technol. 2019, 53, 5221–5229. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kang, C.; Mohan, D.; Khan, M.A.; Lee, J.; Lee, S.S.; Jeon, B. Waste sludge derived adsorbents for arsenate removal from water. Chemosphere 2020, 239, 124832. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.M.; Deng, C.F.; Alshawabkeh, A.N.; Cang, L.; Deng, C.F. Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings. Environ. Int. 2005, 31, 885–890. [Google Scholar] [CrossRef]
- Annamalai, S.; Selvaraj, S.; Selvaraj, H.; Santhanam, M.; Pazos, M. Electrokinetic remediation: Challenging and optimization of electrolyte for sulfate removal in textile effluent-contaminated farming soil. RSC Adv. 2015, 5, 81052–81058. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Hao, S.; Xu, W.; Shen, K.; Long, Z. Leaching Behaviour and Enhanced Phytoextraction of Additives for Cadmium-Contaminated Soil by Pennisetum sp. Bull. Environ. Contam. Tox. 2020, 104, 658–667. [Google Scholar] [CrossRef]
- Song, Y.; Cang, L.; Zuo, Y.; Yang, J.; Zhou, D.; Duan, T.; Wang, R. EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods. Chemosphere 2020, 243, 125439. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, J.; Zhu, S.; Wang, Y.; Gao, H. Exchange electrode-electrokinetic remediation of Cr-contaminated soil using solar energy. Sep. Purif. Technol. 2018, 190, 297–306. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S. Electrokinetic remediation for the removal of organic contaminants in soils. Curr. Opin. Electrochem. 2018, 79, 246–253. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, S.; Yi, Y.; Zhang, T. An electrokinetic/activated alumina permeable reactive barrier-system for the treatment of fluorine-contaminated soil. Clean Technol. Environ. 2016, 18, 2691–2699. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, B.; Guo, P.; Wang, S.; Guo, S. Enhanced electrokinetic remediation and simulation of cadmium-contaminated soil by superimposed electric field. Chemosphere 2019, 233, 17–24. [Google Scholar] [CrossRef]
- Zulfiqar, W.; Iqbal, M.A.; Butt, M.K. Pb2+ ions mobility perturbation by iron particles during electrokinetic remediation of contaminated soil. Chemosphere 2017, 169, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Manohar, A.K.; Yang, C.; Malkhandi, S.; Prakash, G.K.S.; Narayanan, S.R. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives. J. Electrochem. Soc. 2013, 160, A2078–A2084. [Google Scholar] [CrossRef]
- Nasiri, A.; Jamshidi-Zanjani, A.; Khodadadi Darban, A. Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: Effect of chelating agents and permeable reactive barrier. Environ. Pollut. 2020, 266, 115197. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
pH | 6.82 |
Electrical conductivity (μS/cm) | 96.09 |
Organic matter (%) | 0.08 |
Carbonate matter (%) | 0.14 |
Chloride matter≤ (%) | 0.036 |
Heavy metals (in Pb, %) | 0.001 |
System | Anode Solution | Cathode Solution | PRB | Duration (h) |
---|---|---|---|---|
EK-H2O | H2O | H2O | - | 48 |
EK-H2O-PRB | H2O | H2O | Fe(OH)3 | 48 |
EK-HEDP | 0.2M HEDP | 0.2M HEDP | - | 48 |
EK-HEDP+ FeCl3 | 0.2M HEDP: 0.05M FeCl3 =1:1(v/v) | 0.2M HEDP: 0.05M FeCl3 =1:1(v/v) | - | 48 |
EK-HEDP-PRB | 0.2M HEDP | 0.2M HEDP | Fe(OH)3 | 48 |
EK-HEDP+ FeCl3-PRB | 0.2M HEDP: 0.05M FeCl3 =1:1(v/v) | 0.2M HEDP: 0.05M FeCl3 =1:1(v/v) | Fe(OH)3 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Tu, L.; Liao, C.; Li, Q.; Lu, D. An Enhanced Electrokinetic/Waste Fe(OH)3 Permeable Reactive Barrier System for Soil Remediation in Sulfide Mine Areas. Sustainability 2022, 14, 15342. https://doi.org/10.3390/su142215342
Fan Y, Tu L, Liao C, Li Q, Lu D. An Enhanced Electrokinetic/Waste Fe(OH)3 Permeable Reactive Barrier System for Soil Remediation in Sulfide Mine Areas. Sustainability. 2022; 14(22):15342. https://doi.org/10.3390/su142215342
Chicago/Turabian StyleFan, Yifeng, Lingyun Tu, Changjun Liao, Qiujun Li, and Dengjun Lu. 2022. "An Enhanced Electrokinetic/Waste Fe(OH)3 Permeable Reactive Barrier System for Soil Remediation in Sulfide Mine Areas" Sustainability 14, no. 22: 15342. https://doi.org/10.3390/su142215342
APA StyleFan, Y., Tu, L., Liao, C., Li, Q., & Lu, D. (2022). An Enhanced Electrokinetic/Waste Fe(OH)3 Permeable Reactive Barrier System for Soil Remediation in Sulfide Mine Areas. Sustainability, 14(22), 15342. https://doi.org/10.3390/su142215342