Investigating Yield Variability and Technical Efficiency of Smallholders Pineapple Production in Johor
Abstract
:1. Introduction
2. Literature Review
2.1. Production Inputs
2.2. Socio-Economic Variables
3. Methodology
3.1. Integration of Risk into Stochastic Frontier Analysis
3.2. Statement of Hypothesis
3.3. Data and Sampling Technique
4. Results and Discussion
4.1. Summary Statistics of Output and Inputs Variables
4.2. Testing of Hypothesis
4.3. Elasticity of Production and Returns to Scale
4.4. Production Risk Functions Estimates
4.4.1. Inefficiency Production Model Estimates
4.4.2. Farming Experience
4.4.3. Extension Visits
4.4.4. Seminar Cum Training
4.5. Technical Efficiency Score
5. Conclusions
5.1. Policy Implications
5.2. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dardak, R.A. Trends in Production, Trade, and Consumption of Tropical Fruit in Malaysia; Food and Fertilizer Technology Center for the Asian and Pacific Region: Taipei, Taiwan, 2017; pp. 1–8. [Google Scholar]
- Economic Planning Unit. Eighth Malaysia Plan (2001–2005); Economic Planning Unit: Kuala Lumpur, Malaysia, 2001.
- Economic Planning Unit. Ninth Malaysia Plan (2006–2010); Economic Planning Unit: Kuala Lumpur, Malaysia, 2006.
- Economic Planning Unit. Tenth Malaysia Plan (2011–2015); Economic Planning Unit: Kuala Lumpur, Malaysia, 2011.
- Economic Planning Unit. Eleventh Malaysia Plan (2016–2020); Economic Planning Unit: Kuala Lumpur, Malaysia, 2015.
- Malaysian Pineapple Industry Board. Perangkaan Industri Nanas Malaysia 2012; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2012.
- Malaysian Pineapple Industry Board. Maklumat Statistik Industri Nanas 2018; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2019.
- Malaysian Pineapple Industry Board. Maklumat Dan Data Nanas Malaysia; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2020.
- Malaysian Pineapple Industry Board. Malaysia Pineapple Industry Statistics 2012; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2013.
- Malaysian Pineapple Industry Board. MPIB Statistics Information 2018; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2019.
- Malaysian Pineapple Industry Board. Maklumat Statistik Nanas 2020; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2021.
- Malaysian Pineapple Industry Board. MPIB Statistics Book 2015; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2015.
- Ministry of Agriculture and Food Industries. Third National Agricultural Policy (1998–2010) Executive Summary; Ministry of Agriculture and Food Industries: Putrajaya, Malaysia, 2010.
- Malaysian Pineapple Industry Board. MPIB Strategic Planning 2016–2020; Malaysian Pineapple Industry Board: Johor Bahru, Malaysia, 2016.
- Hasan, N.A. MAFI Komited Bantu Pengusaha Nanas. Kosmo. 2 March 2022. Available online: https://www.kosmo.com.my/2022/03/02/mafi-komited-bantu-pengusaha-nanas/ (accessed on 22 September 2022).
- Mishra, A.K.; Rezitis, A.N.; Tsionas, M.G. Estimating Technical Efficiency and Production Risk under Contract Farming: A Bayesian Estimation and Stochastic Dominance Methodology. J. Agric. Econ. 2019, 70, 353–371. [Google Scholar] [CrossRef]
- Ogundari, K. The Paradigm of Agricultural Efficiency and Its Implication on Food Security in Africa: What Does Meta-Analysis Reveal? World Dev. 2014, 64, 690–702. [Google Scholar] [CrossRef]
- Amuakwa-Mensah, F.; Chube, B.; Surry, Y.; Bahta, S. Production Risk and Technical (in)Efficiency amongst Smallholder Livestock Farmers in Botswana: An Exploratory Investigation. In Proceedings of the 30th International Conference of Agricultural Economists, Vancouver, BC, Canada, 28 July–2 August 2018. [Google Scholar]
- Yang, Z.; Mugera, A.; Zhang, F. Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China. Sustainability 2016, 8, 787. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Guttormsen, A.G.; Roll, K.H. Production Risk and Technical Efficiency of Tilapia Aquaculture in Bangladesh. Mar. Resour. Econ. 2019, 34, 123–141. [Google Scholar] [CrossRef]
- Mariano, M.J.; Villano, R.; Fleming, E. Technical Efficiency of Rice Farms in Different Agroclimatic Zones in the Philippines: An Application of a Stochastic Metafrontier Model. Asian Econ. J. 2011, 25, 245–269. [Google Scholar] [CrossRef]
- Hamid, M.J.A. Demand for New Technology for Pineapple Planters. In Proceedings of the Prosiding Perkem V, JILID 2, Bangi, Malaysia, 17 October 2010; Volume 2, pp. 368–381. [Google Scholar]
- Khan, M.A.; Begum, R.; Nielsen, R.; Hoff, A. Production Risk, Technical Efficiency, and Input Use Nexus: Lessons from Bangladesh Aquaculture. J. World Aquac. Soc. 2021, 52, 57–72. [Google Scholar] [CrossRef]
- Kara, A.H.; Shamsudin, M.N.; Mohamed, Z.; Latiff, I.B.; Seng, K.W.K. Modeling Technical Efficiency With Production Risk: A Breakdown of Kebbi State Rice Farms. Adv. Environ. Biol. 2019, 13, 17–24. [Google Scholar] [CrossRef]
- Cagdas, A.D.; Jeffrey, S.R.; Smith, E.G.; Boxall, P.C. Environmental Stewardship and Technical Efficiency in Canadian Prairie Canola Production. Can. J. Agric. Econ. 2016, 64, 455–477. [Google Scholar] [CrossRef]
- Oppong, B.; Onumah, E.; Asuming-Brempong, S. Technical Efficiency and Production Risk of Maize Production: Evidence from Ghana. Asian J. Agric. Ext. Econ. Sociol. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Kumbhakar, S.C. Specification and Estimation of Production Risk, Risk Preferences and Technical Efficiency. Am. J. Agric. Econ. 2002, 84, 8–22. [Google Scholar] [CrossRef]
- Baráth, L.; Ferto, I.; Hockmann, H. Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms. Sustainability 2020, 12, 1147. [Google Scholar] [CrossRef] [Green Version]
- Bala, M.; Shamsudin, M.N.; Radam, A.; Latif, I.A. Measuring the Technical Efficiency of Cotton Farmers Using Stochastic Frontier and Data Envelopment Analysis: A Case Study of Northeast Zone, Nigeria. IOSR J. Agric. Vet. Sci. 2019, 12, 8–15. [Google Scholar] [CrossRef]
- Ahsan, D.A. Farmers’ Motivations, Risk Perceptions and Risk Management Strategies in a Developing Economy: Bangladesh Experience. J. Risk Res. 2011, 14, 325–349. [Google Scholar] [CrossRef]
- Asmara, R.; Mamilianti, W.; Hanani, N.; Mustadjab, M.M. Potato Fluctuation, and Risk Preference of Potato Farming in the Bromo Plateau, Indonesia. Agrivita 2022, 44, 225–234. [Google Scholar] [CrossRef]
- Kaka, Y.; Shamsudin, M.N.; Latif, I.A.; Radam, A. Paddy Production in Malaysia: A Flexible Risk Stochastic Frontier Production Function Analysis. Int. J. Agric. Environ. Bioresearch 2020, 05, 86–101. [Google Scholar] [CrossRef]
- Bokusheva, R.; Hockmann, H. Production Risk and Technical Inefficiency in Russian Agriculture. Eur. Rev. Agric. Econ. 2006, 33, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Tveterås, R. Production Risk and Productivity Growth: Some Findings for Norwegian Salmon Aquaculture. J. Product. Anal. 1999, 12, 161–179. [Google Scholar] [CrossRef]
- Just, R.E.; Pope, R.D. Stochastic Specification of Production Functions and Economic Implications. J. Econom. 1978, 7, 67–86. [Google Scholar] [CrossRef]
- Onumah, E.E.; Onumah, J.A.; Onumah, G.E. Production Risk and Technical Efficiency of Fish Farms in Ghana. Aquaculture 2018, 495, 55–61. [Google Scholar] [CrossRef]
- Giannakas, K.; Schoney, R.; Tzouvelekas, V. Technical Efficiency, Technological Change and Output Growth of Wheat Farms in Saskatchewan. Can. J. Agric. Econ. 2001, 49, 135–152. [Google Scholar] [CrossRef]
- Lien, G.; Kumbhakar, S.C.; Hardaker, J.B. Accounting for Risk in Productivity Analysis: An Application to Norwegian Dairy Farming. J. Product. Anal. 2017, 47, 247–257. [Google Scholar] [CrossRef]
- Lakner, S.; Kirchweger, S.; Hoop, D.; Brümmer, B.; Kantelhardt, J. The Effects of Diversification Activities on the Technical Efficiency of Organic Farms in Switzerland, Austria, and Southern Germany. Sustainability 2018, 10, 1304. [Google Scholar] [CrossRef] [Green Version]
- Asche, F.; Tveterås, R. Modeling Production Risk with a Two-Step Procedure. J. Agric. Resour. Econ. 1999, 24, 424–439. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Tveterås, R. Risk Preferences, Production Risk and Firm Heterogeneity. Scand. J. Econ. 2003, 105, 275–293. [Google Scholar] [CrossRef]
- Tveterås, R. Flexible Panel Data Models for Risky Production Technologies with an Application to Salmon Aquaculture. Econom. Rev. 2000, 19, 367–389. [Google Scholar] [CrossRef]
- Kumbhakar, S.C. Production Risk, Technical Efficiency, and Panel Data. Econ. Lett. 1993, 41, 11–16. [Google Scholar] [CrossRef]
- Chang, H.-H.; Wen, F.-I. Off-Farm Work, Technical Efficiency, and Rice Production Risk in Taiwan. Agric. Econ. 2011, 42, 269–278. [Google Scholar] [CrossRef]
- Guttormsen, A.G.; Roll, K.H. Production Risk in a Subsistence Agriculture. J. Agric. Educ. Ext. 2014, 20, 133–145. [Google Scholar] [CrossRef]
- Asche, F.; Roll, K.H. Determinants of Inefficiency in Norwegian Salmon Aquaculture. Aquac. Econ. Manag. 2013, 17, 300–321. [Google Scholar] [CrossRef]
- Gardebroek, C.; Chavez, M.D.; Lansink, A.O. Analysing Production Technology and Risk in Organic and Conventional Dutch Arable Farming Using Panel Data. J. Agric. Econ. 2010, 61, 60–75. [Google Scholar] [CrossRef]
- Villano, R.; Fleming, E. Technical Inefficiency and Production Risk in Rice Farming: Evidence from Central Luzon Philippines. Asian Econ. J. 2006, 20, 29–46. [Google Scholar] [CrossRef]
- Tiedemann, T.; Latacz-Lohmann, U. Production Risk and Technical Efficiency in Organic and Conventional Agriculture–The Case of Arable Farms in Germany. J. Agric. Econ. 2013, 64, 73–96. [Google Scholar] [CrossRef]
- Bala, M.; Shamsudin, M.N.; Radam, A.; Latif, I.A.; Mukhtar, U. Stochastic Cotton Production Technology and Risk Production Analysis: A Case Study of Northeast Zone, Nigeria. IOSR J. Agric. Vet. Sci. 2021, 14, 20–30. [Google Scholar] [CrossRef]
- Lemessa, S.D.; Yismawu, M.A.; Daksa, M.D.; Watabaji, M.D. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption. Turkish J. Agric. Food Sci. Technol. 2017, 5, 1099. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.A.A.; Arshad, F.M.; Alam, M.F.; Mohamed, Z.A.; Khan, M.A. Stochastic Modeling of Production Risk and Technical Efficiency of Thai Koi (Anabas Testudineus) Farming in Northern Bangladesh. Aquac. Econ. Manag. 2016, 20, 165–184. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Wall, A. Production Risk, Risk Aversion and the Determination of Risk Attitudes among Spanish Rice Producers. Agric. Econ. 2011, 42, 451–464. [Google Scholar] [CrossRef]
- Rizwan, M.; Qing, P.; Saboor, A.; Iqbal, M.A.; Nazir, A. Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country. Sustainability 2020, 12, 3770. [Google Scholar] [CrossRef]
- Wang, J.; Etienne, X.; Ma, Y. Deregulation, Technical Efficiency and Production Risk in Rice Farming: Evidence from Zhejiang Province, China. China Agric. Econ. Rev. 2020, 12, 605–622. [Google Scholar] [CrossRef]
- Dahmardeh, N.; Shahraki, A.S. Evaluation Factors Affecting of Risk Production in Sistan Grape Growers by Using Stochastic Frontier Approach. Int. J. Agric. Manag. Dev. 2014, 5, 59–64. [Google Scholar] [CrossRef]
- Ogundari, K.; Akinbogun, O.O. Modeling Technical Efficiency with Production Risk: A Study of Fish Farms in Nigeria. Mar. Resour. Econ. 2010, 25, 295–308. [Google Scholar] [CrossRef]
- Mamilianti, W.; Hanani, N.; Mustadjab, M.M.; Asmara, R. Risk Preference of Farmers and Production Input Allocation of Potato Farming in Tengger Highland, Indonesia. EurAsian J. Biosci. 2019, 13, 1777–1783. [Google Scholar]
- Okeke, N.I.; Umar, H.S.; Girei, A.A.; Ibrahim, H.Y. Estimation of Technical Inefficiency And Production Risk Among Small Scale Maize Farmers In The Federal Capital Territory (FCT) Abuja, Nigeria. Acta Sci. Pol. Agric. 2020, 19, 147–155. [Google Scholar] [CrossRef]
- El-Shater, T.; Mugera, A.; Yigezu, Y.A. Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production. Sustainability 2020, 12, 3640. [Google Scholar] [CrossRef]
- Jaenicke, E.C.; Frechette, D.L.; Larson, J.A. Estimating Production Risk and Inefficiency Simultaneously: An Application to Cotton Cropping Systems. J. Agric. Resour. Econ. 2003, 28, 540–557. [Google Scholar]
- Kasim, N.A.; Megawati, M.; Arifah, A.; Hidayati, W. Production Risk of Seaweed Cultivation in South Sulawesi: Comparison between Cobb-Douglas and Just-Pope Production Function. Int. J. Agric. Syst. 2019, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Adinku, A.O. Production Risk and Technical Efficiency of Irrigated Rice Farms in the Greater Accra and Volta Regions of Ghana; University of Ghana: Accra, Ghana, 2013. [Google Scholar]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Production Function Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van Den Broeck, J. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. Int. Econ. Rev. 1977, 18, 435. [Google Scholar] [CrossRef]
- Battese, G.E.; Rambaldi, A.N.; Wan, G.H. A Stochastic Frontier Production Function with Flexible Risk Properties. J. Product. Anal. 1997, 8, 269–280. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Prediction of Firm-Level Technical Efficiencies with a Generalized Frontier Production Function and Panel Data. J. Econom. 1988, 38, 387–399. [Google Scholar] [CrossRef]
- Norman, D.W. Methodology and Problems of Farm Management Investigations: Experiences from Northern Nigeria; Department of Agricultural Economics, Michigan State University: Michigan, MI, USA, 1973. [Google Scholar]
- Kodde, D.A.; Palm, F.C. A Parametric Test of the Negativity of the Substitution Matrix. J. Appl. Econom. 1987, 2, 227–235. [Google Scholar] [CrossRef]
- Chakraborty, K.; Misra, S.; Johnson, P. Cotton Farmers’ Technical Efficiency: Stochastic and Nonstochastic Production Function Approaches. Agric. Resour. Econ. Rev. 2002, 31, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Ambali, O.I.; Adegbite, D.A.; Ayinde, I.A.; Oyeyinka, R.A. Comparative Analysis of Technical Efficiency Of Beneficiary And Non-Beneficiary Food Crop Farmers Of Bank Of Agriculture In Ogun State, Nigeria. ARPN J. Agric. Biol. Sci. 2012, 7, 1038–1047. [Google Scholar]
- Mailena, L.; Shamsudin, M.N.; Radam, A.; Mohamed, Z. Efficiency of Rice Farms and Its Determinants: Application of Stochastic Frontier Analysis. Trends Appl. Sci. Res. 2014, 9, 360–371. [Google Scholar] [CrossRef]
- Kara, A.H.; Shamsudin, M.N.; Mohamed, Z.; Latiff, I.B.; Seng, K.W.K. Technical Efficiency and Production Risk of Rice Farms under Anchor Borrowers Programme in Kebbi State, Nigeria. Asian J. Agric. Extension Econ. Sociol. 2019, 31, 1–12. [Google Scholar] [CrossRef]
- Moïse, K.B.S.; Alidou, A.-I.; Ambaliou, O.O. Technical Efficiency of Pineapple Production and Challenges in Southern Benin. African J. Agric. Res. 2022, 18, 522–534. [Google Scholar] [CrossRef]
- Ogundari, K. Resource-Productivity, Allocative Efficiency and Determinants of Technical Efficiency of Rainfed Rice Farmers: A Guide for Food Security Policy in Nigeria. Agric. Econ. 2008, 54, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, S.; Masuku, M.B.; Rugambisa, J.I. Technical Efficiency of Maize Production in Swaziland: A Stochastic Frontier Approach. African J. Agric. Res. 2012, 7, 5628–5636. [Google Scholar] [CrossRef]
- Naqvi, S.A.A.; Ashfaq, M. Estimation of Technical Efficiency and It’s Determinants in the Hybrid Maize Production in District Chiniot: A Cobb-Douglas Model Approach. Pakistan J. Agric. Sci. 2014, 51, 181–185. [Google Scholar]
- Khan, A.A.A.; Ali, S.; Khan, A.A.A.; Waqas, M.; Khan, S.U. Technical Efficiency of Maize in District Lakki Marwat of Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric. 2020, 36, 374–733. [Google Scholar] [CrossRef]
- Wongnaa, C.A.; Awunyo-Vitor, D. Achieving Sustainable Development Goals on No Poverty and Zero Hunger: Does Technical Efficiency of Ghana’s Maize Farmers Matter? Agric. Food Secur. 2018, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.; Bala, B.K.; Arshad, F.M.; Haque, M.A.; Hossain, M.A. Food Security through Increasing Technical Efficiency and Reducing Postharvest Losses of Rice Production Systems in Bangladesh. Food Secur. 2016, 8, 361–374. [Google Scholar] [CrossRef]
- Hidayati, B.; Yamamoto, N.; Kano, H. Investigation of Production Efficiency and Socio-Economic Factors of Organic Rice in Sumber Ngepoh District, Indonesia. J. Cent. Eur. Agric. 2019, 20, 748–758. [Google Scholar] [CrossRef]
- Rasyid, M.N.; Setiawan, B.; Mustadjab, M.M.; Hanani, N. Factors That Influence Rice Production and Technical Efficiency in the Context of an Integrated Crop Management Field School Program. Am. J. Appl. Sci. 2016, 13, 1201–1204. [Google Scholar] [CrossRef] [Green Version]
- Azumah, S.B.; Donkoh, S.A.; Awuni, J.A. Correcting for Sample Selection in Stochastic Frontier Analysis: Insights from Rice Farmers in Northern Ghana. Agric. Food Econ. 2019, 7, 9. [Google Scholar] [CrossRef]
- Sarmiento, J.M.P.; Romo, G.D.A.; Quinineza, R.A.D.; Shuck, V.A. Is Vegetable Farming Technically Efficient in Marilog, Davao City, Philippines? Parametric and Non-Parametric Approaches. Acta Hortic. 2013, 1006, 317–324. [Google Scholar] [CrossRef]
- Andaregie, A.; Astatkie, T. Determinants of Technical Efficiency of Potato Farmers and Effects of Constraints on Potato Production in Northern Ethiopia. Exp. Agric. 2020, 56, 699–709. [Google Scholar] [CrossRef]
- Ahmed, K.D.; Burhan, O.; Amanuel, A.; Diriba, I.; Ahmed, A. Technical Efficiency and Profitability of Potato Production by Smallholder Farmers: The Case of Dinsho District, Bale Zone of Ethiopia. J. Dev. Agric. Econ. 2018, 10, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Ngango, J.; Kim, S.G. Assessment of Technical Efficiency and Its Potential Determinants among Small-Scale Coffee Farmers in Rwanda. Agriculture 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Mengui, K.C.; Oh, S.; Lee, S.H. The Technical Efficiency of Smallholder Irish Potato Producers in Santa Subdivision, Cameroon. Agriculture 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Ogunniyi, L.T.; Ajetomobi, J.O.; Fabiyi, Y.L. Technical Efficiency of Cassava-Based Cropping in Oyo State of Nigeria. AGRIS -Line Pap. Econ. Inform. 2013, 5, 51–59. [Google Scholar]
- Dhehibi, B.; Alimari, A.; Haddad, N.; Aw-Hassan, A. Technical Efficiency and Its Determinants in Food Crop Production: A Case Study of Farms in West Bank, Palestine. J. Agric. Sci. Technol. 2014, 16, 717–730. [Google Scholar]
- Kea, S.; Li, H.; Pich, L. Technical Efficiency and Its Determinants of Rice Production in Cambodia. Economies 2016, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Ngango, J.; Hong, S. Improving Farm Productivity through the Reduction of Managerial and Technology Gaps among Farmers in Rwanda. Agric. Food Secur. 2021, 10, 11. [Google Scholar] [CrossRef]
- Biswas, B.; Mallick, B.; Roy, A.; Sultana, Z. Impact of Agriculture Extension Services on Technical Efficiency of Rural Paddy Farmers in Southwest Bangladesh. Environ. Chall. 2021, 5, 100261. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Ngo, T.; Le, T.D.Q.; Ho, H.; Nguyen, H.T.H. The Role of Knowledge in Sustainable Agriculture: Evidence from Rice Farms’ Technical Efficiency in Hanoi, Vietnam. Sustain. 2019, 11, 2472. [Google Scholar] [CrossRef] [Green Version]
- Athipanyakul, T. Sugarcane Production Efficiency of Small-Scale Farmers in Thailand. Int. Sugar J. 2018, 120, 470–475. [Google Scholar]
- Beyene, T.; Mulugeta, W.; Merra, T. Technical Efficiency and Impact of Improved Farm Inputs Adoption on the Yield of Haricot Bean Producer in Hadiya Zone, SNNP Region, Ethiopia. Cogent Econ. Financ. 2020, 8, 1833503. [Google Scholar] [CrossRef]
Variable | Unit | Mean | Minimum | Maximum | Std. Dev. |
---|---|---|---|---|---|
Output | |||||
Fresh pineapples | kg/ha | 45,873.31 | 26,687.38 | 81,544.78 | 3831.87 |
Inputs | |||||
Land | ha | 0.92 | 0.40 | 4.45 | 1.42 |
Suckers | no/ha | 36,406.91 | 20,000 | 45,695 | 1421.41 |
Fertilizer | kg/ha | 1862.50 | 1111.50 | 2593.50 | 109.75 |
Labor | man-day/ha | 137.71 | 86.45 | 185.25 | 11.67 |
Agrochemical | l/ha | 27.37 | 12.35 | 61.75 | 4.07 |
Hormones | l/ha | 12.89 | 6.67 | 17.29 | 0.85 |
Null Hypothesis | Log-Likelihood of | Log-Likelihood of | Test Statistic (λ) | Degree of Freedom | Critical Value (λ2) | Decision |
---|---|---|---|---|---|---|
495.071 | 530.350 | 70.558 | 10 | 17.670 | Reject | |
495.071 | 530.350 | 70.558 | 4 | 8.761 | Reject | |
495.071 | 530.350 | 70.558 | 1 | 2.706 | Reject |
Variable | Elasticity |
---|---|
Sucker | 0.916 |
Fertilizer | 0.106 |
Agrochemicals | 2.046 |
Labor | 0.445 |
Hormones | 1.685 |
Returns to Scale (RTS) | 5.199 |
Variables | Parameter | Coefficient | Std. Error | p-Value |
---|---|---|---|---|
Constant | −7.521 *** | 13.729 | 0.000 | |
Sucker | −4.144 *** | 1.707 | 0.000 | |
Fertilizer | 6.819 *** | 0.733 | 0.000 | |
Agrochemicals | −0.180 | 0.269 | 0.503 | |
Labor | −0.191 | 0.460 | 0.678 | |
Hormone | 1.552 ** | 0.776 | 0.046 |
Variables | Parameter | Coefficient | Std. Error | p-Value |
---|---|---|---|---|
Constant | 3.593 | 7.952 | 0.651 | |
Age | 0.043 | 0.075 | 0.563 | |
Education | 0.003 | 0.206 | 0.985 | |
Household Size | 0.110 | 0.325 | 0.735 | |
Farming Experience | −0.736 ** | 0.339 | 0.030 | |
Off farm activities | 0.774 | 1.206 | 0.521 | |
Extension Visit | −2.131 *** | 0.810 | 0.009 | |
Membership | −1.205 | 1.671 | 0.471 | |
Seminar | −3.856 *** | 1.358 | 0.005 |
Efficiency Scores | Frequency | Percent (%) |
---|---|---|
1.00 | 0 | 0.00 |
(0.91, 1) | 42 | 12.76 |
(0.81, 0.90) | 41 | 12.46 |
(0.71, 0.80) | 49 | 14.89 |
(0.61, 0.70) | 56 | 17.02 |
(0.51, 0.60) | 40 | 12.15 |
(0.41, 0.50) | 62 | 18.84 |
(0.31, 0.40) | 0 | 0.00 |
(0.21, 0.30) | 0 | 0.00 |
(0.10, 0.20) | 0 | 0.00 |
Total | 290 | 100 |
Mean | 0.681 | |
Minimum | 0.401 | |
Maximum | 0.990 | |
Std. Dev. | 0.175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhamad, M.Z.; Shamsudin, M.N.; Kamarulzaman, N.H.; Nawi, N.M.; Laham, J. Investigating Yield Variability and Technical Efficiency of Smallholders Pineapple Production in Johor. Sustainability 2022, 14, 15410. https://doi.org/10.3390/su142215410
Muhamad MZ, Shamsudin MN, Kamarulzaman NH, Nawi NM, Laham J. Investigating Yield Variability and Technical Efficiency of Smallholders Pineapple Production in Johor. Sustainability. 2022; 14(22):15410. https://doi.org/10.3390/su142215410
Chicago/Turabian StyleMuhamad, Muhamad Zahid, Mad Nasir Shamsudin, Nitty Hirawaty Kamarulzaman, Nolila Mohd Nawi, and Jamaliah Laham. 2022. "Investigating Yield Variability and Technical Efficiency of Smallholders Pineapple Production in Johor" Sustainability 14, no. 22: 15410. https://doi.org/10.3390/su142215410