Influence of Economic Growth, Energy Production, and Subcomponents on the Environment: A Regional Level Analytical Modeling
Abstract
:1. Introduction
2. Literature Review
3. Empirical Methodology
3.1. Data and Empirical Model
3.2. Estimation Techniques
3.2.1. CSD Test
3.2.2. Slope Homogeneity Test
3.2.3. Panel Unit Root Test
3.2.4. Panel Cointegration Test
3.2.5. Panel Long-Term Estimates
3.2.6. Panel Causality Test
4. Results and Discussion
4.1. The results of Slope Homogeneity and CSD Tests
4.2. The results of Panel Unit Root Tests
4.3. The results of the Panel Cointegration Test
4.4. The Results of Panel Long-Term Estimators
4.5. The Outcomes of the Panel Causality Test
5. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sub Panel | Countries |
Middle East (9 countries) | Islamic Republic of Iran, Saudi Arabia, United Arab Emirates, Iraq, Qatar, Kuwait, Oman, Jordan, Syria. |
Africa (18 countries) | Nigeria, South Africa, Egypt, Algeria, Congo, Morocco, Tanzania, Angola, Libya, Zambia, Tunisia, Zimbabwe, Cote d’Ivoire, Cameroon, Ghana, Gabon, Senegal, Botswana. |
North America (3 countries) | United States, Canada, Mexico. |
Central and South America (15 countries) | Brazil, Venezuela, Colombia, Chile, Peru, Trinidad and Tobago, Ecuador, Guatemala, Bolivia, Dominican Republic, Uruguay, Costa Rica, El Salvador, Nicaragua, Jamaica. |
Asia Pacific (16 countries) | People’s Republic of China, India, Japan, Indonesia, Thailand, Australia, Pakistan, Malaysia, Viet Nam, Philippines, Bangladesh, Myanmar, New Zealand, Nepal, Sri Lanka, Mongolia. |
Eurasia (6 countries) | Russian Federation, Kazakhstan, Georgia, Kyrgyzstan, Azerbaijan, Tajikistan. |
Europe (32 countries) | Germany, France, United Kingdom, Italy, Turkey, Spain, Poland, Ukraine, Netherlands, Belgium, Sweden, Czech Republic, Austria, Romania, Finland, Norway, Hungary, Switzerland, Greece, Israel, Portugal, Bulgaria, Slovak Republic, Denmark, Serbia, Ireland, Croatia, Lithuania, Slovenia, Bosnia and Herzegovina, Albania, North Macedonia, Latvia. |
Global Panel (99 countries) | Germany, France, United Kingdom, Italy, Turkey, Spain, Poland, Ukraine, Netherlands, Belgium, Sweden, Czech Republic, Austria, Romania, Finland, Norway, Hungary, Switzerland, Greece, Israel, Portugal, Bulgaria, Slovak Republic, Denmark, Serbia, Ireland, Croatia, Lithuania, Slovenia, Bosnia and Herzegovina, Albania, North Macedonia, Latvia, People’s Republic of China, India, Japan, Indonesia, Thailand, Australia, Pakistan, Malaysia, Viet Nam, Philippines, Bangladesh, Myanmar, New Zealand, Nepal, Sri Lanka, Mongolia, Russian Federation, Kazakhstan, Georgia, Kyrgyzstan, Azerbaijan, Tajikistan, Brazil, Venezuela, Colombia, Chile, Peru, Trinidad and Tobago, Ecuador, Guatemala, Bolivia, Dominican Republic, Uruguay, Costa Rica, El Salvador, Nicaragua, Jamaica, United States, Canada, Mexico, United States, Canada, Mexico, Nigeria, South Africa, Egypt, Algeria, Congo, Morocco, Tanzania, Angola, Libya, Zambia, Tunisia, Zimbabwe, Cote d’Ivoire, Cameroon, Ghana, Gabon, Senegal, Botswana. |
References
- Jardón, A.; Kuik, O.; Tol, R.S. Economic growth and carbon dioxide emissions: An analysis of Latin America and the Caribbean. Atmósfera 2017, 30, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Tol, R.S. The economic effects of climate change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent. Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Goh, T.; Ang, B.W. Quantifying CO2 emission reductions from renewables and nuclear energy–some paradoxes. Energy Policy 2018, 113, 651–662. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Churchill, S.A.; Paramati, S.R. The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renew. Energy 2017, 111, 157–167. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Hochman, G. Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries. Energy 2017, 141, 1466–1478. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization. Clean Energy Access for Production Use. 2019. Available online: https://www.unido.org/our-focus/safeguarding-environment/clean-energy-access-productive-use/renewable-energy (accessed on 1 June 2022).
- Wang, L.; Tao, Z. Dynamic relationship among consumption of renewable energy, economic growth and carbon emission in China. Technol. Econ. 2013, 32, 99–104. [Google Scholar]
- Wang, Z.; Feng, C. Sources of production inefficiency and productivity growth in China: A global data envelopment analysis. Energy Econ. 2015, 49, 380–389. [Google Scholar] [CrossRef]
- Lin, B.; Moubarak, M. Renewable energy consumption–economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Long, X.; Naminse, E.Y.; Du, J.; Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 2015, 52, 680–688. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.U.; Khattak, S.I.; Ahmad, M.; Khan, A. A disaggregated-level analysis of the relationship among energy production, energy consumption and economic growth: Evidence from China. Energy 2020, 194, 116836. [Google Scholar] [CrossRef]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef] [Green Version]
- Jebli, M.B.; Farhani, S.; Guesmi, K. Renewable energy, CO2 emissions and value added: Empirical evidence from countries with different income levels. Struct. Change Econ. Dyn. 2020, 53, 402–410. [Google Scholar] [CrossRef]
- Rahman 2020, M.M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2020, 147, 399–408. [Google Scholar] [CrossRef]
- Maji, I.K.; Sulaiman, C.; Abdul-Rahim, A.S. Renewable energy consumption and economic growth nexus: A fresh evidence from West Africa. Energy Rep. 2019, 5, 384–392. [Google Scholar] [CrossRef]
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Le, H.P.; Bao, H.H.G. Renewable and nonrenewable energy consumption, government expenditure, institution quality, financial development, trade openness, and sustainable development in Latin America and Caribbean emerging Market and developing economies. Int. J. Energy Econ. Policy 2020, 10, 242. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Assessment of contribution of Australia’s energy production to CO2 emissions and environmental degradation using statistical dynamic approach. Sci. Total Environ. 2018, 639, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, S.A.; Strezov, V.; Weldekidan, H.; Asamoah, E.F.; Owusu, P.A.; Doyi, I.N.Y. Environmental sustainability assessment using dynamic autoregressive-distributed lag simulations—nexus between greenhouse gas emissions, biomass energy, food and economic growth. Sci. Total Environ. 2019, 668, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Du, L. Effects of energy production and CO2 emissions on economic growth in Iran: ARDL approach. Energy 2017, 123, 521–537. [Google Scholar] [CrossRef]
- Przychodzen, W.; Przychodzen, J. Determinants of renewable energy production in transition economies: A panel data approach. Energy 2020, 191, 116583. [Google Scholar] [CrossRef]
- Bento, J.P.C.; Moutinho, V. CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [Google Scholar] [CrossRef]
- Dabachi, U.M.; Mahmood, S.; Ahmad, A.U.; Ismail, S.; Farouq, I.S.; Jakada, A.H.; Kabiru, K. Energy Consumption, Energy Price, Energy Intensity Environmental Degradation, and Economic Growth Nexus in African OPEC Countries: Evidence from Simultaneous Equations Models. J. Environ. Treat. Tech. 2020, 8, 403–409. [Google Scholar]
- Le, T.H.; Chang, Y.; Park, D. Renewable and nonrenewable energy consumption, economic growth, and emissions: International evidence. Energy J. 2020, 41, 73–92. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Zafar, M.W.; Shahbaz, M.; Hou, F.; Sinha, A. From nonrenewable to renewable energy and its impact on economic growth: The role of research & development expenditures in Asia-Pacific Economic Cooperation countries. J. Clean. Prod. 2019, 212, 1166–1178. [Google Scholar]
- Wang, Z.; Bui, Q.; Zhang, B. The relationship between biomass energy consumption and human development: Empirical evidence from BRICS countries. Energy 2020, 194, 116906. [Google Scholar] [CrossRef]
- Sharif, A.; Mishra, S.; Sinha, A.; Jiao, Z.; Shahbaz, M.; Afshan, S. The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew. Energy 2020, 150, 670–690. [Google Scholar] [CrossRef] [Green Version]
- Raza, S.A.; Shah, N.; Sharif, A. Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector. Energy 2019, 173, 706–720. [Google Scholar] [CrossRef]
- Mutascu, M.; Sokic, A. Trade Openness-CO2 Emissions Nexus: A Wavelet Evidence from EU. Environ. Modeling Assess. 2020, 25, 411–428. [Google Scholar] [CrossRef]
- Jammazi, R.; Aloui, C. RETRACTED: On the interplay between energy consumption, economic growth and CO2 emission nexus in the GCC countries: A comparative analysis through wavelet approaches. Renew. Sustain. Energy Rev. 2015, 51, 1737–1751. [Google Scholar] [CrossRef]
- Menegaki, A.N.; Tsagarakis, K.P. Rich enough to go renewable 2015, but too early to leave fossil energy? Renew. Sustain. Energy Rev. 2015, 41, 1465–1477. [Google Scholar] [CrossRef]
- Ajmi, A.N.; El Montasser, G.; Nguyen, D.K. Testing the relationships between energy consumption and income in G7 countries with nonlinear causality tests. Econ. Model. 2013, 35, 126–133. [Google Scholar] [CrossRef]
- Kula, F.E.R.İ.T. The long-run relationship between renewable electricity consumption and GDP: Evidence from panel data. Energy Sources Part B Econ. Plan. Policy 2014, 9, 156–160. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E.; Menyah, K.; Wolde-Rufael, Y. On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth. Ecol. Econ. 2010, 69, 2255–2260. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J.; Ozturk, I. Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust? Renew. Sustain. Energy Rev. 2015, 51, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Cowan, W.N.; Chang, T.; Inglesi-Lotz, R.; Gupta, R. The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries. Energy Policy 2014, 66, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, F.; Ulucak, R. Is there deterministic, stochastic, and/or club convergence in ecological footprint indicator among G20 countries? Environ. Sci. Pollut. Res. 2018, 25, 35404–35419. [Google Scholar] [CrossRef] [PubMed]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, H.M. General Diagnostic Tests for Cross-Sectional Dependence in Panels; Cambridge Working Papers in Economics; University of Cambridge: Cambridge, UK, 2004; p. 435. [Google Scholar]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Breitung, J. A parametric approach to the estimation of cointegration vectors in panel data. Econom. Rev. 2005, 24, 151–173. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Swamy, P.A. Efficient inference in a random coefficient regression model. Econom. J. Econom. Soc. 1970, 38, 311–323. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, P. Purchasing power parity tests in cointegrated panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Phillips, P.C.; Sul, D. Dynamic panel estimation and homogeneity testing under cross section dependence. Econom. J. 2003, 6, 217–259. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, V.; Robertson, D. On the impact of error cross-sectional dependence in short dynamic panel estimation. Econom. J. 2009, 12, 62–81. [Google Scholar] [CrossRef]
- Paramati, S.R.; Mo, D.; Gupta, R. The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries. Energy Econ. 2017, 66, 360–371. [Google Scholar] [CrossRef]
- Eberhardt, M.; Bond, S. Cross-Section Dependence in Nonstationary Panel Models: A Novel Estimator; University Library of Munich: Munich, Germany, 2009. [Google Scholar]
- Eberhardt, M.; Teal, F. Productivity Analysis in Global Manufacturing Production (Discussion Paper 515); Department of Economics, University of Oxford: Oxford, UK, 2010. [Google Scholar]
- Bond, S.; Eberhardt, M. Accounting for Unobserved Heterogeneity in Panel Time Series Models; University of Oxford: Oxford, UK, 2013. [Google Scholar]
- Pesaran 2013, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Yang, C.J.; Xuan, X.; Jackson, R.B. China’s coal price disturbances: Observations, explanations, and implications for global energy economies. Energy Policy 2012, 51, 720–727. [Google Scholar] [CrossRef]
- Howarth, R.W.; Ingraffea, A.; Engelder, T. Natural gas: Should fracking stop? Nature 2011, 477, 271–275. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. 2014. ‘Green’productivity growth in China’s industrial economy. Energy Econ. 2011, 44, 89–98. [Google Scholar] [CrossRef]
- Ocal, O.; Aslan, A. Renewable energy consumption–economic growth nexus in Turkey. Renew. Sustain. Energy Rev. 2013, 28, 494–499. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Econ. 2012, 34, 733–738. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model. Energy Econ. 2014, 42, 226–232. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating ecological, carbon and water footprint into a “footprint family” of indicators: Definition and role in tracking human pressure on the planet. Ecol. Indic. 2012, 16, 100–112. [Google Scholar]
- Weinzettel, J.; Steen-Olsen, K.; Hertwich, E.G.; Borucke, M.; Galli, A. Ecological footprint of nations: Comparison of process analysis, and standard and hybrid multiregional input–output analysis. Ecol. Econ. 2014, 101, 115–126. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef]
- Sorrell, S.; Dimitropoulos, J. The rebound effect: Microeconomic definitions, limitations and extensions. Ecol. Econ. 2008, 65, 636–649. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, C.; Zhang, B. An empirical analysis of China’s energy efficiency from both static and dynamic perspectives. Energy 2014, 74, 322–330. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, M.; Wang, J.C. Direct rebound effect on urban residential electricity use: An empirical study in China. Renew. Sustain. Energy Rev. 2014, 30, 124–132. [Google Scholar] [CrossRef]
- Jin, S.H. The effectiveness of energy efficiency improvement in a developing country: Rebound effect of residential electricity use in South Korea. Energy Policy 2007, 35, 5622–5629. [Google Scholar] [CrossRef]
Variables | Signs | Definition (Measurement) | Data Source |
---|---|---|---|
CO2 emissions | lnCO2 | Natural log of CO2 emissions (metric tons) | WDI |
Real foreign trade | lnRT | Natural log of Real Trade (calculated by merchandized exports + merchandise imports / GDP and then divided by consumer price index) | WDI |
Real GDP | lnRGDP | Natural log of Real GDP (in current USD) calculated by GDP/consumer price index | WDI |
Total energy production | lnTEP | Natural log of Total energy production (kilo tons of oil equivalent) | IEA |
Biofuels and waste energy production | lnBW | Natural log of Biofuels and waste production (kilo tons of oil equivalent) | IEA |
Wind and Solar energy production | lnWS | Natural log of Wind and Solar energy production (kilo tons of oil equivalent) | IEA |
Hydroenergy production | lnH | Natural log of Hydroenergy production (kilo tons of oil equivalent) | IEA |
Natural gas energy production | lnNG | Natural log of Natural Gas production (kilo tons of oil equivalent) | IEA |
Crude oil energy production | lnCO | Natural log of Crude oil production (kilo tons of oil equivalent) | IEA |
Coal energy production | lnCOAL | Natural log of Coal production (kilo tons of oil equivalent) | IEA |
Regions | CSD Tests | Slope Homogeneity Tests | |||
---|---|---|---|---|---|
Friedman | Pesaran | Bias-Adjusted LM | Δ | Δadj | |
Global Panel | 675.461 [0.0000] | 84.017 [0.0000] | −11 [0.0000] | −15.993 [0.00] | −20.526 [0.000] |
North America | 14.163 [0.0008] | 1.580 [0.1141] | 2.421 [0.0155] | 5.011 [0.000] | 6.431 [0.000] |
Central and South America | 67.885 [0.0000] | 5.889 [0.0000] | −4.29 [0.0000] | 9.633 [0.000] | 12.363 [0.000] |
Europe | 132.763 [0.000] | 15.617 [0.0000] | 2.586 [0.0097] | 15.967 [0.000] | 20.492 [0.000] |
Eurasia | 16.192 [0.0063] | −0.146 [1.1159] | −1.47 [0.1417] | 3.363 [0.001] | 4.316 [0.000] |
Asia Pacific | 72.968 [0.0000] | 7.286 [0.0000] | 153.9 [0.0200] | 12.736 [0.000] | 16.345 [0.000] |
Middle East | 32.665 [0.0001] | 2.478 [0.0132] | 49.79 [0.0629] | 5.645 [0.000] | 7.245 [0.000] |
Africa | 30.604 [0.0223] | 2.175 [0.0296] | −3.915 [0.0001] | 10.235 [0.000] | 13.136 [0.000] |
Regions | Variables | CIPS | CADF | ||
---|---|---|---|---|---|
Level | First Difference | Level | First Difference | ||
Global Panel | lnCO2 | −1.612 | −5.175 * | −1.601 | −3.814 * |
lnRT | −2.179 ** | −4.728 * | −2.384 * | −3.912 * | |
lnRGDP | −2.685 * | −4.214 * | −2.742 * | −3.644 * | |
lnTEP | −2.498 * | −4.710 * | −2.149 *** | −3.486 * | |
lnBW | −2.218 ** | −4.637 * | −1.911 | −3.304 * | |
lnWS | −0.814 | −2.908 * | −0.805 | −1.907 | |
lnH | −3.044 * | −5.103 * | −2.352 * | −3.874 * | |
lnNG | −1.095 | −3.112 * | −1.115 | −2.012 *** | |
lnCO | −1.124 | −2.983 * | −1.215 | −2.171 ** | |
lnCOAL | −0.169 | −2.401 * | 0.087 | −2.401 * | |
lnCOAL | −1.555 | −5.305 * | −1.506 | −3.940 * | |
North America | lnCO2 | −2.405 * | −5.255 * | −2.001 | −3.771 * |
lnRT | −3.191 * | −5.294 * | −1.889 | −2.702 * | |
lnRGDP | 0.227 | −3.275 * | −0.664 | −3.087 * | |
lnTEP | 1.900 | −1.971 | 0.877 | −2.466 * | |
lnBW | −1.185 | −4.916 * | −1.203 | −2.890 * | |
lnWS | −0.528 | −4.000 * | −0.552 | −2.267 ** | |
lnH | −3.343 * | −6.071 * | −2.738 * | −3.838 * | |
lnNG | 0.357 * | −1.921 | −0.650 | −1.921 | |
lnCO | −0.280 | −2.823 * | −1.127 | −2.823 * | |
lnCOAL | −1.555 | −5.305 * | −1.506 | −3.940 * | |
Central and South America | lnCO2 | −2.327 | −5.587 * | −1.878 | −4.036 * |
lnRT | −2.254 | −4.855 * | −2.101 *** | −3.782 * | |
lnRGDP | −1.801 | −4.490 * | −1.666 | −3.367 * | |
lnTEP | −1.934 | −4.556 * | −1.899 | −3.060 * | |
lnBW | −1.566 | −4.670 * | −1.739 | −3.500 * | |
lnWS | −0.935 * | −3.386 * | −1.446 | −2.641 * | |
lnH | −2.647 * | −5.229 * | −1.488 | −3.802 * | |
lnNG | −0.312 * | −1.420 * | 0.226 | −0.587 | |
lnCO | 0.047 * | −1.406 * | 0.063 | −0.781 | |
lnCOAL | 1.220 * | 0.121 | 1.260 | 0.821 | |
Europe | lnCO2 | −1.788 | −5.072 * | −1.473 | −3.920 * |
lnRT | −2.424 * | −4.949 * | −2.926 * | −3.908 * | |
lnRGDP | −3.785 * | −3.601 * | −4.151 * | −3.759 * | |
lnTEP | −2.533 * | −5.115 * | −1.980 | −3.842 * | |
lnBW | −3.017 * | −3.017 * | −2.825 * | −4.067 * | |
lnWS | −2.040 *** | −3.834 * | −1.988 | −2.925 * | |
lnH | −4.283 * | −5.849 * | −3.452 * | −4.866 * | |
lnNG | −0.908 | −3.212 * | −0.692 | −3.212 * | |
lnCO | −1.346 | −2.847 * | −1.095 | −2.847 * | |
lnCOAL | −1.987 | −4.297 * | −1.455 | −3.010 * | |
Eurasia | lnCO2 | −1.742 | −5.137 * | −1.682 | −3.833 * |
lnRT | −2.664 * | −4.839 * | −2.055 *** | −3.825 * | |
lnRGDP | −2.479 * | −4.870 * | −3.121 * | −4.559 * | |
lnTEP | −1.098 | −4.008 * | −1.631 | −2.627 * | |
lnBW | −0.839 | −4.498 * | −0.167 | −2.341 * | |
lnWS | 0.260 | −2.215 ** | −0.298 | −2.215 ** | |
lnH | −2.578 * | −4.933 * | −2.846 * | −4.133 * | |
lnNG | −0.791 | −4.620 * | −0.697 | −3.010 * | |
lnCO | −1.154 | −2.971 * | −1.147 | −2.359 * | |
lnCOAL | −0.715 | −3.196 * | −0.993 | −3.196 * | |
Asia Pacific | lnCO2 | −1.950 | −4.737 * | −2.075 *** | −2.973 * |
lnRT | −2.226 ** | −4.899 * | −2.422 * | −3.695 * | |
lnRGDP | −2.386 * | −4.115 * | −2.709 * | −3.068 * | |
lnTEP | −2.926 * | −4.684 * | −2.204 ** | −3.537 * | |
lnBW | −2.758 * | −5.160 * | −2.430 * | −3.659 * | |
lnWS | −0.954 | −3.460 * | −1.235 | −3.013 * | |
lnH | −3.502 * | −5.558 * | −2.502 * | −4.214 * | |
lnNG | −1.199 | −3.123 * | −1.186 | −2.220 ** | |
lnCO | −1.336 | −3.954 * | −1.121 | −2.736 * | |
lnCOAL | −2.105 *** | −4.279 * | −1.701 | −3.072 * | |
Middle East | lnCO2 | −2.776 * | −5.545 * | −3.466 * | −4.070 * |
lnRT | −2.067 *** | −4.508 * | −2.244 ** | 3.393 * | |
lnRGDP | −2.508 * | −4.374 * | −3.244 * | −2.593 * | |
lnTEP | −1.606 | −4.272 * | −2.481 * | −3.321 * | |
lnBW | 0.241 | −1.042 | 0.391 | −1.042 | |
lnWS | 0.998 | 0.399 | 0.924 | −0.399 | |
lnH | 0.391 | −0.961 | 0.478 | −0.961 | |
lnNG | −1.764 | −4.497 * | −2.305 ** | −3.363* | |
lnCO | −2.080 *** | −5.169 * | −2.217 ** | −4.246 * | |
lnCOAL | 2.610 | 2.610 | 2.610 | 2.610 | |
Africa | lnCO2 | −2.144 *** | −5.244 * | −1.975 | −4.028 * |
lnRT | −2.202 ** | −5.063 * | −2.073 *** | −3.876 * | |
lnRGDP | −2.450 * | −4.419 * | −2.532 * | −3.903 * | |
lnTEP | −2.061 *** | −4.482 * | −1.947 | −3.209 * | |
lnBW | −2.169 *** | −4.429 * | −1.519 | −3.220 * | |
lnWS | 0.231 | −1.743 | 1.036 | −1.743 | |
lnH | −2.453 * | −5.036 * | −1.670 | −3.628 * | |
lnNG | −0.776 | −2.876 * | −1.096 | −2.876 * | |
lnCO | −1.271 | −3.232 * | −1.087 | −3.232 * | |
lnCOAL | 0.380 | −0.870 | −1.087 | 2.610 |
Regions | Tests | |||
---|---|---|---|---|
Gt | Ga | Pt | Pa | |
Global Panel | −2.539 [0.017] | −9.065 [1.000] | −37.765 [0.000] | −12.810 [0.000] |
North America | −2.532 [0.000] | −6.020 [0.000] | −4.161 [0.000] | −5.857 [0.000] |
Central and South America | −2.265 [0.000] | −3.697 [0.000] | −4.061 [0.000] | −4.376 [0.000] |
Europe | −1.637 [0.000] | −3.661 [0.000] | −3.017 [0.000] | −4.240 [0.000] |
Eurasia | −2.189 [0.038] | −7.277 [0.462] | −8.842 [0.001] | −6.745 [0.014] |
Asia Pacific | −2.541 [0.000] | −10.732 [0.000] | −21.182 [0.000] | −8.607 [0.000] |
Middle East | −2.240 [0.000] | −7.314 [0.376] | −43.862 [0.000] | −13.761 [0.000] |
Africa | −2.317 [0.000] | −8.655 [0.003] | −33.256 [0.000] | −12.479 [0.000] |
Estimators | Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
---|---|---|---|---|---|---|---|---|
Coefficients (p-Value) | Coefficients | Coefficients | Coefficients | Coefficients | Coefficients | Coefficients | ||
MG Estimator | lnRT | −0.1327779 (0.000) | −0.1627461 (0.000) | −0.2280755 (0.000) | −0.1702625 (0.000) | −0.1538473 (0.000) | −0.1834827 (0.000) | −0.1832637 (0.000) |
lnRGDP | 0.1112233 (0.001) | 0.1864231 (0.000) | 0.2006924 (0.000) | 0.1581415 (0.000) | 0.1148403 (0.001) | 0.1680537 (0.000) | 0.161238 (0.000) | |
lnTEP | 0.3481439 (0.000) | - | - | - | - | - | - | |
lnBW | - | 0.222021 (0.025) | - | - | - | - | - | |
lnWS | - | - | 0.0015308 (0.897) | - | - | - | - | |
lnH | - | - | - | 0.0840891 (0.016) | - | - | - | |
lnNG | - | - | - | - | 0.1395805 (0.000) | - | - | |
lnCO | - | - | - | - | - | 0.1142999 (0.008) | - | |
lnCOAL | - | - | - | - | - | - | 0.1295694 (0.000) | |
_CONS | 11.72123 (0.000) | 11.97957 (0.000) | 13.69354 (0.000) | 14.00209 (0.000) | 14.16468 (0.000) | 13.1362 (0.000) | 13.34145 (0.000) | |
AMG Estimator | lnRT | −0.0497209 (0.152) | −0.0627535 (0.083) | −0.0777849 (0.039) | −0.0680989 (0.032) | −0.0746884 (0.044) | −0.0494658 (0.189) | −0.0540991 (0.062) |
lnRGDP | 0.0809215 (0.003) | 0.1012125 (0.000) | 0.0989837 (0.001) | 0.0895639 (0.001) | 0.0829414 (0.005) | 0.0968546 (0.001) | 0.0742868 (0.004) | |
lnTEP | 0.1091162 (0.089) | - | - | - | - | - | - | |
lnBW | - | −0.0326067 (0.663) | - | - | - | - | - | |
lnWS | - | - | −0.0193673 (0.096) | - | - | - | - | |
lnH | - | - | - | −0.0362083 (0.207) | - | - | - | |
lnNG | - | - | - | - | 0.1058173 (0.000) | - | - | |
lnCO | - | - | - | - | - | 0.0398371 (0.251) | - | |
lnCOAL | - | - | - | - | - | - | .0895831 (0.000) | |
_CONS | 14.45544 (0.000) | 15.81908 (0.000) | 15.42341 (0.000) | 15.84749 (0.000) | 14.82534 (0.000) | 14.91079 (0.000) | 14.95378 (0.000) | |
CCEMG Estimator | lnRT | −0.1012965 (0.000) | −0.0882 (0.002) | −0.0864339 (0.000) | −0.107396 (0.000) | −0.1040694 (0.000) | −0.1053703 (0.000) | −0.0875321 (0.000) |
lnRGDP | 0.1508009 (0.000) | 0.1509601 (0.000) | 0.1220925 (0.000) | 0.1819638 (0.000) | 0.1460383 (0.000) | 0.1636332 (0.000) | 0.1423681 (0.000) | |
lnTEP | 0.1449927 (0.000) | - | - | - | - | - | - | |
lnBW | - | 0.0225146 (0.342) | - | - | - | - | - | |
lnWS | - | - | −0.0030022 (0.459) | - | - | - | - | |
lnH | - | - | - | −0.0385832 (0.004) | - | - | - | |
lnNG | - | - | - | - | 0.0429636 (0.000) | - | - | |
lnCO | - | - | - | - | - | 0.029604 (0.022) | - | |
lnCOAL | - | - | - | - | - | - | 0.0070693 (0.018) | |
_CONS | 5.973717 (0.002) | 5.193445 (0.015) | 5.897693 (0.002) | 5.273895 (0.025) | 4.0445 (0.155) | 3.700914 (0.126) | 7.32034 (0.807) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqvi, S.A.A.; Hussain, B.; Shah, A.A.; Tariq, M.A.U.R.; Usman, M. Influence of Economic Growth, Energy Production, and Subcomponents on the Environment: A Regional Level Analytical Modeling. Sustainability 2022, 14, 15446. https://doi.org/10.3390/su142215446
Naqvi SAA, Hussain B, Shah AA, Tariq MAUR, Usman M. Influence of Economic Growth, Energy Production, and Subcomponents on the Environment: A Regional Level Analytical Modeling. Sustainability. 2022; 14(22):15446. https://doi.org/10.3390/su142215446
Chicago/Turabian StyleNaqvi, Syed Asif Ali, Bilal Hussain, Ashfaq Ahmad Shah, Muhammad Atiq Ur Rehman Tariq, and Muhammad Usman. 2022. "Influence of Economic Growth, Energy Production, and Subcomponents on the Environment: A Regional Level Analytical Modeling" Sustainability 14, no. 22: 15446. https://doi.org/10.3390/su142215446