An Evaluation of Chinese Rapeseed Production Efficiency Based on Three-Stage DEA and Malmquist Index
Abstract
:1. Introduction
2. Literature Review
3. Methods
4. Data
4.1. Selection of Indicators
4.2. Input Indicators
4.3. Output Indicator
4.4. Environment Variable
5. Results
5.1. The First Stage: DEA Model Results
5.2. Second Stage: SFA Analysis
5.3. Third Stage: DEA Model Results after Adjusting Input
5.4. Analysis of Malmquist
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, X.; Bai, Z.; Zhou, H. Evolution of global rapeseed trade pattern and policy inspiration. Chin. J. Oil Crops 2022, 44, 231–241. [Google Scholar] [CrossRef]
- The State Council. Guidance of the State Council on the Establishment of Food Production Functional Zones and Important Agricultural Product Production Protection Zones [EB/OL]. Available online: http://www.gov.cn/zhengce/content/2017-04/10/content_5184613.htm (accessed on 10 April 2017).
- Wang, D. Study on the Cost Benefit of Rapeseed Planting of Small and Medium Farmers in Hubei Province under the Background of Rural Revitalization; Wuhan University of Light Industry: Wuhan, China, 2022. [Google Scholar] [CrossRef]
- Xiong, Y.J. Research on the Impact of Agricultural Subsidy Policies on China’s Rapeseed Production. Ph.D. Thesis, Southwest University of Finance and Economics, Chengdu, China, 2019. [Google Scholar] [CrossRef]
- He, H. Study on Influencing Factors of Rapeseed Production; Wuhan University of Light Industry: Wuhan, China, 2022. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, J.; Wang, X. Temporal and spatial change analysis of agricultural product TFP based on DEA Malmquist model—Taking important agricultural product production protection areas in Anhui Province as an example. J. Hebei Agric. Univ. (Soc. Sci. Ed.) 2020, 22, 55–61. [Google Scholar] [CrossRef]
- Wang, L.; Fang, Y.; Zhang, Y.; Liu, H. The appropriate scale of grain production family farms based on DEA model. Guizhou Agric. Sci. 2018, 46, 161–165. [Google Scholar]
- Li, G.; Feng, Z.; Li, R. Estimation, decomposition and industry comparison of total factor productivity of three oil crops production—An analysis framework based on stochastic frontier production function. J. Chin. Oil Crops 2009, 31, 263–268. [Google Scholar]
- Mei, J. Re discussion on the appropriate scale management of agricultural land—And a review of the current popular “theory of land scale management hazards. China Rural. Econ. 2002, 9, 31–35. [Google Scholar]
- Luo, B. Efficiency Determination of Agricultural Land Management Scale. China Rural. Obs. 2000, 5, 18–24+80. [Google Scholar]
- Li, K.; Hu, Z.; Hou, L. Comparison of soybean production efficiency among different business entities in Nenjiang County, Heilongjiang Province. Agric. Econ. 2018, 1, 18–20. [Google Scholar]
- Hong, Y.; Qin, Y.; Yang, S. Evaluation of the use efficiency of local government debt and the spatial spillover effect—A study based on the three-stage DEA model and spatial measurement. China Soft Sci. 2014, 10, 182–194. [Google Scholar]
- Zhang, L.; Chen, Z.; Yang, L.; Huang, H.; Ye, C. Analysis of space-time characteristics of China’s corn production efficiency. J. Agric. Mach. 2018, 49, 183–193. [Google Scholar]
- Lan, H.; Mu, Z. Performance evaluation and improvement direction of China’s rural credit cooperatives after reform-empirical research based on the BCC analysis method of the three-stage DEA model. Financ. Res. 2014, 10, 63–82. [Google Scholar]
- Tian, Y.; Huang, J.; An, M. Evaluation of agricultural modernization development efficiency under the strategy of rural revitalization—Based on the joint analysis of super efficiency DEA and comprehensive entropy method. Agric. Econ. Issues 2021, 3, 100–113. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z. DEA Tobit model analysis of forestry ecological security efficiency and its influencing factors—Based on the symbiotic relationship between ecology and industry. Resour. Environ. Yangtze River Basi 2021, 30, 76–86. [Google Scholar]
- Wang, H.; Chen, M. The impact of scientific and technological innovation in colleges and universities on regional innovation performance based on the two-stage DEA model. Econ. Geogr. 2020, 40, 27–35. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, K.Y.; Yao, X.D. Economic benefit evaluation of urban public infrastructure based on DEA cross efficiency model. China Soft Sci. 2015, 1, 172–183. [Google Scholar]
- Li, R.; Feng, Z. Technical efficiency analysis of China’s oil production based on three-stage DEA model. China Natl. Sci. Technol. Forum 2009, 8, 115–119. [Google Scholar]
- Si, W.; Wang, J. Total factor productivity of soybean production and its change in China. China Rural. Econ. 2011, 10, 16–25. [Google Scholar]
- Yang, X.; He, Y.C.; Yan, G.Q. Growth and decomposition of China’s soybean total factor productivity under carbon emission constraints. Soybean Sci. 2019, 38, 460–468. [Google Scholar]
- Li, H.; Hu, C.; Qu, C. Analysis on the spatial-temporal evolution characteristics of the production efficiency in China’s main wheat producing areas. China’s Agric. Resour. Zoning 2018, 39, 91–99. [Google Scholar]
- Chen, J.; Li, G.; Feng, Z.; Li, R. Stochastic Frontier Production Function Analysis of Total Factor Productivity and Technical Efficiency in Main Oil Crop Production Areas. Agric. Tech. Econ. 2013, 7, 85–93. [Google Scholar]
- Zhu, J.; Jin, L. Agricultural infrastructure, grain production cost and international competitiveness—An empirical test based on total factor productivity. Agric. Technol. Tech. Econ. 2017, 10, 14–24. [Google Scholar]
- Wang, Y.D.; Hu, Y.H.; Yu, H.S. Economic efficiency of soybean production in China based on DEA method. Agric. Econ. 2017, 11, 16–18. [Google Scholar]
- Li, R.; Feng, Z. Analysis on Growth and Convergence of Rape Productivity in Different Regions of China. Agric. Cent. China J. Univ. (Soc. Sci. Ed.) 2010, 1, 27–31. [Google Scholar]
- Wang, H.; Ni, C.; Xu, R. Analysis of changes and convergence of soybean production efficiency in China. J. Jiangsu Agric. 2011, 27, 199–203. [Google Scholar]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Jondrow, J.; Knox Lovell, C.A.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Intertemporal Production Frontiers; Kluwer Academic Publishers: Boston, MA, USA, 1996. [Google Scholar]
- Wang, C.Y.; Jiang, C.Q.; Xiang, T.Q.; Zhou, M.; Yang, W.S. Analysis of the current situation and technical influencing factors of the whole process mechanization of rape in China. Res. Agric. Mech. 2007, 12, 207–210. [Google Scholar]
- Wang, H. Analysis of China’s rape production and demand situation and industrial development strategies. China J. Oil Crops 2007, 01, 101–105. [Google Scholar]
- Zhao, W.; Xu, Q.; Lu, X. Impact of natural disasters on rape production and countermeasures. Mod. Agric. Dep. Tech. 2009, 17, 177. [Google Scholar]
- Li, G.; Feng, Z.; Fan, L. Are small farmers really more efficient? Experience from Hubei Province Evidence. Econ. Q. 2010, 9, 95–124. [Google Scholar]
- Yang, L. Investigation and Suggestions on Rape Planting Methods. Qual. Superv. Agric. Mach. 2008, 3, 18–21. [Google Scholar]
- Li, Y.; Hu, Q.; Mei, D.; Li, Y.; Xu, Y. Rationale for breeding high oil content and double low rapeseed varieties on and practice. Chin. J. Oil Crops 2006, 1, 92–96. [Google Scholar]
- He, S.F.; Zhou, X.G.; Zhou, S.H. Research on the spatial layout coordination of rapeseed oil processing industry cluster and rapeseed industry belt. J. Hunan Univ. Sci. Technol. (Soc. Sci. Ed.) 2017, 20, 116–122. [Google Scholar] [CrossRef]
- Li, Z.; Yu, F.W. DEA Analysis of Agricultural Production Efficiency in Western China. China Rural. Obs. 2005, 6, 2–10. [Google Scholar]
- Yu, X.H.; Wang, H. Research on rapeseed remote sensing recognition based on BP neural network. Res. World 2020, 6, 16–24. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Fu, M.; Lei, Y.; Liu, Y. Analysis on the Impact of Yunnan Rapeseed Price Fluctuation on Industrial Development. J. Yunnan Agric. Univ. (Soc. Sci.) 2017, 11, 24–27. [Google Scholar]
- Li, X. Comparative Study on the Quality of Rapeseed from Different Producing Areas; Hubei University of Science and Technology: Xianning, China, 2019. [Google Scholar]
Input Indicators | Output Indicators | Environmental Variables |
---|---|---|
Material and service expenses | Output of main products | Regional GDP |
Discount for domestic labor | Education level in rural areas | |
Employee expenses | Government financial expenditure | |
Rent of circulating land | Urbanization level | |
Discount lease of self-operated land |
Province/Year | 2011 | 2012 | 2013 | ||||||
CE | PTE | SE | CE | PTE | SE | CE | PTE | SE | |
Average | 0.803 | 0.856 | 0.937 | 0.722 | 0.785 | 0.919 | 0.78 | 0.798 | 0.978 |
Inner Mongolia | 0.332 | 1 | 0.332 | 0.444 | 1 | 0.444 | 0.419 | 1 | 0.419 |
Jiangsu | 0.906 | 1 | 0.906 | 0.655 | 0.689 | 0.95 | 0.8 | 1 | 0.8 |
Zhejiang | 0.971 | 1 | 0.971 | 1 | 1 | 1 | 0.917 | 0.931 | 0.984 |
Anhui | 0.772 | 0.856 | 0.902 | 0.636 | 0.804 | 0.791 | 0.957 | 1 | 0.957 |
Jiangxi | 0.823 | 1 | 0.823 | 0.76 | 0.869 | 0.875 | 1 | 1 | 1 |
Henan | 0.854 | 1 | 0.854 | 0.758 | 1 | 0.758 | 0.961 | 1 | 0.961 |
Hubei | 1 | 1 | 1 | 0.94 | 0.976 | 0.963 | 1 | 1 | 1 |
Hunan | 0.939 | 1 | 0.939 | 0.859 | 0.907 | 0.948 | 0.832 | 0.834 | 0.998 |
Chongqing | 0.566 | 0.661 | 0.856 | 0.576 | 0.642 | 0.898 | 0.562 | 0.608 | 0.924 |
Sichuan | 0.88 | 0.883 | 0.996 | 0.73 | 1 | 0.73 | 0.789 | 0.809 | 0.975 |
Guizhou | 0.626 | 0.846 | 0.74 | 0.542 | 0.667 | 0.813 | 0.838 | 0.923 | 0.907 |
Yunnan | 0.473 | 0.604 | 0.784 | 0.655 | 1 | 0.655 | 0.466 | 0.565 | 0.825 |
Shaanxi | 0.615 | 0.662 | 0.928 | 0.487 | 0.519 | 0.938 | 1 | 1 | 1 |
Gansu | 0.795 | 0.817 | 0.973 | 0.64 | 0.678 | 0.944 | 0.567 | 0.646 | 0.877 |
Qinghai | 1 | 1 | 1 | 0.675 | 0.813 | 0.83 | 0.931 | 1 | 0.931 |
Province/Year | 2014 | 2015 | 2016 | ||||||
CE | PTE | SE | CE | PTE | SE | CE | PTE | SE | |
Average | 0.838 | 0.839 | 0.998 | 0.84 | 0.854 | 0.984 | 0.865 | 0.873 | 0.99 |
Inner Mongolia | 0.401 | 1 | 0.401 | 0.483 | 1 | 0.483 | 0.591 | 1 | 0.591 |
Jiangsu | 0.889 | 1 | 0.889 | 0.921 | 1 | 0.921 | 0.885 | 1 | 0.885 |
Zhejiang | 0.978 | 0.98 | 0.998 | 0.882 | 0.895 | 0.985 | 0.791 | 0.791 | 1 |
Anhui | 1 | 1 | 1 | 1 | 1 | 1 | 0.977 | 1 | 0.977 |
Jiangxi | 1 | 1 | 1 | 1 | 1 | 1 | 0.959 | 1 | 0.959 |
Henan | 0.962 | 1 | 0.962 | 0.967 | 1 | 0.967 | 1 | 1 | 1 |
Hubei | 0.986 | 0.991 | 0.995 | 0.919 | 0.933 | 0.985 | 1 | 1 | 1 |
Hunan | 0.793 | 0.891 | 0.89 | 0.777 | 0.811 | 0.958 | 0.716 | 0.816 | 0.877 |
Chongqing | 0.625 | 0.72 | 0.869 | 0.615 | 0.647 | 0.949 | 0.723 | 0.747 | 0.968 |
Sichuan | 0.968 | 1 | 0.968 | 0.975 | 1 | 0.975 | 1 | 1 | 1 |
Guizhou | 0.717 | 0.756 | 0.948 | 0.801 | 0.803 | 0.997 | 0.797 | 0.841 | 0.947 |
Yunnan | 0.646 | 0.65 | 0.995 | 0.714 | 0.75 | 0.952 | 0.808 | 0.874 | 0.924 |
Shaanxi | 0.979 | 0.997 | 0.982 | 1 | 1 | 1 | 1 | 1 | 1 |
Gansu | 0.795 | 0.823 | 0.965 | 0.784 | 0.829 | 0.946 | 0.825 | 0.856 | 0.964 |
Qinghai | 0.945 | 1 | 0.945 | 0.835 | 0.916 | 0.911 | 0.983 | 0.99 | 0.993 |
Province/Year | 2017 | 2018 | 2019 | ||||||
CE | PTE | SE | CE | PTE | SE | CE | PTE | SE | |
Average | 0.851 | 0.853 | 0.998 | 0.982 | 0.995 | 0.987 | 0.522 | 0.546 | 0.956 |
Inner Mongolia | 0.691 | 1 | 0.691 | 1 | 1 | 1 | 1 | 1 | 1 |
Jiangsu | 0.951 | 1 | 0.951 | 0.896 | 1 | 0.896 | 1 | 1 | 1 |
Zhejiang | 0.92 | 0.93 | 0.989 | 0.93 | 1 | 0.93 | 0.44 | 0.477 | 0.922 |
Anhui | 0.984 | 1 | 0.984 | 1 | 1 | 1 | 1 | 1 | 1 |
Jiangxi | 1 | 1 | 1 | 1 | 1 | 1 | 0.557 | 0.575 | 0.969 |
Henan | 1 | 1 | 1 | 0.79 | 0.825 | 0.957 | 0.585 | 0.666 | 0.877 |
Hubei | 1 | 1 | 1 | 0.971 | 1 | 0.971 | 1 | 1 | 1 |
Hunan | 0.732 | 0.805 | 0.91 | 0.907 | 0.939 | 0.966 | 0.847 | 1 | 0.847 |
Chongqing | 0.662 | 0.676 | 0.98 | 0.713 | 0.775 | 0.919 | 0.649 | 0.799 | 0.812 |
Sichuan | 0.944 | 1 | 0.944 | 1 | 1 | 1 | 0.414 | 0.454 | 0.911 |
Guizhou | 0.717 | 0.763 | 0.94 | 0.834 | 0.93 | 0.897 | 0.686 | 0.924 | 0.742 |
Yunnan | 0.779 | 0.84 | 0.927 | 0.689 | 0.765 | 0.901 | 0.557 | 0.579 | 0.962 |
Shaanxi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Gansu | 0.776 | 0.784 | 0.989 | 0.668 | 0.713 | 0.938 | 0.714 | 0.769 | 0.929 |
Qinghai | 0.878 | 0.925 | 0.949 | 0.953 | 0.972 | 0.98 | 1 | 1 | 1 |
Variable | Material and Service Expenses | Discount for Domestic Labor | Employee Expenses | Rent of Circulating Land | Discount Lease of Self-Operated Land |
---|---|---|---|---|---|
Constant term | 10.656671 (9.14) * | 1.91 (18.93) * | 2.70 (6.61) * | −1.85 (0.89) ** | 4.48 (1.19) *** |
Regional GDP | −0.00266 (0.47) * | −0.0124 (0.0017) *** | −0.3 (0.021) *** | 0.06 (0.01) *** | −0.2 (0.03) *** |
Education level in rural areas | 0.0007 (0.023) * | −0.00187 (0.05) * | −0.006 (0.01) * | −0.003 (0.04) ** | −0.019 (0.01) * |
Government expenditure | 0.16795 (2.68) * | 0.11 (0.06) ** | 0.3 (0.02) *** | 0.03 (0.01) *** | 0.04 (0.02) ** |
Urbanization level | −0.05234 (0.01) *** | 0.007 (0.02) * | 0.001 (0.007) * | 0.1 (0.02) *** | −0.03 (0.009) * |
σ2 | 2186.9709 (1809.28) * | 1658.08 (2868.43) * | 148.65 (209.03) * | 99.44 (105.76) * | 2301.85 (1100.72) ** |
γ | 0.8424 (0.15) *** | 0.732 (0.303) ** | 0.38 (0.93) * | 0.85 (0.19) *** | 0.91 (0.08) *** |
Log | −260.88 | 304.93 | 222.91 | 167.3 | 245.95 |
LR test of the one-sided error | 0.66 | 0.79 | 0.36 | 0.44 | 1.41 |
Province/Year | 2011 | 2012 | 2013 | ||||||
CE | PTE | SE | CE | PTE | SE | CE | PTE | SE | |
Average | 0.685 | 0.776 | 0.884 | 0.782 | 0.812 | 0.963 | 0.781 | 0.829 | 0.942 |
Inner Mongolia | 1 | 1 | 1 | 1 | 1 | 1 | 0.611 | 1 | 0.611 |
Jiangsu | 0.813 | 1 | 0.813 | 0.95 | 1 | 0.95 | 0.966 | 1 | 0.966 |
Zhejiang | 0.869 | 1 | 0.869 | 0.952 | 0.967 | 0.984 | 0.914 | 0.945 | 0.967 |
Anhui | 1 | 1 | 1 | 0.969 | 0.971 | 0.998 | 1 | 1 | 1 |
Jiangxi | 0.659 | 0.897 | 0.735 | 0.665 | 0.747 | 0.891 | 0.729 | 0.82 | 0.889 |
Henan | 0.868 | 0.874 | 0.993 | 0.908 | 0.948 | 0.958 | 1 | 1 | 1 |
Hubei | 0.977 | 1 | 0.977 | 1 | 1 | 1 | 0.958 | 0.977 | 0.981 |
Hunan | 1 | 1 | 1 | 0.732 | 0.808 | 0.906 | 0.656 | 0.826 | 0.794 |
Chongqing | 0.382 | 0.382 | 0.999 | 0.492 | 0.546 | 0.902 | 0.494 | 0.563 | 0.879 |
Sichuan | 0.849 | 0.861 | 0.986 | 0.719 | 0.723 | 0.994 | 0.741 | 0.745 | 0.994 |
Guizhou | 0.47 | 0.471 | 0.998 | 0.586 | 0.64 | 0.916 | 0.575 | 0.682 | 0.843 |
Yunnan | 0.638 | 0.64 | 0.997 | 0.734 | 0.749 | 0.979 | 0.753 | 0.764 | 0.985 |
Shaanxi | 0.484 | 0.491 | 0.985 | 0.557 | 0.56 | 0.994 | 0.565 | 0.566 | 1 |
Gansu | 0.687 | 0.689 | 0.997 | 0.62 | 0.684 | 0.907 | 0.721 | 0.761 | 0.947 |
Qinghai | 1 | 1 | 1 | 0.734 | 0.74 | 0.993 | 0.704 | 0.712 | 0.988 |
Province/Year | 2014 | 2015 | 2016 | ||||||
CE | PTE | SE | CE | PTE | SE | CE | PTE | SE | |
Average | 0.776 | 0.801 | 0.969 | 0.737 | 0.808 | 0.913 | 0.807 | 0.851 | 0.948 |
Inner Mongolia | 0.562 | 1 | 0.562 | 0.409 | 1 | 0.409 | 0.343 | 0.854 | 0.402 |
Jiangsu | 0.92 | 1 | 0.92 | 0.901 | 1 | 0.901 | 0.949 | 1 | 0.949 |
Zhejiang | 0.873 | 0.985 | 0.887 | 0.933 | 0.969 | 0.964 | 0.995 | 0.995 | 1 |
Anhui | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Jiangxi | 0.687 | 0.828 | 0.83 | 0.686 | 0.814 | 0.842 | 0.788 | 0.864 | 0.912 |
Henan | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Hubei | 1 | 1 | 1 | 0.816 | 0.897 | 0.91 | 0.943 | 0.968 | 0.974 |
Hunan | 0.595 | 0.768 | 0.775 | 0.654 | 0.813 | 0.804 | 0.666 | 0.775 | 0.859 |
Chongqing | 0.521 | 0.549 | 0.95 | 0.448 | 0.559 | 0.801 | 0.464 | 0.547 | 0.848 |
Sichuan | 0.762 | 0.789 | 0.966 | 0.708 | 0.709 | 0.998 | 0.787 | 0.809 | 0.973 |
Guizhou | 0.622 | 0.673 | 0.925 | 0.594 | 0.68 | 0.873 | 0.668 | 0.753 | 0.888 |
Yunnan | 0.769 | 0.801 | 0.961 | 0.652 | 0.671 | 0.972 | 0.71 | 0.728 | 0.975 |
Shaanxi | 0.618 | 0.629 | 0.983 | 0.479 | 0.517 | 0.925 | 0.579 | 0.591 | 0.98 |
Gansu | 0.796 | 0.803 | 0.992 | 0.765 | 0.777 | 0.985 | 0.823 | 0.842 | 0.977 |
Qinghai | 0.769 | 0.788 | 0.976 | 0.673 | 0.695 | 0.967 | 0.852 | 0.884 | 0.963 |
Province/Year | 2017 | 2018 | 2019 | ||||||
CE | PTE | SE | CE | PTE | SE | CE | PTE | SE | |
Average | 0.747 | 0.829 | 0.901 | 0.776 | 0.852 | 0.91 | 0.801 | 0.906 | 0.885 |
Inner Mongolia | 0.355 | 0.954 | 0.372 | 0.688 | 1 | 0.688 | 0.308 | 0.972 | 0.317 |
Jiangsu | 0.86 | 1 | 0.86 | 0.75 | 0.794 | 0.944 | 0.941 | 1 | 0.941 |
Zhejiang | 0.885 | 0.955 | 0.927 | 1 | 1 | 1 | 0.874 | 0.972 | 0.899 |
Anhui | 0.961 | 0.991 | 0.97 | 0.706 | 0.914 | 0.772 | 0.84 | 0.97 | 0.866 |
Jiangxi | 0.729 | 0.869 | 0.839 | 0.745 | 0.865 | 0.862 | 0.619 | 0.917 | 0.675 |
Henan | 0.916 | 1 | 0.916 | 0.896 | 1 | 0.896 | 0.796 | 1 | 0.796 |
Hubei | 1 | 1 | 1 | 0.936 | 0.977 | 0.959 | 1 | 1 | 1 |
Hunan | 0.652 | 0.773 | 0.843 | 0.785 | 0.834 | 0.942 | 0.739 | 0.876 | 0.844 |
Chongqing | 0.474 | 0.586 | 0.808 | 0.564 | 0.635 | 0.887 | 0.558 | 0.682 | 0.819 |
Sichuan | 0.65 | 0.722 | 0.901 | 0.777 | 1 | 0.777 | 0.827 | 0.842 | 0.981 |
Guizhou | 0.553 | 0.72 | 0.769 | 0.565 | 0.711 | 0.795 | 0.548 | 0.826 | 0.663 |
Yunnan | 0.488 | 0.665 | 0.734 | 0.68 | 1 | 0.68 | 0.558 | 0.782 | 0.714 |
Shaanxi | 0.58 | 0.605 | 0.959 | 0.58 | 0.623 | 0.931 | 0.666 | 0.772 | 0.863 |
Gansu | 0.646 | 0.74 | 0.874 | 0.731 | 0.779 | 0.938 | 0.892 | 0.909 | 0.981 |
Qinghai | 0.689 | 0.71 | 0.97 | 0.769 | 0.891 | 0.863 | 0.874 | 0.925 | 0.945 |
Province | effch | techch | pech | sech | tfpch |
---|---|---|---|---|---|
Average | 0.982 | 0.944 | 0.984 | 0.998 | 0.928 |
Inner Mongolia | 0.982 | 1.033 | 1 | 0.982 | 1.015 |
Jiangsu | 1 | 0.922 | 1 | 1 | 0.922 |
Zhejiang | 1.033 | 0.977 | 1.033 | 1 | 1.009 |
Anhui | 0.979 | 0.883 | 0.99 | 0.989 | 0.865 |
Jiangxi | 0.983 | 0.941 | 1 | 0.983 | 0.925 |
Henan | 1.019 | 1.172 | 1.017 | 1.002 | 1.194 |
Hubei | 1 | 0.94 | 1 | 1 | 0.94 |
Hunan | 1 | 0.847 | 1 | 1 | 0.847 |
Chongqing | 1 | 0.768 | 1 | 1 | 0.768 |
Sichuan | 1.015 | 0.92 | 1.006 | 1.009 | 0.934 |
Guizhou | 0.969 | 1.124 | 0.997 | 0.972 | 1.089 |
Yunnan | 0.931 | 0.962 | 0.96 | 0.97 | 0.896 |
Shaanxi | 0.962 | 0.712 | 1 | 0.962 | 0.685 |
Gansu | 1 | 0.777 | 1 | 1 | 0.777 |
Qinghai | 1 | 0.983 | 1 | 1 | 0.983 |
Province | effch | techch | pech | sech | tfpch |
---|---|---|---|---|---|
Average | 0.982 | 0.944 | 0.984 | 0.998 | 0.928 |
Inner Mongolia | 0.903 | 0.818 | 1 | 0.903 | 0.738 |
Jiangsu | 1 | 0.92 | 1 | 1 | 0.92 |
Zhejiang | 1.035 | 0.972 | 1.036 | 1 | 1.006 |
Anhui | 0.979 | 0.883 | 0.99 | 0.989 | 0.865 |
Jiangxi | 0.983 | 0.92 | 1 | 0.983 | 0.904 |
Henan | 1.019 | 0.861 | 1.017 | 1.003 | 0.878 |
Hubei | 1 | 0.937 | 1 | 1 | 0.937 |
Hunan | 1 | 0.838 | 1 | 1 | 0.838 |
Chongqing | 1 | 0.797 | 1 | 1 | 0.797 |
Sichuan | 1.024 | 0.905 | 1.015 | 1.009 | 0.927 |
Guizhou | 0.969 | 1.131 | 0.997 | 0.972 | 1.096 |
Yunnan | 0.931 | 0.922 | 0.962 | 0.968 | 0.859 |
Shaanxi | 0.593 | 1.599 | 0.688 | 0.862 | 0.947 |
Gansu | 1.015 | 0.631 | 0.966 | 1.05 | 0.64 |
Qinghai | 0.901 | 0.951 | 0.995 | 0.905 | 0.857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, C. An Evaluation of Chinese Rapeseed Production Efficiency Based on Three-Stage DEA and Malmquist Index. Sustainability 2022, 14, 15822. https://doi.org/10.3390/su142315822
Li Q, Wang C. An Evaluation of Chinese Rapeseed Production Efficiency Based on Three-Stage DEA and Malmquist Index. Sustainability. 2022; 14(23):15822. https://doi.org/10.3390/su142315822
Chicago/Turabian StyleLi, Qing, and Cong Wang. 2022. "An Evaluation of Chinese Rapeseed Production Efficiency Based on Three-Stage DEA and Malmquist Index" Sustainability 14, no. 23: 15822. https://doi.org/10.3390/su142315822
APA StyleLi, Q., & Wang, C. (2022). An Evaluation of Chinese Rapeseed Production Efficiency Based on Three-Stage DEA and Malmquist Index. Sustainability, 14(23), 15822. https://doi.org/10.3390/su142315822