Urban Land-Use Allocation with Resilience: Application of the Lowry Model
Abstract
:1. Introduction
Author, Time | Title | Model | Vulnerability Indicators | Resilience Definition | Summary |
---|---|---|---|---|---|
Cutter, Susan L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J., 2008 [14] | A place-based model for understanding community resilience to natural disasters | Disaster resilience of place (DROP)model. |
|
| This paper provides a new framework, the disaster resilience of place (DROP) model, designed to improve comparative assessments of disaster resilience at the local or community level. |
Vale, Lawrence J., 2014 [22] | The politics of resilient cities: whose resilience and whose city? | Criticism and discourse | Vulnerable population |
|
|
Bergstrand, K.; Mayer, B.; Brumback, B.; Zhang, Y., 2015 [20] | Assessing the relationship between social vulnerability and community resilience to hazards | Factor analysis |
|
|
|
Chang, Stephanie E.; Yip, Jackie Z. K.; van Zijll de Jong, Shona L.; Chaster, R.; Lowcock, A., 2015 [23] | Using vulnerability indicators to develop resiliencenetworks: a similarity approach | This article proposes a similarity measure that is adapted from Gower’s general similarity coefficient SGower, which was originally proposed by Gower and has been widely used for mixed data types. | The method developed here quantifies vulnerability profiles for the purposes of identifying places that are similarly vulnerable. | ||
Da, Silva J., 2016 [24] | City resilience index- understanding and measuring city resilience |
|
|
|
2. Materials and Methods
2.1. Land Use
2.2. Economic Base Theory
2.3. Assumptions
2.4. Constraints
2.5. Model
3. Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lowry, I.S. A Model of Metropolis, Santa Monica; Rand Cooperation: Santa Monica, CA, USA, 1964. [Google Scholar]
- Deilmann, C.; Lehmann, I.; Behnisch, M.; Hennersdorf, J.; Schumacher, U. A multifactorial GIS-based analytical method to determine the quality of urban green space and water bodies. Urbani Izziv 2015, 26, 150–164. [Google Scholar] [CrossRef]
- Paez, A.; Scott, D.M.; Morency, C. Measuring accessibility: Positive and normative implementations of various accessibility indicators. J. Transp. Geogr. 2012, 25, 141–153. [Google Scholar] [CrossRef]
- Papa, E.; Bertolini, L. Accessibility and transit-oriented development in European metropolitan areas. J. Transp. Geogr. 2015, 47, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.C.; Wong, C.K.; Tong, C.O. A parallelized genetic algorithm for the calibration of Lowry Model. Parallel Comput. 2001, 27, 1523–1536. [Google Scholar] [CrossRef]
- Buttner, B.; Kinigadner, J.; Ji, C.; Wright, B.; Wulfhorst, G. The TUM accessibility Atlas: Visualizing spatial and socioeconomic disparities in accessibility to support regional land- use and transport planning. Netw. Spat. Econ. 2018, 18, 385–414. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gong, Z.; Yang, Z. Design of industrial clusters and optimization of land use in an airport economic zone. Land Use Policy 2018, 77, 288–297. [Google Scholar] [CrossRef]
- Wilson, A.G. New roles for urban models: Planning for the long term. Reg. Sci. 2016, 3, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. Regions of Risk: A Geographical Introduction to Disasters; Longman: London, UK, 1997. [Google Scholar]
- Peacock, W.G.; Morrow, B.H.; Gladwin, H. (Eds.) Hurricane Andrew: Ethnicity, Gender and the Sociology of Disasters; Routledge: New York, NY, USA, 1997. [Google Scholar]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability, and Disasters; Routledge: London, UK, 1994. [Google Scholar]
- Adger, N.N. Social vulnerability to climate change and extremes in Coastal Vietnam. World Dev. 1999, 27, 249–269. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, N.W.; Kelly, M.P. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, L.W. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Dash, N.; McCoy, B.G.; Herring, A. Class. In Social Vulnerability to Disasters; Phillips, B.D., Thomas, D.S.K., Fothergill, A., Blinn-Pike, L., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 75–100. [Google Scholar]
- Enarson, E. Gender. In Social Vulnerability to Disasters; Phillips, D.B., Thomas, K.D.S., Fothergill, A., Blinn-Pike, L., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 123–154. [Google Scholar]
- Phillips, B.D.; Thomas, D.S.K.; Fothergill, A.; Blinn-Pike, L. Social Vulnerability to Disasters; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bergstrand, K.; Mayer, B.; Brumback, B.; Zhang, Y. Assessing the relationship between social vulnerability and community resilience to hazards. Soc. Indic. Res. 2015, 122, 391–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, D.; Ahmed, S.; Saroch, E.; Bell, H. Pinning down vulnerability: From narratives to numbers. Disasters 2011, 35, 62–86. [Google Scholar] [CrossRef]
- Vale, L.J. The politics of resilient cities: Whose resilience and whose city? Build. Res. Inf. 2014, 42, 191–201. [Google Scholar] [CrossRef]
- Chang, S.E.; Yip, J.Z.K.; van Zijll de Jong, S.L.; Chaster, R.; Lowcock, A. Using vulnerability indicators to develop resilience networks: A similarity approach. Nat. Hazards 2015, 78, 1827–1841. [Google Scholar] [CrossRef] [Green Version]
- Da, S.J. City Resilience Index: Understanding and Measuring City Resilience. Arup/Rockefeller Foundation, 2016. Available online: https://www.arup.com/perspectives/publications/research/section/city-resilience-index (accessed on 5 October 2022).
- Berke, P.R.; Song, Y.; Stevens, M. Integrating hazard mitigation into new urban and conventional developments. J. Plan. Educ. Res. 2009, 28, 441–455. [Google Scholar] [CrossRef]
- Carpenter, S.; Walker, S.; Anderies, M.J.; Abel, N. From metaphor to measurement: Resilience of what to what? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Harrison, P.; Bobbins, K.; Culwick, C.; Humby, T.-L.C.M.; Todes, A.; Weakley, D. Urban resilience thinking for municipalities. Solutions 2014, 5, 26–30. [Google Scholar]
- Jha, A.K.; Miner, T.W.; Stanton-Geddes, Z. Building Urban Resilience: Principles, Tools, and Practice; World Bank Publications: Washington, DC, USA, 2013. [Google Scholar]
- Beban, J.G.; Gxunnell, S. Incorporating Social Vulnerability into Land-Use Planning and Local Government Processes for Managing Natural Hazards and Climate Change in New Zealand. Prepared for the Centre for Public Health Research Wellington Mail Centre, 2019. Available online: https://www.ehinz.ac.nz/assets/Social-Vulnerability-Indicators/Incorporating-Vulnerability-into-Land-use-Planning-Final.pdf (accessed on 5 October 2022).
- Papilloud, T.; Keiler, M. Vulnerability patterns of road network to extreme floods based on accessibility measures. Transp. Res. Part D Transp. Environ. 2021, 100, 103045. [Google Scholar] [CrossRef]
- TaoYuan City. Taoyuan City Statistical Census Report; Department of Budget, Accounting and Statistics: TaoYuan City, Taiwan, 2015. [Google Scholar]
- TaoYuan City. Taoyuan City Statistical Census Report; Department of Budget, Accounting and Statistics: TaoYuan City, Taiwan, 2016. [Google Scholar]
Variable (Unit of Measurement) [Description] | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Under 5 (number of people) [population under 5 years old] | 8034 | 5862 | 775 | 20,328 |
Elderly (number of people) [population over 65 years old] | 15,664 | 10,834 | 1233 | 38,953 |
Illiterate (number of people) [illiterate population] | 1537 | 701 | 107 | 2908 |
Garbage (ton) [amount of garbage] | 51,921.69 | 41,766.91 | 3007.55 | 148,846.40 |
Non-urban (hectare) [non-urban land area] | 8590.927 | 7501.996 | 1271.024 | 33,038.760 |
Native (number of people) [Aboriginal population] | 5211 | 2333 | 691 | 8151 |
Arable land (hectare) [long-term leisure land area of cultivated land] | 226.755 | 413.501 | 0.390 | 1630.210 |
No tap water (number of people) [population without tap water supply] | 7540 | 4490 | 1676 | 17,440 |
Move out (number of people) [emigrated population] | 6221 | 4490 | 586 | 16,049 |
Low power (house) [number of houses with low electricity consumption] | 6887.923 | 5542.254 | 489.000 | 18,621.000 |
Low income (number of households) [number of low-income households] | 533 | 363 | 182 | 1457 |
Disability (number of people) [number of people with disabilities] | 6082 | 3935 | 719 | 14,437 |
Vulnerability (-) [comprehensive vulnerability index] | 5.306 | 2.155 | 2.392 | 10.150 |
Accessibility (number of people per minute) [accessibility index] | 31,735.14 | 11,111.16 | 12,529.47 | 51,529.63 |
Basic Industry Population (Number of People) | Land Area (Square Kilometers) | Undeveloped Land Area (Square Kilometers) | Basic Industry Land Area (Square Kilometers) | |
---|---|---|---|---|
Taoyuan | 52,664 | 34.8046 | 1.6716 | 2.6243 |
Zhongli | 79,205 | 76.5200 | 30.8560 | 6.6883 |
Daxi | 16,675 | 105.1206 | 80.0705 | 1.0645 |
Yangmei | 43,547 | 89.1229 | 65.0582 | 4.8304 |
Luzhu | 72,852 | 75.5025 | 25.4572 | 8.4544 |
Dayuan | 34,526 | 87.3925 | 72.6176 | 2.8395 |
Guishan | 85,911 | 72.0177 | 14.8383 | 9.7755 |
Bade | 29,785 | 33.7111 | 23.0410 | 0.8121 |
Longtan | 36,119 | 75.2341 | 62.0370 | 2.3860 |
Pingzhen | 35,351 | 47.7532 | 19.3472 | 1.9802 |
Xinwu | 6530 | 85.0166 | 79.6498 | 0.8438 |
Guanyin | 41,813 | 87.9807 | 76.9562 | 8.3342 |
Fuxing | 690 | 350.7775 | 310.3014 | 0.0085 |
Taoyuan | Zhongli | Daxi | Yangmei | Luzhu | Dayuan | Guishan | Bade | Longtan | Pingzhen | Xinwu | Guanyin | Fuxing | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Taoyuan | 6.00 | 14.25 | 22.20 | 36.00 | 10.95 | 23.10 | 6.75 | 12.90 | 40.80 | 16.35 | 41.70 | 50.40 | 46.50 |
Zhongli | 14.25 | 5.00 | 22.20 | 18.90 | 19.80 | 18.90 | 19.20 | 12.00 | 18.90 | 4.65 | 24.75 | 33.30 | 46.50 |
Daxi | 22.20 | 22.20 | 9.00 | 33.45 | 45.15 | 54.60 | 32.40 | 10.50 | 14.25 | 22.95 | 38.85 | 47.55 | 24.90 |
Yangmei | 36.00 | 18.90 | 33.45 | 10.00 | 37.80 | 47.70 | 52.20 | 31.05 | 26.25 | 18.60 | 12.30 | 22.65 | 56.70 |
Luzhu | 10.95 | 19.80 | 45.15 | 37.80 | 13.00 | 22.05 | 13.20 | 25.95 | 47.70 | 22.95 | 40.95 | 49.65 | 66.30 |
Dayuan | 23.10 | 18.90 | 54.60 | 47.70 | 22.05 | 15.00 | 36.90 | 33.30 | 55.05 | 22.20 | 24.60 | 19.50 | 73.65 |
Guishan | 6.75 | 19.20 | 32.40 | 52.20 | 13.20 | 36.90 | 11.00 | 15.75 | 33.75 | 22.05 | 55.50 | 64.20 | 52.35 |
Bade | 12.90 | 12.00 | 10.50 | 31.05 | 25.95 | 33.30 | 15.75 | 11.00 | 16.80 | 12.60 | 36.45 | 45.15 | 34.80 |
Longtan | 40.80 | 18.90 | 14.25 | 26.25 | 47.70 | 55.05 | 33.75 | 16.80 | 13.00 | 14.70 | 31.35 | 40.05 | 42.30 |
Pingzhen | 16.35 | 4.65 | 22.95 | 18.60 | 22.95 | 22.20 | 22.05 | 12.60 | 14.70 | 6.00 | 22.50 | 31.05 | 46.95 |
Xinwu | 41.70 | 24.75 | 38.85 | 12.30 | 40.95 | 24.60 | 55.50 | 36.45 | 31.35 | 22.50 | 10.00 | 10.80 | 62.10 |
Guanyin | 50.40 | 33.30 | 47.55 | 22.65 | 49.65 | 19.50 | 64.20 | 45.15 | 40.05 | 31.05 | 10.80 | 10.00 | 70.80 |
Fuxing | 46.50 | 46.50 | 24.90 | 56.70 | 66.30 | 73.65 | 52.35 | 34.80 | 42.30 | 46.95 | 62.10 | 70.80 | 22.00 |
Parameter | Service Industry Type | ||
---|---|---|---|
(Unit of Measurement for Variables) | Neighborhood | City | Metropolitan |
Economies of scale in the service industries (number of people) | 500 | 1000 | 2500 |
Number of service industry employment per household (number of employed persons in the service industries/person) | 0.080 | 0.160 | 0.096 |
Land area required by each service industry employed person (square kilometer/employed person in the service industries) | 0.00003 | 0.00004 | 0.00005 |
Resident population weight | 0.9 | 0.7 | 0.5 |
Employed population weight | 0.1 | 0.3 | 0.5 |
Number of people supported by each employed person (supported persons/employed person) | 2.1 | 2.1 | 2.1 |
Maximum residential density (population/square kilometer) | 10,000 | 10,000 | 10,000 |
District | Accessibility | Vulnerability | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Under 5 | Elderly | Illiterate | Native | Garbage | No Tap Water | Non-Urban | Arable Land | Low Power | Low Income | Disability | Move Out | ||
Taoyuan | 46,576.31 | 20,328 | 38,428 | 2746 | 7069 | 125,457.20 | 9903 | 1271.024 | 88.75 | 18,440 | 1457 | 13,777 | 16,049 |
Zhongli | 25,296.62 | 19,512 | 38,953 | 2908 | 8151 | 148,846.40 | 2365 | 3387.752 | 76.30 | 18,621 | 1124 | 14,437 | 14,259 |
Daxi | 51,529.63 | 4123 | 11,063 | 1320 | 7084 | 33,180.50 | 11,594 | 9769.161 | 28.52 | 4349 | 230 | 3339 | 3319 |
Yangmei | 26,281.79 | 8207 | 15,258 | 1422 | 3898 | 43,508.88 | 17,440 | 8921.636 | 75.10 | 7116 | 425 | 4824 | 5315 |
Luzhu | 31,174.40 | 8834 | 11,843 | 1541 | 4289 | 47,534.22 | 1676 | 7277.991 | 216.39 | 4678 | 557 | 5674 | 6117 |
Dayuan | 24,636.68 | 4370 | 8520 | 1980 | 3372 | 21,949.12 | 9691 | 8436.193 | 21.23 | 3521 | 698 | 7621 | 3337 |
Guishan | 35,104.66 | 7784 | 13,936 | 1288 | 6831 | 58,804.55 | 4537 | 7072.498 | 159.07 | 5172 | 385 | 4887 | 7285 |
Bade | 35,437.94 | 9229 | 17,863 | 1794 | 6833 | 52,280.91 | 1902 | 3321.610 | 32.83 | 9232 | 553 | 6021 | 7640 |
Longtan | 24,615.45 | 5356 | 12,366 | 834 | 3740 | 37,270.17 | 10,501 | 7341.759 | 1630.21 | 5869 | 547 | 8028 | 4193 |
Pingzhen | 49,704.30 | 11,075 | 19,413 | 1265 | 6412 | 78,792.05 | 7229 | 4350.234 | 287.90 | 8492 | 245 | 4514 | 8909 |
Xinwu | 26,864.63 | 1759 | 7397 | 1336 | 691 | 12,589.27 | 2929 | 8311.061 | 133.06 | 1367 | 182 | 2454 | 1545 |
Guanyin | 22,804.89 | 3090 | 7357 | 1442 | 1577 | 11,761.14 | 9546 | 9182.365 | 0.39 | 2197 | 239 | 2767 | 2320 |
Fuxing | 12,529.47 | 775 | 1233 | 107 | 7801 | 3007.55 | 8702 | 33,038.760 | 198.06 | 489 | 285 | 719 | 586 |
District and Variable | Employed Population in Basic Industries (People) | Residential Land Area a (Square Kilometer) |
---|---|---|
Taoyuan | 49,070 | 30.5087 |
Zhongli | 85,197 | 38.9757 |
Daxi | 24,053 | 23.9856 |
Yangmei | 53,818 | 19.2343 |
Luzhu | 79,808 | 41.5909 |
Dayuan | 45,009 | 11.9354 |
Guishan | 86,870 | 47.4039 |
Bade | 30,921 | 9.8580 |
Longtan | 40,588 | 10.8111 |
Pingzhen | 39,491 | 26.4258 |
Xinwu | 30,750 | 4.5230 |
Guanyin | 52,012 | 2.6903 |
Fuxing | 7339 | 40.4676 |
Total | 62,4926 | |
Total Population (people) | 1,312,345 | |
Total Employment in the Service Industries (people) | 0 |
District | Comprehensive Vulnerability | Resilience Index | Probability of Distributed Population | Population Allocated for Resilience a |
---|---|---|---|---|
Taoyuan | 9.2462 | 5037.324 | 0.052927 | 69,459.08 |
Zhongli | 8.9047 | 5786.775 | 0.060802 | 79,793.17 |
Daxi | 3.8402 | 6587.251 | 0.069213 | 90,830.84 |
Yangmei | 4.7102 | 5579.736 | 0.058627 | 76,938.34 |
Luzhu | 3.9709 | 7850.773 | 0.0825 | 108,253.40 |
Dayuan | 3.9037 | 6311.054 | 0.0663 | 87,022.39 |
Guishan | 4.3229 | 8120.555 | 0.0853 | 111,973.40 |
Bade | 4.7172 | 7512.485 | 0.0789 | 103,588.80 |
Longtan | 4.9093 | 5014.098 | 0.0527 | 69,138.81 |
Pingzhen | 5.0090 | 9923.089 | 0.1043 | 136,828.30 |
Xinwu | 1.8709 | 14,359.210 | 0.1509 | 197,997.40 |
Guanyin | 2.5530 | 8932.570 | 0.0939 | 123,170.20 |
Fuxing | 3.0125 | 4159.181 | 0.0437 | 57,350.46 |
District | Total Population (People) | Service Industry Land Area (Square Kilometer) | Residential Land Area (Square Kilometer) |
---|---|---|---|
2,238,335 | |||
Taoyuan | 28.889 | ||
Zhongli | 36.871 | ||
Daxi | 23.099 | ||
Yangmei | 18.225 | ||
Luzhu | 40.251 | ||
Dayuan | 11.046 | ||
Guishan | 45.807 | ||
Bade | 8.611 | ||
Longtan | 9.833 | ||
Pingzhen | 24.747 | ||
Xinwu | 3.808 | ||
Guanyin | 0.8707 | 1.820 | |
Fuxing | 40.209 |
District | Service Industry | |||||
---|---|---|---|---|---|---|
LM | ROLTM | Difference (ROLTM-LM) | ||||
Land Use Area | % | Land Use Area | % | Area | % | |
Taoyuan | 1.52684 | 4.3867 | 1.6197 | 4.6537 | 0.0929 | 0.2669 |
Zhongli | 2.05886 | 2.6906 | 2.1042 | 2.7499 | 0.0454 | 0.0593 |
Daxi | 0.9034 | 0.8594 | 0.8864 | 0.8432 | −0.0170 | −0.0162 |
Yangmei | 1.0403 | 1.16724 | 1.0097 | 1.1329 | −0.0306 | −0.0343 |
Luzhu | 1.33174 | 1.7638 | 1.3401 | 1.7749 | 0.0084 | 0.0111 |
Dayuan | 0.9271 | 1.0608 | 0.8895 | 1.0178 | −0.0376 | −0.0430 |
Guishan | 1.5350 | 2.1315 | 1.5974 | 2.2180 | 0.0624 | 0.0866 |
Bade | 1.2038 | 3.5711 | 1.2465 | 3.6976 | 0.0427 | 0.1266 |
Longtan | 0.9692 | 1.2882 | 0.9782 | 1.3002 | 0.0090 | 0.0120 |
Pingzhen | 1.6404 | 3.4351 | 1.6788 | 3.5155 | 0.0384 | 0.0804 |
Xinwu | 0.8595 | 1.0110 | 0.7146 | 0.8405 | −0.1449 | −0.1705 |
Guanyin | 0.9063 | 1.0301 | 0.8707 | 0.9896 | −0.0356 | −0.0405 |
Fuxing | 0.2731 | 0.0779 | 0.2586 | 0.0737 | −0.0145 | −0.0041 |
Total | 1220.9540 | 1220.9540 |
District | Residential Use | |||||
---|---|---|---|---|---|---|
LM | ROLTM | Difference (ROLTM-LM) | ||||
Land Use Area | % | Land Use Area | % | Area | % | |
Taoyuan | 28.982 | 83.270 | 28.889 | 83.003 | −0.0930 | −0.2670 |
Zhongli | 36.917 | 48.245 | 36.871 | 48.185 | −0.0460 | −0.0600 |
Daxi | 23.082 | 21.958 | 23.099 | 21.974 | 0.0170 | 0.0160 |
Yangmei | 18.194 | 20.415 | 18.225 | 20.449 | 0.0310 | 0.0340 |
Luzhu | 40.259 | 53.322 | 40.251 | 53.311 | −0.0080 | −0.0110 |
Dayuan | 11.008 | 12.596 | 11.046 | 12.639 | 0.0380 | 0.0430 |
Guishan | 45.869 | 63.691 | 45.807 | 63.605 | −0.0620 | −0.0860 |
Bade | 8.654 | 25.672 | 8.611 | 25.545 | −0.0430 | −0.1270 |
Longtan | 9.842 | 13.082 | 9.833 | 13.070 | −0.0090 | −0.0120 |
Pingzhen | 24.785 | 51.903 | 24.747 | 51.823 | −0.0380 | −0.0800 |
Xinwu | 3.663 | 4.309 | 3.808 | 4.480 | 0.1450 | 0.1710 |
Guanyin | 1.784 | 2.028 | 1.820 | 2.068 | 0.0360 | 0.0400 |
Fuxing | 40.195 | 11.459 | 40.209 | 11.463 | 0.0140 | 0.0040 |
Total | 1220.954 | 1220.9540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.-P. Urban Land-Use Allocation with Resilience: Application of the Lowry Model. Sustainability 2022, 14, 15927. https://doi.org/10.3390/su142315927
Hu C-P. Urban Land-Use Allocation with Resilience: Application of the Lowry Model. Sustainability. 2022; 14(23):15927. https://doi.org/10.3390/su142315927
Chicago/Turabian StyleHu, Chich-Ping. 2022. "Urban Land-Use Allocation with Resilience: Application of the Lowry Model" Sustainability 14, no. 23: 15927. https://doi.org/10.3390/su142315927
APA StyleHu, C.-P. (2022). Urban Land-Use Allocation with Resilience: Application of the Lowry Model. Sustainability, 14(23), 15927. https://doi.org/10.3390/su142315927