Decarbonisation Strategy for Renewable Energy Integration for Electrification of West African Nations: A Bottom-Up EnergyPLAN Modelling of West African Power Pool Targets
Abstract
:1. Introduction
1.1. Literature Review
1.2. Related Works to Solve the Electricity Problem in West African Countries
1.3. Electricity Power Situation and Potential in West Africa
2. Materials and Methods
2.1. EnergyPLAN Simulator
- Carbon dioxide emissions;
- Primary energy supply is the total fuel usage and fuel equivalents for non-fuel energy sources;
- Excess power generation is also referred to as exportable excess electricity;
- Fossil fuel and share renewable energy share;
- Production mix across primary energy sources;
- Socio-economic costs and business economic costs, which include the total annual costs, fuel costs, and operation and maintenance costs.
- No CEEP and PPI warning: this indicates that the defined supply is sufficient for the set demand;
- CEEP and PPI warning: this indicates that the power produced is not sufficient to meet the demand. However, there is excess production by some of the RES at some point;
- CEEP warning: indicates there’s excess production by some of the RES at some point; therefore, RES supply capacity should be reduced;
- PPI warning: this indicates that the power produced is not sufficient to meet the hourly demand. Supply is increased with priority given to RES.
2.2. Research Model
2.3. Electricity Demand
2.4. Renewable Technology Modelling
2.4.1. Solar Photovoltaic
2.4.2. Wind
2.4.3. Hydropower
2.4.4. Mathematical Modelling
- P is the power output, measured in Watts;
- η is the efficiency of the turbine;
- ρ is the density of water;
- g is the acceleration of gravity;
- H is the usable fall height, expressed in units of lengthl;
- Q is the discharge (also called the flow rate), calculated as Q = A ∗ v;
- A is the cross-sectional area of the channel;
- v is the flow velocity.
3. Results and Discussions
3.1. Results for Individual Countries
3.2. Regional Synchronous Power Grid
3.3. Policy Implementation
4. Results and Discussions
- In all the simulation scenarios involving renewable energy, Critical Excess Electricity Production (CEEP) has been avoided;
- When considering the use of single technology, only natural gas-fired power plants can meet the total demand of both individual countries and also a unified grid;
- As for the synchronous grid, to meet the estimated demand of 331.5 TWh/yr with natural gas, an installed capacity of 58,500 MW is required;
- CO2 emission per year will be reduced by almost 50% when the minimum RES share target is met in all cases;
- Nigeria is the most populated country in the region and has a demand of 60% of the total regional electricity demand, which will incur about USD 133.76 billion for the total investment cost to meet the target;
- In order to meet the target as a unified synchronous grid, the most feasible, suitable and reliable case scenario is to integrate the three RES technologies with the following capacities; natural gas (42,000 MW), wind (13,000 MW), PV (13,000 MW) and hydro (29,000 MW);
- Hydropower, which is the most reliable technology among the RES, also largely in use already in the region, will still have to play a major role in achieving the target;
- The unified synchronous grid system will reduce emissions from 150 to 77.8 Mt per year and incur a total investment cost and a total annual cost of USD 250.37 billion and USD 14.71 billion, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baleta, J.; Mikulčić, H.; Klemeš, J.J.; Urbaniec, K.; Duić, N. Integration of Energy, Water and Environmental Systems for a Sustainable Development. J. Clean. Prod. 2019, 215, 1424–1436. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Global Greenhouse Gas Emissions Data. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 22 June 2022).
- Dolter, B.; Rivers, N. The Cost of Decarbonizing the Canadian Electricity System. Energy Policy 2018, 113, 135–148. [Google Scholar] [CrossRef]
- Khavari, B.; Korkovelos, A.; Sahlberg, A.; Howells, M.; Nerini, F.F. Population Cluster Data to Assess the Urban-Rural Split and Electrification in Sub-Saharan Africa. Sci. Data 2021, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Nathaniel, S.; Barua, S.; Hussain, H.; Adeleye, N. The Determinants and Interrelationship of Carbon Emissions and Economic Growth in African Economies: Fresh Insights from Static and Dynamic Models. J. Public Aff. 2020, 21, e2141. [Google Scholar] [CrossRef]
- Brew-Hammond, A. Energy Access in Africa: Challenges Ahead. Energy Policy 2010, 38, 2291–2301. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy Services and Energy Poverty for Sustainable Rural Development. Renew. Sustain. Energy Rev. 2011, 15, 936–947. [Google Scholar] [CrossRef]
- Ben Aïssa, M.S.; Ben Jebli, M.; Ben Youssef, S. Output, Renewable Energy Consumption and Trade in Africa. Energy Policy 2014, 66, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Surroop, D.; Raghoo, P. Renewable Energy to Improve Energy Situation in African Island States. Renew. Sustain. Energy Rev. 2018, 88, 176–183. [Google Scholar] [CrossRef]
- Joshua, U.; Bekun, F.V. The Path to Achieving Environmental Sustainability in South Africa: The Role of Coal Consumption, Economic Expansion, Pollutant Emission, and Total Natural Resources Rent. Environ. Sci. Pollut. Res. 2020, 27, 9435–9443. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2008 Revision, Comprehensive Tables; United Nations: San Francisco, CA, USA, 2010. [Google Scholar]
- World Bank. World Development Indicators 2012; World Bank Publications: Washington, DC, USA, 2012. [Google Scholar]
- Ojah, K.; Muhanji, S.; Kodongo, O. Infrastructure Threshold and Economic Growth in Africa: Do Income Level and Geography Matter? Econ. Plan. 2021, 55, 1587–1627. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K. What Drives Environmental Degradation? Evidence from 14 Sub-Saharan African Countries. Sci. Total. Environ. 2018, 656, 165–173. [Google Scholar] [CrossRef]
- Sinn, H.-W. Austerity, Growth and Inflation—Remarks on the Eurozone’s Unresolved Competitiveness Problem. World Econ. 2014, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kraft, J.; Kraft, A. On the Relationship between Energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Okwanya, I.; Abah, P.O. Impact of Energy Consumption on Poverty Reduction in Africa. CBN J. Appl. Stat. 2018, 9, 5. [Google Scholar]
- Obeng-Odoom, F. The State of African Cities 2010: Governance, Inequality and Urban Land Markets. Cities 2013, 1, 425–429. [Google Scholar] [CrossRef]
- Sangraula, P.; Chen, S.; Ravallion, M. New Evidence On The Urbanization Of Global Poverty. Popul. Dev. Rev. 2007, 33, 667–701. [Google Scholar] [CrossRef] [Green Version]
- Mandelli, S.; Barbieri, J.; Mattarolo, L.; Colombo, E. Sustainable Energy in Africa: A Comprehensive Data and Policies Review. Renew. Sustain. Energy Rev. 2014, 37, 656–686. [Google Scholar] [CrossRef]
- ECOWAS. West African Power Pool. Available online: https://www.ecowapp.org/ (accessed on 24 June 2022).
- ECREEE. ECOWAS Renewable Energy Policy. 2015. Available online: http://www.ecreee.org/sites/default/files/documents/ecowas_renewable_energy_policy.pdf (accessed on 24 June 2022).
- ECOWAS. Renewable Energy Policy (EREP) towards Sustainability. 2015. Available online: https://ecowas.int/special_agency/ecowas-center-for-renewable-energy-and-energy-efficiency-ecreee/ (accessed on 24 June 2022).
- Ceesay, K.K. Sustainable Energy Action Plan for The Gambia; 2015. ERCEE. 2018. Available online: http://www.ecreee.org/sites/default/files/events/sustainable_energy_action_plan_the_gambia.pdf (accessed on 4 July 2022).
- Bamisile, O.; Babatunde, A.; Adun, H.; Yimen, N.; Mukhtar, M.; Huang, Q.; Hu, W.H. Electrification and Renewable Energy Nexus in Developing Countries; An Overarching Analysis of Hydrogen Production and Electric Vehicles Integrality in Renewable Energy Penetration. Energy Convers. Manag. 2021, 236, 114023. [Google Scholar] [CrossRef]
- Kabiru, I.; Sulaiman, C.; Abdul-rahim, A.S. Renewable Energy Consumption and Economic Growth Nexus: A Fresh Evidence from West Africa. Energy Rep. 2019, 5, 384–392. [Google Scholar]
- Ackah, I.; Graham, E.; Graham, E. Meeting the Targets of the Paris Agreement: An Analysis of Renewable Energy (RE) Governance Systems in West Africa (WA) Such as Climate Change and Sustainable Development Have. Clean Technol. Environ. Policy 2021, 23, 501–507. [Google Scholar] [CrossRef]
- Hydropower in Africa. 2021. Available online: https://www.iea.org/reports/climate-impacts-on-african-hydropower (accessed on 25 June 2022).
- Africa Energy Portal. Regional Profile. 2020. Available online: https://africa-energy-portal.org/region/north-africa (accessed on 25 June 2022).
- Energy Portal. Regional Profile. Available online: https://africa-energy-portal.org/region/southern-africa (accessed on 26 June 2022).
- UNIDO. Scaling up Renewable Energy in Africa. In Proceedings of the 12th Ordinary Session of Heads State Governments of the African Union, Addis Ababa, Ethiopia, 26 January–3 February 2009. [Google Scholar]
- Sokona, Y.; Mulugetta, Y.; Gujba, H. Widening Energy Access in Africa: Towards Energy Transition. Energy Policy 2012, 47, 3–10. [Google Scholar] [CrossRef]
- Karekezi, S.; Kithyoma, W. Renewable Energy Strategies for Rural AFRICA: Is a PV-Led Renewable Energy Strategy the Right Approach for Providing Modern Energy to the Rural Poor of Sub-SAHARAN Africa? Energy Policy 2002, 30, 1071–1086. [Google Scholar] [CrossRef]
- Elias, R.J.; Victor, D.G. Energy Transitions in Developing Countries: A Review of Concepts and Literature. Cent. Environ. Sci. Policy 2005, 40, 38. [Google Scholar]
- IRENA. Prospects for the African Power Sector; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2012. [Google Scholar]
- Azouzoute, A.; Merrouni, A.A.; Touili, S. Overview of the Integration of CSP as an Alternative Energy Source in the MENA Region. Energy Strat. Rev. 2020, 29, 100493. [Google Scholar] [CrossRef]
- Sterl, S.; Brussel, V.U.; Liersch, S. A New Approach for Assessing Synergies of Solar and Wind Power: Implications for West Africa. Environ. Res. Lett. 2018, 13, 094009. [Google Scholar] [CrossRef]
- Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S. Universal Access to Electricity in Burkina Faso: Scaling-Up Renewable Energy Technologies. Environ. Res. Lett. 2016, 11, 084010. [Google Scholar] [CrossRef]
- Sharma, V.; Heynen, A.P.; Bainton, N.; Burton, J. The Papua New Guinea Electrification Partnership: Power and diplomacy in the Pacific. Energy Res. Soc. Sci. 2021, 79, 102186. [Google Scholar] [CrossRef]
- Budianto, R. A Cost-Optimal and Geospatial Analysis for the Power System of Sierra Leone. Master’s Thesis, KTH Industrial Engineering and Management, Stockholm, Sweden, 2019. [Google Scholar]
- Adeoye, O.; Spataru, C. Modelling and Forecasting Hourly Electricity Demand in West African Countries. Appl. Energy 2019, 242, 311–333. [Google Scholar] [CrossRef]
- Sterl, S.; Vanderkelen, I.; Chawanda, C.J.; Russo, D.; Brecha, R.J.; Van Griensven, A.; Van Lipzig, N.P.M.; Thiery, W. Smart Renewable Electricity Portfolios in West Africa. Nat. Sustain. 2020, 3, 710–719. [Google Scholar] [CrossRef]
- World Bank. West African Electricity Trade; World Bank: New Delhi, India, 2020. [Google Scholar]
- Planning and Prospects for Renewable Power: West Africa. 2018. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj7zYPOtNL7AhVawTgGHbQ5BnMQFnoECA4QAQ&url=https%3A%2F%2Fwww.irena.org%2F-%2Fmedia%2FFiles%2FIRENA%2FAgency%2FPublication%2F2018%2FNov%2FIRENA_Planning_West_Africa_2018.pdf&usg=AOvVaw25EoZ5ZFZcHRbZ4qAlydcB (accessed on 14 August 2022).
- Energy Agency. Electricity Generation by Sources. 2018. Available online: https://sdg.iisd.org/news/global-energy-demand-in-2018-grew-at-fastest-pace-in-a-decade/ (accessed on 26 July 2022).
- Worldmeters. Electricity Generation. 2016. Available online: https://www.worldometers.info/electricity/ (accessed on 14 August 2022).
- Frangoul, A. West Africa’s First Large-Scale Wind Farm Starts Generating Power. 2019. Available online: https://www.cnbc.com/2019/12/13/west-africas-first-large-scale-wind-farm-starts-generating-power.html (accessed on 24 June 2022).
- Sasu, D.D. Potential for Solar Photovoltaic (PV) Capacity in West Africa. 2020. Available online: https://acp.copernicus.org/articles/20/12871/2020/ (accessed on 27 June 2022).
- Mukasa, D.; Mutambatsere, E.; Arvanitis, Y.; Triki, T. Energy Research & Social Science Wind Energy in Sub-Saharan Africa: Financial and Political Causes for the Sector’s Under-Development. Energy Res. Soc. Sci. 2015, 5, 90–104. [Google Scholar]
- Sawadogo, W. Projected Changes in Wind Energy Potential over West Africa under the Global Warming of 1.5 °C and Above. Theor. Appl. Climatol. 2019, 138, 321–333. [Google Scholar] [CrossRef]
- Small Hydro Mapped Out in West Africa. 2017. Available online: https://www.waterpowermagazine.com/news/newssmall-hydro-mapped-out-in-west-africa-5842789 (accessed on 26 July 2022).
- El Youssfi, L.; Doorsamy, W.; Aghzar, A.; Cherkaoui, S.I.; Elouadi, I.; Faundez, A.G.; Salazar, D.R. Review of Water Energy Food Nexus in Africa: Morocco and South Africa as Case Studies. E3S Web Conf. 2020, 183, 02002. [Google Scholar] [CrossRef]
- Imasiku, K.; Ntagwirumugara, E. An Impact Analysis of Population Growth on Energy-Water-Food-Land Nexus for Ecological Sustainable Development in Rwanda. Food Energy Secur. 2020, 9, e185. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A Review of the Current State of Research on the Water, Energy and Food Nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Kiplagat, J.; Wang, R.; Li, T. Renewable Energy in Kenya: Resource Potential and Status of Exploitation. Renew. Sustain. Energy Rev. 2011, 15, 2960–2973. [Google Scholar] [CrossRef]
- Karlberg, L.; Hoff, H.; Amsalu, T.; Andersson, K.; Binnington, T.; Flores-López, F.; de Bruin, A.; Gebrehiwot, S.G.; Gedif, B.; Johnson, O.; et al. Tackling Complexity: Understanding the Food-Energy-Environment Nexus in Ethiopia’s Lake TANA Sub-Basin. Water Altern. 2015, 8, 710–734. [Google Scholar]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The Effect of Bioenergy Expansion: Food, Energy, and Environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Ferroukhi, R.; Nagpal, D.; Lopez-Peña, A.; Hodges, T.; Mohtar, R.H.; Daher, B.; Mohtar, S.; Keulertz, M. Renewable Energy in the Water, Energy and Food Nexus. IRENA Abu Dhabi. 2015. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwio1M2OtdL7AhXo-DgGHXXuApEQFnoECAgQAQ&url=https%3A%2F%2Fwww.irena.org%2F-%2Fmedia%2FFiles%2FIRENA%2FAgency%2FPublication%2F2015%2FIRENA_Water_Energy_Food_Nexus_2015.pdf&usg=AOvVaw0G-XJI-miEvfrQc3zyGql8 (accessed on 15 August 2022).
- Phalan, B. The Social and Environmental Impacts of Biofuels in Asia: An Overview. Appl. Energy 2009, 86, S21–S29. [Google Scholar] [CrossRef]
- Fingerman, R.; Torn, M.S.; O’Hare, M.H.; Kammen, D.M. Accounting for the Water Impacts of Ethanol Production. Environ. Res. Lett. 2010, 5, 014020. [Google Scholar] [CrossRef]
- Cooper, P.; Dimes, J.; Rao, K.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping Better with Current Climatic Variability in the Rain-Fed Farming Systems of Sub-Saharan Africa: An Essential First Step in Adapting to Future Climate Change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Whaley, J. Gas in Africa. 2017. Available online: https://www.geoexpro.com/articles/2017/04/gas-in-africa (accessed on 14 August 2022).
- Study on Energy Prices and Subsidies and Their Impact on Industry and Households. Energy PLAN Cost Database. 2018. Available online: https://www.energyplan.eu/useful_resources/costdatabase/ (accessed on 14 August 2022).
- Krukowska, E. Europe CO2 Prices. 2021. Available online: https://ember-climate.org/data/data-tools/carbon-price-viewer/ (accessed on 23 June 2022).
- Hydropower and the Pathway to Net Zero. Available online: https://www.iea.org/news/hydropower-has-a-crucial-role-in-accelerating-clean-energy-transitions-to-achieve-countries-climate-ambitions-securely (accessed on 3 July 2022).
- Bellini, E. IRENA Sees 20 GW Potential for Solar in West Africa by 2030. 2018. Available online: https://www.pv-magazine.com/2018/11/26/irena-sees-20-gw-potential-for-solar-in-west-africa-by-2030/ (accessed on 12 July 2022).
- Solar and Wind Data. Available online: https://www.swpc.noaa.gov/products/real-time-solar-wind (accessed on 23 July 2022).
- Bamisile, O.; Huang, Q.; Xu, X.; Hu, W.H.; Liu, W.; Liu, Z.; Chen, Z. An Approach for Sustainable Energy Planning towards 100% Electrification of Nigeria by 2030. Energy 2020, 197, 117172. [Google Scholar] [CrossRef]
- Ikeagwuani, I.; Bamisile, O.; Abbasoglu, S.; Julius, A. Performance Comparison of PV and Wind Farm in Four Different Regions of Nigeria. 2016. Available online: https://www.researchgate.net/profile/Ikechukwu-Ikeagwuani/publication/308118262_Performance_Comparison_of_PV_and_Wind_Farm_in_Four_Different_Regions_of_Nigeria/links/57da931f08aeea1959328e7a/Performance-Comparison-of-PV-and-Wind-Farm-in-Four-Different-Regions-of-Nigeria.pdf (accessed on 12 June 2022).
- Energy Consumption and E. Resources, “Benin”, No. Table 1. 2016, pp. 2013–2016. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjfj6yLt9L7AhX31zgGHaUWDsoQFnoECAsQAQ&url=https%3A%2F%2Fwww.imf.org%2Fexternal%2Fpubs%2Fft%2Fscr%2F2016%2Fcr1606.pdf&usg=AOvVaw3n7OXjCLwcmi4RPw27Kqti (accessed on 12 June 2022).
- Zhu, J.; Wang, X.; Liu, W.; Wang, S. Photovoltaic Direct Drive Water-Saving Irrigation System and Its Optimization Design Method Photovoltaic. J. Phys. Conf. Ser. 2021, 2076, 012013. [Google Scholar] [CrossRef]
- Koua, B.K.; Koffi, P.M.E.; Gbaha, P.; Touré, S. Present Status and Overview of Potential of Renewable Energy in Cote d’Ivoire. Renew. Sustain. Energy Rev. 2015, 41, 907–914. [Google Scholar] [CrossRef]
- Gambia Energy. 2020. Available online: https://www.trade.gov/country-commercial-guides/gambia-energy (accessed on 12 June 2022).
- Kuamoah, C. Renewable Energy Deployment in Ghana: The Hype, Hope and Reality. Insight Afr. 2020, 12, 45–64. [Google Scholar] [CrossRef]
- Hammami, J. Harnessing the Potential of Guinea Conakry’s Renewable Energy Sector. 2021. Available online: https://energycapitalpower.com/harnessing-the-potential-of-guinea-conakrys-renewable-energy-sector/ (accessed on 12 June 2022).
- Solar Energy and Its Potential in Liberia. 2019. Available online: http://www.renewables-liberia.info/index.php/technologies/installation (accessed on 12 June 2022).
- Potential in Sierra Leone, Renewables Salone. 2017. Available online: http://renewables-salone.info/index.php/projects-new/installation (accessed on 12 June 2022).
- West African Solar Opportunities. 2018. Available online: https://www.gogla.org/sites/default/files/recource_docs/west-african-solar-opportunities.v4.pdf (accessed on 12 June 2022).
- Sebastian Sterl, R.B. How West Africa Can Expand Power Supply and Meet Renewable Climate Goals. 2020. Available online: https://climateanalytics.org/blog/2020/how-west-africa-can-expand-power-supply-and-meet-climate-goals/ (accessed on 12 June 2022).
- Hydro Power in Cote D’ivore. Available online: https://www.hydropower.org/country-profiles/cote-divoire#:~:text=Hydropower-currently-accounts-for-approximately,electricity-generated-in-the-country (accessed on 12 June 2022).
- Hydropower in Ghana. 2019. Available online: https://www.hydropower.org/country-profiles/ghana (accessed on 12 June 2022).
- Hydropower in Guinea. 2019. Available online: https://www.hydropower.org/country-profiles/guinea (accessed on 12 June 2022).
- Hydro Power Potential in Guinea-Bissau. 2012. Available online: https://www.reeep.org/guinea-bissau-2012#:~:text=The-available-hydropower-potential-of,of-hydropower-in-Guinea-Bissau (accessed on 12 June 2022).
- GIS Hydropower Resource Mapping—Country Report for Liberia 1 Copyright© Pöyry Energy GmbH, ECREEE. 2017, pp. 1–19. Available online: www.ecowrex.org/sites/default/files/country_report_08_liberia.pdf (accessed on 12 June 2022).
- Mali-Energy. 2021. Available online: https://www.privacyshield.gov/article?id=Mali-Energy (accessed on 12 June 2022).
- IRENA. Renewables Readiness Assessment. Int. Renew. Energy Agency 2014, 1–72. Available online: https://www.irena.org/publications/2014/Dec/Renewables-Readiness-Assessment (accessed on 12 June 2022).
- Hydro Power in Nigeria. 2019. Available online: https://www.hydropower.org/country-profiles/nigeria (accessed on 12 June 2022).
- GIS Hydropower Resource Mapping—Country Report for Senegal 1 Copyright© Pöyry Energy GmbH, ECREEE. 2017, pp. 1–17. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiP38_YudL7AhUVkmoFHQZ8Db8QFnoECAsQAQ&url=http%3A%2F%2Fwww.ecowrex.org%2Fsites%2Fdefault%2Ffiles%2Fcountry_report_12_senegal.pdf&usg=AOvVaw2Xlv7_PTbl5gxskd7DWbFy (accessed on 12 June 2022).
- Hydropower Potential in Sierra Leone. 2020. Available online: https://energypedia.info/wiki/Sierra_Leone_Energy_Situation (accessed on 12 June 2022).
- Electrification of Togo. 2017. Available online: https://energypedia.info/wiki/Togo_Energy_Situation (accessed on 12 June 2022).
- Renewable Energy in Burkina Faso. 2020. Available online: https://energypedia.info/wiki/Burkina_Faso_Energy_Situation#:~:text=Because-of-low-wind-speed,and-unfavourable-hydro-meterological-conditions (accessed on 12 June 2022).
- Côte d’Ivoire-Country Commercial Guide. 2021. Available online: https://www.trade.gov/country-commercial-guides/cote-divoire-energy (accessed on 12 June 2022).
- Energy Consumption and Production in Gambia. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/20510/Energy_profile_Gambia.pdf?sequence=1&isAllowed=y (accessed on 12 June 2022).
- Energy Catalyst-Sierra Leone. 2020. Available online: https://energycatalyst.ukri.org/wp-content/uploads/2020/12/Country-guide-Sierra-Leone.pdf (accessed on 12 June 2022).
- Awodumi, B.; Adewuyi, A.O. The Role of Non-Renewable Energy Consumption in Economic Growth and Carbon Emission: Evidence from Oil Producing Economies in Africa. Energy Strateg. Rev. 2020, 27, 100434. [Google Scholar] [CrossRef]
- Kuo, J.; Hicks, T.C.; Drake, B.; Chan, T.F. Estimation of Methane Emission from California Natural Gas Industry. J. Air Waste Manag. Assoc. 2015, 65, 844–855. [Google Scholar] [CrossRef]
- Ibitoye, I. Ending Natural Gas Flaring in Nigeria’s Oil Fields. J. Sustain. Dev. 2014, 7, 13–22. [Google Scholar] [CrossRef]
- Adeoye, O.; Spataru, C. Sustainable Development of the West African Power Pool: Increasing Solar Energy Integration and Regional Electricity Trade. Energy Sustain. Dev. 2018, 45, 124–134. [Google Scholar] [CrossRef]
- Cervigni, K.M.S.R.; Liden, R.; Neumann, J.E. Enhancing the Climate Resilience of Africa’s Infrastructure: The Power and Water Sectors. 2015. Available online: https://www.worldbank.org/content/dam/Worldbank/Feature%20Story/Africa/Conference%20Edition%20Enhancing%20Africas%20Infrastructure.pdf (accessed on 12 June 2022).
- Hermann, S.; Miketa, A.; Fichaux, N. Estimating the Renewable Energy Potential in Africa: A GIS-Based Approach; IRENA Secretariat: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Gnansounou, E.; Bayem, H.; Bednyagin, D.; Dong, J. Strategies for Regional Integration of Electricity Supply in West Africa. Energy Policy 2007, 35, 4142–4153. [Google Scholar] [CrossRef]
- Kling, H.; Stanzel, P.; Fuchs, M. Regional Assessment of the Hydropower Potential of Rivers in West Africa. Energy Procedia 2016, 97, 286–293. [Google Scholar] [CrossRef] [Green Version]
- CORMIER, Regional Electricity Trade, Key to Unleashing West Africa’s Power. 2020. Available online: https://blogs.worldbank.org/energy/regional-electricity-trade-key-unleashing-west-africas-power (accessed on 14 June 2022).
- Masters, W.A.; Bowen, B.H.; Plunkett, D.J. Electricity Trade and Capacity Expansion Options in West Africa Summary. Afr. Lond. 2001, 7043, 2000–2001. [Google Scholar]
- Sanoh, A.; Kocaman, A.S.; Kocal, S.; Sherpa, S.; Modi, V. The Economics of Clean Energy Resource Development and Grid Interconnection in Africa. Renew. Energy 2014, 62, 598–609. [Google Scholar] [CrossRef]
Country | Energy Policy Targets |
---|---|
Burkina Faso | 50% of RE by 2025 |
Gambia | 44 MW of hydro, 20 MW of wind and 50 MW of solar by 2030 |
Ghana | 10% RE penetration by 2030 |
Guinea | 30% RES by 2030 |
Guinea-Bissau | 72 MW capacity of RE by 2030 |
Niger Republic | 250 MW capacity of RE by 2030 |
Nigeria | 10% hydro and 6% solar by 2030 |
Senegal | 15% RES by 2025 |
Togo | 67.5 MW solar, 24 MW wind, and 185 MW of hydro by 2030 |
Countries | Power Sources [46,47] |
---|---|
Benin Republic | Oil and natural gas |
Burkina Faso | Oil and hydro |
Cote d’Ivoire | Natural gas and hydro |
Gambia | Oil and natural gas |
Ghana | Oil, natural gas and hydro |
Guinea | Oil and hydro |
Guinea-Bissau | Oil |
Liberia | Oil and hydro |
Mali | Oil and hydro |
Niger | Oil and coal |
Nigeria | Natural gas and hydro |
Senegal | Coal, oil and hydro |
Sierra Leone | Oil and hydro |
Togo | Oil, natural gas and hydro |
Technology | Unit | Investment Cost (MUSD/Unit) | Fixed O&M (% of Investment | Lifetime (Years) | Variable O&M Cost (USD/MWh-e) | Fuel Cost (USD/GJ) |
---|---|---|---|---|---|---|
Natural gas | MWe | 0.96 | 3.16 | 27 | 10.06 | |
PV | MWe | 0.79 | 1.28 | 40 | ||
Wind | MWe | 1.04 | 3.27 | 30 | ||
Hydro | MWe | 6.43 | 1.5 | 60 | ||
Pump storage | GWh | 8.57 | 1.5 | 50 | 1.36 |
Countries | Solar PV | Wind | River Hydro [64] |
---|---|---|---|
Average | 18.5 | 21 | 40 |
Benin Republic | 16.6 [65] | 15 [66] | - |
Burkina Faso | 18.2 [65] | 24 [66] | - |
Cote d’Ivoire | 20 [65] | 13 [66] | 30 |
Gambia | 18.5 [65] | 22 [66] | - |
Ghana | 17 [65] | 13 [66] | 53 |
Guinea | 18 [65] | 17 [66] | 40 |
Guinea-Bissau | 17.8 [65] | 18.2 [66] | - |
Liberia | 16 [65] | 12 [66] | 38 |
Mali | 20.5 [65] | 30 [66] | 30.3 |
Niger | 23 [65] | 28.8 [66] | - |
Nigeria | 24 [67] | 25 [68] | 45 |
Senegal | 19 [65] | 29 [66] | - |
Sierra Leone | 16.7 [65] | 12 [66] | 44 |
Togo | 16 [65] | 14 [66] | - |
Countries | Total Electricity Demand (TWh) [42] | Total Demand Used (TWh/Year) |
---|---|---|
Benin Republic | 5.23 | 6 |
Burkina Faso | 7.15 | 8.2 |
Cote d’Ivoire | 19.98 | 23 |
Gambia | 1.76 | 2 |
Ghana | 40.65 | 47 |
Guinea | 4.57 | 5.3 |
Guinea-Bissau | 0.26 | 0.3 |
Liberia | 1.19 | 1.4 |
Mali | 6.44 | 7.4 |
Niger | 5.27 | 6 |
Nigeria | 172.3 | 200 |
Senegal | 15 | 17.3 |
Sierra Leone | 1.15 | 1.3 |
Togo | 5.49 | 6.3 |
Total | 288.3 TWh | 331.5 TWh/Year |
Countries | Technologies | Capacities (MW) | CO2 Reduction (Mt) | Total Investment Cost (BUSD) | RES Share (%) |
---|---|---|---|---|---|
Benin Republic | Ngas | 760 | 2.722–1.418 | 5.18 | 48 |
PV | 155 | ||||
Wind | 100 | ||||
Hydro | 655 | ||||
Burkina Faso | Ngas | 1330 | 3.72–1.94 | 2.84 | 48 |
PV | 900 | ||||
Wind | 800 | ||||
Storage | 2000 | ||||
Cote d’Ivoire | Ngas | 2900 | 10.43–5.29 | 29.25 | 49.2 |
PV | 600 | ||||
Wind | 5 | ||||
Hydro | 2800 | ||||
Gambia | Ngas | 320 | 0.9–0.47 | 0.65 | 48.1 |
PV | 240 | ||||
Wind | 235 | ||||
Storage | 1000 | ||||
Ghana | Ngas | 6500 | 21.32–11.09 | 26.58 | 48 |
PV | 3000 | ||||
Wind | 3000 | ||||
Hydro | 2300 | ||||
Storage | 8000 | ||||
Guinea | Ngas | 700 | 2.4–1.23 | 4.96 | 48.7 |
PV | 150 | ||||
Wind | 70 | ||||
Hydro | 600 | ||||
Guinea-Bissau | Ngas | 40 | 0.136- 0.07 | 0.27 | 48.5 |
PV | 6 | ||||
Wind | 3 | ||||
Hydro | 35 | ||||
Liberia | Ngas | 180 | 0.635–0.331 | 1.3 | 48 |
PV | 35 | ||||
Wind | 12 | ||||
Hydro | 170 | ||||
Mali | Ngas | 950 | 3.36–1.75 | 5.82 | 48 |
PV | 250 | ||||
Wind | 200 | ||||
Hydro | 700 | ||||
Niger | Ngas | 800 | 2.72–1.47 | 3.85 | 46 |
PV | 250 | ||||
Wind | 300 | ||||
Hydro | 400 | ||||
Nigeria | Ngas | 27,000 | 90.72–47.18 | 133.89 | 48 |
PV | 9600 | ||||
Wind | 10,000 | ||||
Hydro | 14,000 | ||||
Storage | 9000 | ||||
Senegal | Ngas | 2600 | 7.85–4.07 | 6.92 | 48 |
PV | 1500 | ||||
Wind | 1850 | ||||
Hydro | 200 | ||||
Storage | 2500 | ||||
Sierra Leone | Ngas | 170 | 0.59–0.306 | 1.20 | 48.1 |
PV | 20 | ||||
Wind | 4 | ||||
Hydro | 150 | ||||
Togo | Ngas | 950 | 2.86–1.48 | 3.12 | 48 |
PV | 620 | ||||
Wind | 710 | ||||
Hydro | 150 | ||||
Storage | 2000 |
Country | Technology | Invest. Cost (B$) | Ceep | Res Share (%) |
---|---|---|---|---|
Benin Republic | NG + Hydro | 5.71 | 54 MW | 46.6 |
NG + PV | 2.26 | 0.74 TW | 48 | |
NG + Wind | 1.96 | 0.09 TW | 48 | |
NG + PV + Wind | 2.09 | 0.04 TW | 48 | |
NG + Hydro + PV | 3.78 | 1.25 GW | 48 | |
NG + Hydro + Wind | 3.32 | 1.08 GW | 48 | |
NG + Hydro + PV + Wind | 5.18 | 0 | 48 | |
Burkina Faso | NG + PV | 2.82 | 0.94 TW | 48 |
NG + Wind | 2.41 | 0.10 TW | 48 | |
NG + PV + Wind + Storage | 2.84 | 0 | 48 | |
Cote d’Ivoire | NG + Hydro | 19.5 | 256 MW | 48 |
NG + PV | 8.39 | 2.71 TW | 48 | |
NG + Wind | 6.67 | 0.31 TW | 48 | |
NG + PV + Wind | 7.01 | 1.45 TW | 48 | |
NG + Hydro + PV | 13.8 | 1.02 TW | 48 | |
NG + Hydro + Wind | 10.1 | 0.89 TW | 48 | |
NG + Hydro + PV + Wind | 29.25 | 0 | 49.2 | |
Gambia | NG + PV | 0.63 | 0.24 TW | 48 |
NG + Wind | 0.61 | 0.03 TW | 48 | |
NG + PV + Wind + Storage | 0.65 | 0 | 48.1 | |
Ghana | NG + Hydro | 20.2 | 0 | 19.4 |
NG + PV | 17.4 | 6.37 TW | 48 | |
NG + Wind | 15.1 | 4.02 TW | 48 | |
NG + PV + Wind | 16.3 | 5.22 TW | 48 | |
NG + Hydro + PV | 19.2 | 5.87 TW | 48 | |
NG + Hydro + Wind | 18.4 | 4.55 TW | 48 | |
NG + Hydro + PV + Wind + Storage | 26.58 | 0 | 48 | |
Guinea | NG + Hydro | 4.47 | 36 MW | 48 |
NG + PV | 1.98 | 0.71 TW | 48 | |
NG + Wind | 1.62 | 0.66 TW | 48 | |
NG + PV + Wind | 1.70 | 0.69 TW | 48 | |
NG + Hydro + PV | 3.32 | 0.12 TW | 48 | |
NG + Hydro + Wind | 3.12 | 0.09 TW | 48 | |
NG + Hydro + PV + Wind | 4.96 | 0 | 48.7 | |
Guinea-Bissau | NG + Hydro | 0.22 | 3 MW | 48 |
NG + PV | 0.12 | 42 GW | 48 | |
NG + Wind | 0.10 | 36 GW | 48 | |
NG + PV + Wind | 0.11 | 39 GW | 48 | |
NG + Hydro + PV | 0.20 | 12 GW | 48 | |
NG + Hydro + Wind | 0.19 | 10 GW | 48 | |
NG + Hydro + PV + Wind | 0.27 | 0 | 48.5 | |
Liberia | NG + Hydro | 1.18 | 9 MW | 48 |
NG + PV | 0.51 | 34 GW | 48 | |
NG + Wind | 0.45 | 29 GW | 48 | |
NG + PV + Wind | 0.48 | 32 GW | 48 | |
NG + Hydro + PV | 0.96 | 9.7 GW | 48 | |
NG + Hydro + Wind | 0.93 | 7.5 GW | 48 | |
NG + Hydro + PV + Wind | 1.30 | 0 | 48 | |
Mali | NG + Hydro | 6.26 | 52 MW | 48 |
NG + PV | 2.49 | 0.87 TW | 48 | |
NG + Wind | 2.18 | 0.79 TW | 48 | |
NG + PV + Wind | 2.30 | 0.83 TW | 48 | |
NG + Hydro + PV | 4.22 | 0.23 TW | 48 | |
NG + Hydro + Wind | 4.03 | 0.21 TW | 48 | |
NG + Hydro + PV + Wind | 5.82 | 0 | 48 | |
Niger | NG + Hydro | 3.01 | 0 | 24.5 |
NG + PV | 2.16 | 0.60 TW | 48 | |
NG + Wind | 2.01 | 0.51 TW | 48 | |
NG + PV + Wind | 2.67 | 0.56 TW | 48 | |
NG + Hydro + PV | 2.82 | 0.24 TW | 48 | |
NG + Hydro + Wind | 2.70 | 0.21 TW | 48 | |
NG + Hydro + PV + Wind | 3.85 | 0 | 46 | |
Nigeria | NG + Hydro | 103.9 | 0 | 25.8 |
NG + PV | 70.26 | 22.2 TW | 48 | |
NG + Wind | 61.33 | 20.5 TW | 48 | |
NG + PV + Wind | 66.75 | 21.1 TW | 48 | |
NG + Hydro + PV | 85.02 | 7.02 TW | 48 | |
NG + Hydro + Wind | 84.28 | 6.75 TW | 48 | |
NG + Hydro + PV + Wind + Storage | 133.9 | 0 | 48 | |
Senegal | NG + Hydro | 3.69 | 0 | 5.4 |
NG + PV | 6.01 | 2.14 TW | 48 | |
NG + Wind | 5.22 | 2.01 TW | 48 | |
NG + PV + Wind | 5.78 | 2.15 TW | 48 | |
NG + Hydro + PV | 4.99 | 1.01 TW | 48 | |
NG + Hydro + Wind | 4.56 | 0.94 TW | 48 | |
NG + Hydro + PV + Wind + Storage | 6.92 | 0 | 48 | |
Sierra Leone | NG + Hydro | 1.12 | 8 MW | 48 |
NG + PV | 0.46 | 0.17 TW | 48 | |
NG + Wind | 0.43 | 0.04 TW | 48 | |
NG + PV + Wind | 0.45 | 0.10 TW | 48 | |
NG + Hydro + PV | 0.95 | 220 GW | 48 | |
NG + Hydro + Wind | 0.91 | 202 GW | 48 | |
NG + Hydro + PV + Wind | 1.20 | 0 | 48.1 | |
Togo | NG + Hydro | 1.73 | 0 | 8.8 |
NG + PV | 2.40 | 0.89 TW | 48 | |
NG + Wind | 2.05 | 0.72 TW | 48 | |
NG + PV + Wind | 2.22 | 0.80 TW | 48 | |
NG + Hydro + PV | 1.92 | 0.55 TW | 48 | |
NG + Hydro + Wind | 1.86 | 0.49 TW | 48 | |
NG + Hydro + PV + Wind + Storage | 3.12 | 0 | 48 |
Technology | Country | Capacity (MW) | Annual Production (TWh/yr) |
---|---|---|---|
Solar PV | Nigeria | 6000 | 8.98 |
Niger Republic | 7000 | 12 | |
Wind | Mali | 7000 | 25.7 |
Senegal | 6000 | 23.76 | |
River hydro | Nigeria | 13,000 | 47.8 |
Cote d’Ivoire | 11,000 | 40.5 | |
Guinea | 5000 | 18.4 | |
Natural gas | All countries | 42,000 | 154.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishaku, H.P.; Adun, H.; Jazayeri, M.; Kusaf, M. Decarbonisation Strategy for Renewable Energy Integration for Electrification of West African Nations: A Bottom-Up EnergyPLAN Modelling of West African Power Pool Targets. Sustainability 2022, 14, 15933. https://doi.org/10.3390/su142315933
Ishaku HP, Adun H, Jazayeri M, Kusaf M. Decarbonisation Strategy for Renewable Energy Integration for Electrification of West African Nations: A Bottom-Up EnergyPLAN Modelling of West African Power Pool Targets. Sustainability. 2022; 14(23):15933. https://doi.org/10.3390/su142315933
Chicago/Turabian StyleIshaku, Hamagham Peter, Humphrey Adun, Moein Jazayeri, and Mehmet Kusaf. 2022. "Decarbonisation Strategy for Renewable Energy Integration for Electrification of West African Nations: A Bottom-Up EnergyPLAN Modelling of West African Power Pool Targets" Sustainability 14, no. 23: 15933. https://doi.org/10.3390/su142315933
APA StyleIshaku, H. P., Adun, H., Jazayeri, M., & Kusaf, M. (2022). Decarbonisation Strategy for Renewable Energy Integration for Electrification of West African Nations: A Bottom-Up EnergyPLAN Modelling of West African Power Pool Targets. Sustainability, 14(23), 15933. https://doi.org/10.3390/su142315933