What Affects the Acceptance and Use of Hotel Service Robots by Elderly Customers?
Abstract
:1. Introduction
2. Theory and Research Hypothesis
2.1. Technology Acceptance Model
2.2. Empathy
2.3. Perceived Trust
2.4. Perceived Value
3. Methodology
3.1. Measures
3.2. Data Collection
3.3. Statistical Analysis Method
3.4. Common Method Bias
4. Data Analysis and Results
4.1. Sample Profile
4.2. Measurement Model Analysis
4.3. Structural Model Analysis
5. Discussion
6. Conclusions
6.1. Conclusions
6.2. Contribution
6.3. Limitations and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhao, Y. Study on The Relationship of Leisure Sports Tourism with The Health of The Elderly. Rev. Bras. Med. Esporte 2022, 28, 432–435. [Google Scholar] [CrossRef]
- Chen, S.-H.; Tzeng, S.-Y.; Tham, A.; Chu, P.-X. Hospitality services in the post COVID-19 era: Are we ready for high-tech and no touch service delivery in smart hotels? J. Hosp. Mark. Manag. 2021, 30, 905–928. [Google Scholar] [CrossRef]
- Chuah, S.H.-W.; Yu, J. The future of service: The power of emotion in human-robot interaction. J. Retail. Consum. Serv. 2021, 61, 102551. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Badu-Baiden, F.; Giroux, M.; Choi, Y. Preference for robot service or human service in hotels? Impacts of the COVID-19 pandemic. Int. J. Hosp. Manag. 2021, 93, 102795. [Google Scholar] [CrossRef]
- Minor, K.; McLoughlin, E.; Richards, V. Enhancing the Visitor Experience in the Time of COVID 19: The Use of AI Robotics in Pembrokeshire Coastal Pathway. In Information and Communication Technologies in Tourism 2021; Springer: Cham, Switzerland, 2021; pp. 570–577. [Google Scholar] [CrossRef]
- Lu, L.; Cai, R.; Gursoy, D. Developing and validating a service robot integration willingness scale. Int. J. Hosp. Manag. 2019, 80, 36–51. [Google Scholar] [CrossRef]
- Murphy, J.; Hofacker, C.; Gretzel, U. Dawning of the Age of Robots in Hospitality and Tourism: Challenges for Teaching and Research. Eur. J. Tour. Res. 2017, 15, 104–111. [Google Scholar] [CrossRef]
- Gu, T.; Ren, C.; Yin, L.; Liao, Z.; Li, W.; Sun, F.; Wang, H. Scheduling Scheme Design of Hotel Service Robot: A Heuristic Algorithm to Provide Personalized Scheme. Wirel. Commun. Mob. Comput. 2022, 2022, 7611308. [Google Scholar] [CrossRef]
- Wang, L.-H.; Ho, J.-L.; Yeh, S.-S.; Huan, T.-C.T. Is robot hotel a future trend? Exploring the incentives, barriers and customers’ purchase intention for robot hotel stays. Tour. Manag. Perspect. 2022, 43, 100984. [Google Scholar] [CrossRef]
- Buhalis, D.; Leung, R. Smart hospitality—Interconnectivity and interoperability towards an ecosystem. Int. J. Hosp. Manag. 2018, 71, 41–50. [Google Scholar] [CrossRef]
- Ivanov, S.H.; Webster, C. Adoption of robots, artificial intel-ligence and service automation by travel, tourism and hospitality companies—A cost-benefit analysis. In Proceedings of the International Scientific Conference “Contemporary Tourism—Traditions and Innovations”, Sofia University, Sofia, Bulgaria, 19–21 October 2017. [Google Scholar]
- Reis, J.; Melão, N.; Salvadorinho, J.; Soares, B.; Rosete, A. Service robots in the hospitality industry: The case of Hennna hotel, Japan. Technol. Soc. 2020, 63, 101423. [Google Scholar] [CrossRef]
- Bulchand-Gidumal, J. Impact of artificial intelligence in travel, tourism, and hospitality. In Handbook of e-Tourism; Springer: Cham, Switzerland, 2022; pp. 1943–1962. [Google Scholar]
- Etemad-Sajadi, R.; Sturman, M.C. How to Increase the Customer Experience by the Usage of Remote Control Robot Concierge Solutions. Int. J. Soc. Robot. 2022, 14, 429–440. [Google Scholar] [CrossRef]
- Xu, S.; Stienmetz, J.; Ashton, M. How will service robots redefine leadership in hotel management? A Delphi approach. Int. J. Contemp. Hosp. Manag. 2020, 32, 2217–2237. [Google Scholar] [CrossRef]
- Vatan, A.; Dogan, S. What do hotel employees think about service robots? A qualitative study in Turkey. Tour. Manag. Perspect. 2021, 37, 100775. [Google Scholar] [CrossRef]
- Ivanov, S.; Seyitoğlu, F.; Markova, M. Hotel managers’ perceptions towards the use of robots: A mixed-methods approach. Inf. Technol. Tour. 2020, 22, 505–535. [Google Scholar] [CrossRef]
- Mukherjee, S.; Baral, M.M.; Venkataiah, C.; Pal, S.K.; Nagariya, R. Service robots are an option for contactless services due to the COVID-19 pandemic in the hotels. Decision 2021, 48, 445–460. [Google Scholar] [CrossRef]
- Brochado, A.; Rita, P.; Margarido, A. High tech meets high touch in upscale hotels. J. Hosp. Tour. Technol. 2016, 7, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, J.; Guerra, F.; Angione, A.L.; Di Giacomo, D.; Passafiume, D. Cognitive Reserve and Digital Confidence among Older Adults as New Paradigm for Resilient Aging. Gerontol. Geriatr. Med. 2021, 7, 2333721421993747. [Google Scholar] [CrossRef]
- Ge, G.L.; Schleimer, S.C. Robotic technologies and well-being for older adults living at home. J. Serv. Mark. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Shibata, T.; Hung, L.; Petersen, S.; Darling, K.; Inoue, K.; Martyn, K.; Hori, Y.; Lane, G.; Park, D.; Mizoguchi, R.; et al. PARO as a Biofeedback Medical Device for Mental Health in the COVID-19 Era. Sustainability 2021, 13, 11502. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.Y.; Ramayah, T.; Ping, T.A.; Jacky, C.J.-H. Social Media as a Tool to Help Select Tourism Destinations: The Case of Malaysia. Inf. Syst. Manag. 2017, 34, 265–279. [Google Scholar] [CrossRef]
- Kaushik, A.K.; Agrawal, A.K.; Rahman, Z. Tourist behaviour towards self-service hotel technology adoption: Trust and subjective norm as key antecedents. Tour. Manag. Perspect. 2015, 16, 278–289. [Google Scholar] [CrossRef]
- de Kervenoael, R.; Hasan, R.; Schwob, A.; Goh, E. Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tour. Manag. 2020, 78, 104042. [Google Scholar] [CrossRef]
- Lee, S.Y.; Petrick, J.F.; Crompton, J. The roles of quality and intermediary constructs in determining festival attendees’ behavioral intention. J. Travel Res. 2007, 45, 402–412. [Google Scholar]
- Han, H.; Yu, J.; Kim, W. An electric airplane: Assessing the effect of travelers’ perceived risk, attitude, and new product knowledge. J. Air Transp. Manag. 2019, 78, 33–42. [Google Scholar] [CrossRef]
- Sheth, J.N.; Newman, B.I.; Gross, B.L. Consumption Values and Market Choices: Theory and Applications; South-Western Pub.: Cinicinnati, OH, USA, 1991. [Google Scholar]
- Sweeney, J.C.; Soutar, G.N. Consumer perceived value: The development of a multiple item scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
- Meidute-Kavaliauskiene, I.; Çiğdem, S.; Yıldız, B.; Davidavicius, S. The Effect of Perceptions on Service Robot Usage Intention: A Survey Study in the Service Sector. Sustainability 2021, 13, 9655. [Google Scholar] [CrossRef]
- Park, J.-W.; Robertson, R.; Wu, C.-L. Modelling the Impact of Airline Service Quality and Marketing Variables on Passengers’ Future Behavioural Intentions. Transp. Plan. Technol. 2006, 29, 359–381. [Google Scholar] [CrossRef]
- Czaplewski, A.J.; Olson, E.M.; Slater, S.F. Applying the RATER model for service success. Mark. Manag. 2002, 11, 14–17. [Google Scholar]
- Powell, P.A.; Roberts, J. Situational determinants of cognitive, affective, and compassionate empathy in naturalistic digital interactions. Comput. Hum. Behav. 2017, 68, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Shin, D. Empathy and embodied experience in virtual environment: To what extent can virtual reality stimulate empathy and embodied experience? Comput. Hum. Behav. 2018, 78, 64–73. [Google Scholar] [CrossRef]
- Wispé, L. The distinction between sympathy and empathy: To call forth a concept, a word is needed. J. Pers. Soc. Psychol. 1986, 50, 314–321. [Google Scholar] [CrossRef]
- Borenstein, J.; Arkin, R.C. Nudging for good: Robots and the ethical appropriateness of nurturing empathy and charitable behavior. AI Soc. 2017, 32, 499–507. [Google Scholar] [CrossRef]
- Piçarra, N.; Giger, J.-C. Predicting intention to work with social robots at anticipation stage: Assessing the role of behavioral desire and anticipated emotions. Comput. Hum. Behav. 2018, 86, 129–146. [Google Scholar] [CrossRef]
- Parasuraman, A.; Berry, L.L.; Zeithaml, V.A. Refinement and Reassessmen of The SERVQUAL Scale. J. Retail. 1991, 67, 420–450. [Google Scholar]
- Choi, Y.; Choi, M.; Oh, M.; Kim, S. Service robots in hotels: Understanding the service quality perceptions of human-robot interaction. J. Hosp. Mark. Manag. 2020, 29, 613–635. [Google Scholar] [CrossRef]
- Walther, J.B.; Loh, T.; Granka, L. Let me count the ways: The interchange of verbal and nonverbal cues in computer-mediated and face-to-face affinity. J. Lang. Soc. Psychol. 2005, 24, 36–65. [Google Scholar] [CrossRef]
- Komiak, S.X.; Benbasat, I. Understanding Customer Trust in Agent-Mediated Electronic Commerce, Web-Mediated Electronic Commerce, and Traditional Commerce. Inf. Technol. Manag. 2004, 5, 181–207. [Google Scholar] [CrossRef]
- Ba, S.; Pavlou, P.A. Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer be-havior. MIS Q. 2002, 26, 243–268. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chew, E. A Systematic Review for Service Humanoid Robotics Model in Hospitality. Int. J. Soc. Robot. 2021, 13, 1397–1410. [Google Scholar] [CrossRef]
- Bowen, J.; Morosan, C. Beware hospitality industry: The robots are coming. Worldw. Hosp. Tour. Themes 2018, 10, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, S.; Webster, C.; Garenko, A. Young Russian adults’ attitudes towards the potential use of robots in hotels. Technol. Soc. 2018, 55, 24–32. [Google Scholar] [CrossRef]
- Oh, H.; Jeong, M.; Baloglu, S. Tourists’ adoption of self-service technologies at resort hotels. J. Bus. Res. 2013, 66, 692–699. [Google Scholar] [CrossRef]
- Park, Y.A.; Gretzel, U. Evaluation of Emerging Technologies in Tourism: The Case of Travel Search Engines. In Information Communication Technologies in Tourism; Springer: Vienna, Austria, 2006; pp. 371–382. [Google Scholar] [CrossRef]
- Forgas-Coll, S.; Huertas-Garcia, R.; Andriella, A.; Alenyà, G. The effects of gender and personality of robot assistants on customers’ acceptance of their service. Serv. Bus. 2022, 16, 359–389. [Google Scholar] [CrossRef]
- Murray, J.; Elms, J.; Curran, M. Examining empathy and responsiveness in a high-service context. Int. J. Retail. Distrib. Manag. 2019, 47, 1364–1378. [Google Scholar] [CrossRef]
- Mattiassi, A.D.A.; Sarrica, M.; Cavallo, F.; Fortunati, L. What do humans feel with mistreated humans, animals, robots, and objects? Exploring the role of cognitive empathy. Motiv. Emot. 2021, 45, 543–555. [Google Scholar] [CrossRef]
- Birnbaum, G.E.; Mizrahi, M.; Hoffman, G.; Reis, H.T.; Finkel, E.J.; Sass, O. What robots can teach us about intimacy: The reassuring effects of robot responsiveness to human disclosure. Comput. Hum. Behav. 2016, 63, 416–423. [Google Scholar] [CrossRef]
- Howard, D.J.; Gengler, C. Emotional Contagion Effects on Product Attitudes: Figure 1. J. Consum. Res. 2001, 28, 189–201. [Google Scholar] [CrossRef]
- Riek, L.D.; Rabinowitch, T.-C.; Chakrabarti, B.; Robinson, P. How anthropomorphism affects empathy toward robots. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, La Jolla, CA, USA, 9–13 March 2009; pp. 245–246. [Google Scholar]
- Rossi, S.; Conti, D.; Garramone, F.; Santangelo, G.; Staffa, M.; Varrasi, S.; Di Nuovo, A. The Role of Personality Factors and Empathy in the Acceptance and Performance of a Social Robot for Psychometric Evaluations. Robotics 2020, 9, 39. [Google Scholar] [CrossRef]
- Tan, H.; Sun, L.; Šabanović, S. Feeling green: Empathy affects perceptions of usefulness and intention to use a robotic recycling bin. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 22–27 August 2016; pp. 1051–1056. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. SERVQUAL—A Mulltiple-Item Scale For Measuring Consumer Perceptions of SERVICE Quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Heerink, M.; Krose, B.; Evers, V.; Wielinga, B. Measuring acceptance of an assistive social robot: A suggested toolkit. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 528–533. [Google Scholar]
- Gaudiello, I.; Zibetti, E.; Lefort, S.; Chetouani, M.; Ivaldi, S. Trust as indicator of robot functional and social acceptance. An experimental study on user conformation to iCub answers. Comput. Hum. Behav. 2016, 61, 633–655. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K.; Wilson, A.; Pitardi, V. How live chat assistants drive travel consumers’ attitudes, trust and purchase intentions. Int. J. Contemp. Hosp. Manag. 2020, 32, 1795–1812. [Google Scholar] [CrossRef]
- Ponte, E.B.; Carvajal-Trujillo, E.; Escobar-Rodríguez, T. Influence of trust and perceived value on the intention to purchase travel online: Integrating the effects of assurance on trust antecedents. Tour. Manag. 2015, 47, 286–302. [Google Scholar] [CrossRef]
- de Graaf, M.M.; Ben Allouch, S. Exploring influencing variables for the acceptance of social robots. Robot. Auton. Syst. 2013, 61, 1476–1486. [Google Scholar] [CrossRef]
- Park, S.; Stangl, B. Augmented reality experiences and sensation seeking. Tour. Manag. 2020, 77, 104023. [Google Scholar] [CrossRef]
- Sanıl, M.; Eminer, F. An integrative model of patients’ perceived value of healthcare service quality in North Cyprus. Arch. Public Health 2021, 79, 227. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Lu, Y.; Wang, B. Exploring user acceptance of WAP services from the perspectives of perceived value and trust. Int. J. Inf. Technol. Manag. 2010, 9, 302. [Google Scholar] [CrossRef]
- Venkatesh, V.; Speier, C.; Morris, M.G. User Acceptance Enablers in Individual Decision Making about Technology: Toward an Integrated Model. Decis. Sci. 2002, 33, 297–316. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gu, J.; Wang, S.; Wang, J. Understanding consumers’ willingness to use ride-sharing services: The roles of perceived value and perceived risk. Transp. Res. Part C Emerg. Technol. 2019, 105, 504–519. [Google Scholar] [CrossRef]
- Lee, M.-C. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Modern methods for business research 1998, 295, 295–336. [Google Scholar]
- Fornell, C.; Bookstein, F. Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Chin, W.W.; Thatcher, J.B.; Wright, R.T. Assessing Common Method Bias: Problems with the ULMC Technique. MIS Q. 2012, 36, 1003. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Y.; Wang, Y.-S.; Lin, T.-C. Developing and validating a technology upgrade model. Int. J. Form. Manag. 2018, 38, 7–26. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; Organ, D.W. Self-Reports in Organizational Research: Problems and Prospects. J. Manag. 1986, 12, 531–544. [Google Scholar] [CrossRef]
- Hair, J.J.F.; Sarstedt, M.; Matthews, L.M.; Ringle, C.M. Identifying and treating unobserved heterogeneity with FIMIX-PLS: Part I—Method. Eur. Bus. Rev. 2016, 28, 63–76. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Lowry, P.B.; Gaskin, J. Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It. IEEE Trans. Dependable Secur. Comput. 2014, 57, 123–146. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Akron, OH, USA, 1992. [Google Scholar]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.-M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar]
- Hu, L.-T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Luo, M.M.; Remus, W.; Sheldon, P.J. Technology Acceptance of the Lonely Planet Website: An Exploratory Study. Inf. Technol. Tour. 2007, 9, 67–78. [Google Scholar] [CrossRef]
- Sung, H.; Jeon, H. Untact: Customer’s Acceptance Intention toward Robot Barista in Coffee Shop. Sustainability 2020, 12, 8598. [Google Scholar] [CrossRef]
- Scheutz, C.; Law, T.; Scheutz, M. EnviRobots: How Human–Robot Interaction Can Facilitate Sustainable Behavior. Sustainability 2021, 13, 12283. [Google Scholar] [CrossRef]
- Yang, G.-Z.; Nelson, B.J.; Murphy, R.R.; Choset, H.; Christensen, H.; Collins, S.H.; Dario, P.; Goldberg, K.; Ikuta, K.; Jacobstein, N.; et al. Combating COVID-19—The role of robotics in managing public health and infectious diseases. Sci. Robot. 2020, 5, eabb5589. [Google Scholar] [CrossRef] [Green Version]
- Küster, D.; Swiderska, A.; Gunkel, D. I saw it on YouTube! How online videos shape perceptions of mind, morality, and fears about robots. New Media Soc. 2021, 23, 3312–3331. [Google Scholar] [CrossRef]
- Leite, I.; Pereira, A.; Mascarenhas, S.; Martinho, C.; Prada, R.; Paiva, A. The influence of empathy in human–robot relations. Int. J. Hum.-Comput. Stud. 2013, 71, 250–260. [Google Scholar] [CrossRef]
- Okita, S.Y. Self–Other’s Perspective Taking: The Use of Therapeutic Robot Companions as Social Agents for Reducing Pain and Anxiety in Pediatric Patients. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.K. An Emotional Tactile Interaction Design Process. In Proceedings of the 23rd International Conference on Human-Computer Interaction (HCII), Online, 24–29 July 2021; pp. 384–395. [Google Scholar]
- Yang, H.; Yu, J.; Zo, H.; Choi, M. User acceptance of wearable devices: An extended perspective of perceived value. Telemat. Inform. 2016, 33, 256–269. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Flavián, C. Frontline robots in tourism and hospitality: Service enhancement or cost reduction? Electron. Mark. 2021, 31, 477–492. [Google Scholar] [CrossRef]
- Collins, G.R. Improving human–robot interactions in hospitality settings. Int. Hosp. Rev. 2020, 34, 61–79. [Google Scholar] [CrossRef]
Constructs | Items | Sources | |
---|---|---|---|
Perceived value (PV) | PV1 | Compared to the traditional human service in hotels, it is worthwhile for me to use robots to provide services. | [30] |
PV2 | Using a robot to provide service in a hotel is a satisfying experience. | ||
PV3 | Compared to the cost of the service I need to pay, using a robot to provide a service in a hotel is value for money. | ||
Perceived Trust (PT) | PT1 | I feel the service provided by the hotel service robot is real. | [61] |
PT2 | I think the service provided by the hotel service robot is clear and reliable. | ||
PT3 | I feel it is trustworthy to use robots to provide services in hotels. | ||
PT4 | I feel that hotel service robots have the necessary ability to provide customer service. | ||
Empathy (EM) | EM1 | Robots that provide services in hotels usually understand my specific needs. | [33] |
EM2 | Service robots in hotels usually give me personalized attention. | ||
EM3 | The service robot in the hotel is always convenient when I need it. | ||
Perceived Usefulness (PU) | PU1 | Using a hotel service robot can enhance my hotel stay experience. | [23] |
PU2 | Using a hotel service robot can improve the efficiency of service. | ||
PU3 | Using a hotel service robot takes the stress out of my hotel stay. | ||
Perceived Ease of Use (PEOU) | PEOU1 | Learning to operate a hotel service robot would be easy for me. | [23] |
PEOU2 | It would be easy for me to become proficient with a hotel service robot. | ||
PEOU3 | I will find a hotel service robot easy to use. | ||
Behavioral Intention to Use (BI) | BI1 | I intend to use a hotel service robot for service in the future. | [23] |
BI2 | I hope to use hotel service robots to serve in the future. | ||
BI3 | I plan to use a hotel service robot to serve in the future. |
Items | Frequency | Percentage |
---|---|---|
Gender | ||
Men | 99 | 45.4% |
Women | 119 | 54.6% |
Age | ||
60–64 | 67 | 30.7% |
65–69 | 77 | 35.3% |
70–74 | 34 | 15.6% |
75–79 | 26 | 12.0% |
≥80 | 14 | 6.4% |
Education | ||
primary school and below | 71 | 32.6% |
junior high school | 81 | 37.1% |
senior high school | 47 | 21.6% |
undergraduate and above | 19 | 8.7% |
Number of hotel stays per year | ||
1–3 times | 142 | 65.1% |
4–6 times | 50 | 22.9% |
7–9 times | 18 | 8.3% |
≥10 times | 8 | 3.7% |
Experience with smart products | ||
Have | 194 | 89.0% |
None | 24 | 11.0% |
Construct | α | CR | AVE | BI | EM | PEOU | PT | PU | PV |
---|---|---|---|---|---|---|---|---|---|
BI | 0.818 | 0.892 | 0.733 | 0.856 | |||||
EM | 0.740 | 0.852 | 0.658 | 0.587 | 0.811 | ||||
PEOU | 0.723 | 0.844 | 0.643 | 0.520 | 0.463 | 0.802 | |||
PT | 0.785 | 0.861 | 0.609 | 0.539 | 0.634 | 0.541 | 0.780 | ||
PU | 0.776 | 0.870 | 0.690 | 0.606 | 0.586 | 0.452 | 0.437 | 0.831 | |
PV | 0.792 | 0.878 | 0.705 | 0.593 | 0.490 | 0.380 | 0.584 | 0.450 | 0.840 |
Items | BI | EM | PEOU | PT | PU | PV |
---|---|---|---|---|---|---|
BI117 | 0.856 | 0.475 | 0.399 | 0.418 | 0.479 | 0.483 |
BI218 | 0.836 | 0.521 | 0.480 | 0.456 | 0.509 | 0.496 |
BI319 | 0.876 | 0.510 | 0.454 | 0.505 | 0.564 | 0.542 |
EM18 | 0.475 | 0.831 | 0.323 | 0.575 | 0.476 | 0.432 |
EM29 | 0.496 | 0.811 | 0.409 | 0.471 | 0.503 | 0.388 |
EM310 | 0.457 | 0.790 | 0.395 | 0.498 | 0.445 | 0.371 |
PEOU114 | 0.352 | 0.298 | 0.782 | 0.443 | 0.311 | 0.225 |
PEOU215 | 0.428 | 0.414 | 0.789 | 0.391 | 0.363 | 0.286 |
PEOU316 | 0.464 | 0.397 | 0.833 | 0.467 | 0.407 | 0.389 |
PT14 | 0.372 | 0.489 | 0.442 | 0.740 | 0.321 | 0.363 |
PT25 | 0.500 | 0.620 | 0.399 | 0.834 | 0.401 | 0.538 |
PT36 | 0.328 | 0.382 | 0.374 | 0.727 | 0.248 | 0.447 |
PT47 | 0.459 | 0.466 | 0.471 | 0.814 | 0.373 | 0.470 |
PU111 | 0.519 | 0.483 | 0.418 | 0.391 | 0.856 | 0.353 |
PU212 | 0.491 | 0.463 | 0.285 | 0.322 | 0.825 | 0.382 |
PU313 | 0.499 | 0.512 | 0.413 | 0.372 | 0.811 | 0.388 |
PV11 | 0.515 | 0.400 | 0.282 | 0.467 | 0.408 | 0.847 |
PV22 | 0.439 | 0.438 | 0.354 | 0.479 | 0.350 | 0.830 |
PV33 | 0.531 | 0.401 | 0.328 | 0.524 | 0.372 | 0.843 |
Research Hypothesis | Path Coefficients | Standard Deviation | t-Value | p-Values | Result | ||
---|---|---|---|---|---|---|---|
PEOU | → | PU | 0.305 | 0.081 | 3.771 | 0.000 | H1 Support |
PEOU | → | BI | 0.184 | 0.050 | 3.680 | 0.000 | H2 Support |
PU | → | BI | 0.271 | 0.057 | 4.779 | 0.000 | H3 Support |
EM | → | BI | 0.175 | 0.064 | 2.728 | 0.006 | H4 Support |
PT | → | PU | 0.272 | 0.088 | 3.112 | 0.002 | H5 Support |
PT | → | PEOU | 0.541 | 0.055 | 9.802 | 0.000 | H6 Support |
PT | → | BI | 0.039 | 0.077 | 0.508 | 0.611 | H7 Nonsupport |
PV | → | BI | 0.292 | 0.060 | 4.864 | 0.000 | H8 Support |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T. What Affects the Acceptance and Use of Hotel Service Robots by Elderly Customers? Sustainability 2022, 14, 16102. https://doi.org/10.3390/su142316102
Huang T. What Affects the Acceptance and Use of Hotel Service Robots by Elderly Customers? Sustainability. 2022; 14(23):16102. https://doi.org/10.3390/su142316102
Chicago/Turabian StyleHuang, Tianyang. 2022. "What Affects the Acceptance and Use of Hotel Service Robots by Elderly Customers?" Sustainability 14, no. 23: 16102. https://doi.org/10.3390/su142316102
APA StyleHuang, T. (2022). What Affects the Acceptance and Use of Hotel Service Robots by Elderly Customers? Sustainability, 14(23), 16102. https://doi.org/10.3390/su142316102