Assessment of Runoff Control Effect with Improved Stepped Bioretention System (ISBS) under Various Rainwater Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Bioretention System Set Up
2.2. Experiment Design
2.3. Data Analysis
3. Results and Discussion
3.1. Effect of Different Stepped Bioretention Facilities on Runoff Rainwater
3.1.1. Runoff Rainwater Volume Control
3.1.2. Runoff Rainwater Quality Control
3.2. Runoff Simulation Analysis of Stepped Bioretention Facility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li-Kun, Y.; Sen, P.; Xin-Hua, Z.; Xia, L. Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis. Ecol. Model. 2017, 345, 63–74. [Google Scholar] [CrossRef]
- Wang, L.; Ma, B.; Wu, F. Effects of wheat stubble on runoff, infiltration, and erosion of farmland on the Loess Plateau, China, subjected to simulated rainfall. Solid Earth 2017, 8, 281–290. [Google Scholar] [CrossRef] [Green Version]
- El Atta, H.A.; Aref, I. Effect of terracing on rainwater harvesting and growth of Juniperus procera Hochst. ex Endlicher. Int. J. Environ. Sci. Technol. 2009, 7, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-Z.; Wang, Y.-H.; Cui, Y.-L.; Wang, S.-W.; Zhang, Y.-S. A new rainwater harvesting and recycling system for transforming sloping land into terraced farmland. J. Mt. Sci. 2014, 11, 205–214. [Google Scholar] [CrossRef]
- Wang, S.M.; Lin, X.Y.; Yu, H.; Wang, Z.D.; Xia, H.X.; An, J.S.; Fan, G.D. Nitrogen removal from urban stormwater runoff by stepped bioretention systems. Ecol. Eng. 2017, 106, 340–348. [Google Scholar] [CrossRef]
- Yang, Y.D.; Liu, H.; Li, H.F.; Su, S.R.; Liu, W.F. Planting in ecologically solidified soil and its use. Open Geosci. 2022, 14, 750–762. [Google Scholar] [CrossRef]
- Misiewicz, J.; Datta, S.S.; Lejcus, K.; Marczak, D. The Characteristics of Time-Dependent Changes of Coefficient of Permeability for Superabsorbent Polymer-Soil Mixtures. Materials 2022, 15, 4465. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, J.; Chen, W.; Chen, Z. Medium clogging and the dynamics of organic matter accumulation in constructed wetlands. Ecol. Eng. 2013, 60, 393–398. [Google Scholar] [CrossRef]
- Gong, Y.W.; Gao, F.; Hao, Y.; Zhang, G.H.; Bai, X.J.; Yang, H.; Li, H.Y.; Zhang, W.; Nie, L.M. Factors affecting the permeability of the growing media used in bioretention systems. J. Hydrol. 2022, 610, 127935. [Google Scholar] [CrossRef]
- Carrasco-Acosta, M.; Garcia-Jimenez, P.; Herrera-Melian, J.; Penate-Castellano, N.; Rivero-Rosales, A. The Effects of Plants on Pollutant Removal, Clogging, and Bacterial Community Structure in Palm Mulch-Based Vertical Flow Constructed Wetlands. Sustainability 2019, 11, 632. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Ferreira, A.J.D.; Pato, R.L.; Magalhaes, M.D.; Coelho, C.D.; Santos, C. Rainfall-runoff-erosion relationships study for different land uses, in a sub-urban area. Z. Fur Geomorphol. 2012, 56, 5–20. [Google Scholar] [CrossRef]
- Lundqvist, J.; Falkenmark, M. Adaptation to Rainfall Variability and Unpredictability: New Dimensions of Old Challenges and Opportunities. Int. J. Water Resour. Dev. 2010, 26, 595–612. [Google Scholar] [CrossRef]
- Su, J.H.; Li, J.K.; Gao, X.J.; Yao, Y.T.; Jiang, C.B. Comprehensive analysis of waterlogging control and carbon emission reduction for optimal LID layout: A case study in campus. Environ. Sci. Pollut. Res. 2022, 29, 87802–87816. [Google Scholar] [CrossRef] [PubMed]
- Si, S.; Li, J.Q.; Jiang, Y.C.; Wang, Y.Z.; Liu, L. The Response of Runoff Pollution Control to Initial Runoff Volume Capture in Sponge City Construction Using SWMM. Appl. Sci. 2022, 12, 5617. [Google Scholar] [CrossRef]
- Wen, X.; Hu, Z.; Jing, Y.; Zhang, X.; Zhang, Y.; Chai, S. Effects of rainwater infiltration in low impact development facilities on adjacent municipal roads in collapsible loess. Bull. Eng. Geol. Environ. 2021, 81, 1–15. [Google Scholar] [CrossRef]
- Hou, J.; Yuan, H. Optimal spatial layout of low-impact development practices based on SUSTAIN and NSGA-II. Desalination Water Treat. 2020, 177, 227–235. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Boulomytis, V.T.G.; Yilmaz, A.G.; Shanableh, A. Water Quality Improvement through Rainwater Tanks: A Review and Simulation Study. Water 2022, 14, 1411. [Google Scholar] [CrossRef]
- Randelovic, A.; Zhang, K.F.; Jacimovic, N.; McCarthy, D.; Deletic, A. Stormwater biofilter treatment model (MPiRe) for selected micro-pollutants. Water Res. 2016, 89, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Vezzaro, L.; Eriksson, E.; Ledin, A.; Mikkelsen, P.S. Dynamic stormwater treatment unit model for micropollutants (STUMP) based on substance inherent properties. Water Sci. Technol. 2010, 62, 622–629. [Google Scholar] [CrossRef]
- Vezzaro, L.; Eriksson, E.; Ledin, A.; Mikkelsen, P.S. Modelling the fate of organic micropollutants in stormwater ponds. Sci. Total Environ. 2011, 409, 2597–2606. [Google Scholar] [CrossRef]
- Li, L.Q.; Yang, J.M.; Davis, A.P.; Liu, Y.Q. Dissolved Inorganic Nitrogen Behavior and Fate in Bioretention Systems: Role of Vegetation and Saturated Zones. J. Environ. Eng. 2019, 145, 04019074. [Google Scholar] [CrossRef]
- Wu, T.; Sansalone, J. Phosphorus Equilibrium. II: Comparing Filter Media, Models, and Leaching. J. Environ. Eng. 2013, 139, 1325–1335. [Google Scholar] [CrossRef]
- Lee, J.; Bae, S.; Lee, W.H.; Gil, K. Effect of surface area to catchment area ratio on pollutant removal efficiency in vegetation-type facilities. Ecol. Eng. 2022, 179, 106609. [Google Scholar] [CrossRef]
- Torres, A.; Bond, T.C.; Lehmann, C.M.B.; Subramanian, R.; Hadley, O.L. Measuring Organic Carbon and Black Carbon in Rainwater: Evaluation of Methods. Aerosol Sci. Technol. 2014, 48, 239–250. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska, A.E.; Banasik, K. Modeling Suspended Sediment Concentration in the Stormwater Outflow from a Small Detention Pond. J. Environ. Eng. 2017, 143, 5017005. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Fletcher, T.D.; Duncan, H.P.; Jenkins, G.A. Modelling urban stormwater treatment—A unified approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- Yang, J.H.; Liu, H.Q.; Lei, T.W.; Rahma, A.E.; Liu, C.X.; Zhang, J.P. Effect of straw-incorporation into farming soil layer on surface runoff under simulated rainfall. Catena 2021, 199, 105082. [Google Scholar] [CrossRef]
- Donjadee, S.; Tingsanchali, T. Reduction of runoff and soil loss over steep slopes by using vetiver hedgerow systems. Paddy Water Environ. 2012, 11, 573–581. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.S.; Fu, Z.Y.; Luo, Z.D.; Wang, F.; Wang, K.L. Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. Eur. J. Soil Sci. 2022, 73, e13288. [Google Scholar] [CrossRef]
- Pan, J.K.; Ni, R.Q.; Zheng, L.F. Influence of In-situ Soil and Groundwater Level on Hydrological Effect of Bioretention. Pol. J. Environ. Stud. 2022, 31, 3745–3753. [Google Scholar] [CrossRef]
- Zhang, T.T.; Xiao, Y.; Liang, D.F.; Tang, H.W.; Xu, J.Z.; Yuan, S.Y.; Wang, N.R.; Luan, B. A two-layer model for studying 2D dissolved pollutant runoff over impermeable surfaces. Hydrol. Process. 2021, 35, e14152. [Google Scholar] [CrossRef]
- Huo, J.; Liu, C.; Yu, X.; Chen, L.; Zheng, W.; Yang, Y.; Yin, C. Direct and indirect effects of rainfall and vegetation coverage on runoff, soil loss, and nutrient loss in a semi-humid climate. Hydrol. Process. 2020, 35, e13985. [Google Scholar] [CrossRef]
- Wang, S.H.; Ma, Y.K.; Zhang, X.Y.; Shen, Z.Y. Transport and sources of nitrogen in stormwater runoff at the urban catchment scale. Sci. Total Environ. 2022, 806, 150281. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.C.Y.; Luu, T.M. Operation of Cap Orifice in a Rain Garden. J. Hydrol. Eng. 2015, 20, 06015002. [Google Scholar] [CrossRef]
Physical indicators | Bulk density (g/mL) | Specific surface area (m2/g) | Pore volume (mL/g) | Loss on ignition (%) |
0.75 | ≥260 | ≥0.35 | ≤7.0 | |
Chemical composition | Al2O3 (%) | SiO2 (%) | Fe2O3 (%) | Na2O (%) |
≥92 | ≤0.10 | ≤0.04 | ≤0.40 |
Parameter | Concentration (mg/L) | ||||
---|---|---|---|---|---|
Category Ⅰ | Category Ⅱ | Category Ⅲ | Category Ⅳ | Category Ⅴ | |
TN | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 |
TP | 0.02 | 0.1 | 0.2 | 0.3 | 0.4 |
COD | 15 | 15 | 20 | 30 | 40 |
Rainfall Date | Rainfall Amount (mm) | Rainfall Duration (min) | Antecedent Dry Days (d) | Runoff Volume (L) | Runoff Reduction Rate (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Water Inlet | Water Outlet | A | B | ||||||
A | B | A | B | ||||||
5.10 | 10.5 | 98 | 15 | 267 | 280 | 0 | 0 | 100 | 100 |
5.23 | 17.5 | 85 | 12 | 458 | 461 | 228 | 122 | 50.2 | 73.5 |
6.1 | 22.8 | 51 | 8 | 597 | 602 | 397 | 292 | 33.5 | 51.5 |
6.14 | 5.1 | 35 | 12 | 131 | 127 | 0 | 0 | 100 | 100 |
6.17 | 2.3 | 46 | 2 | 58 | 60 | 0 | 0 | 100 | 100 |
6.29 | 15.7 | 159 | 11 | 398 | 404 | 128 | 26 | 67.8 | 93.6 |
7.25 | 8.9 | 226 | 25 | 235 | 231 | 0 | 0 | 100 | 100 |
7.31 | 25.3 | 198 | 5 | 654 | 649 | 354 | 254 | 45.9 | 60.9 |
8.8 | 21.3 | 157 | 7 | 556 | 561 | 258 | 166 | 53.6 | 70.4 |
8.17 | 8.2 | 178 | 8 | 211 | 216 | 0 | 0 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Wei, H.; Wu, S. Assessment of Runoff Control Effect with Improved Stepped Bioretention System (ISBS) under Various Rainwater Conditions. Sustainability 2022, 14, 16160. https://doi.org/10.3390/su142316160
Kang W, Wei H, Wu S. Assessment of Runoff Control Effect with Improved Stepped Bioretention System (ISBS) under Various Rainwater Conditions. Sustainability. 2022; 14(23):16160. https://doi.org/10.3390/su142316160
Chicago/Turabian StyleKang, Wei, Haiyang Wei, and Shasha Wu. 2022. "Assessment of Runoff Control Effect with Improved Stepped Bioretention System (ISBS) under Various Rainwater Conditions" Sustainability 14, no. 23: 16160. https://doi.org/10.3390/su142316160