Verification of Methods for Determining Flow Resistance Coefficients for Floodplains with Flexible Vegetation
Abstract
:1. Introduction
2. Hydraulic Calculation Formulas
- The friction resistance on the surface of the bottom and the banks of the channel—λb (λ0);
- The flow resistance of the plants (shape resistance)—λR
The Kouwen Formula
3. Materials and Methods
3.1. Modelling Research
3.1.1. Research Stand
3.1.2. Hydraulic Parameters in the Plant Zone
3.1.3. Parameters of the Vegetation Zone
4. Results
4.1. The Method of Garbrecht/Pasche (GP)
4.2. The Method of Chezy-Manning (CM)—Using Equation (1)
4.3. The Method of Lindner/Kaiser (LK)
4.4. The Method of Kouwen (K)—Using Equation (7)
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tymiński, T. Hydraulic Model Investigation of Flow Conditions for Floodplains with Coniferous and Deciduous Shrubs. Pol. J. Environ. Stud. 2012, 21, 1047–1052. [Google Scholar]
- Kałuża, T.; Sojka, M.; Strzeliński, P.; Wróżyński, R. Application of Terrestrial Laser Scanning to Tree Trunk Bark Structure Characteristics Evaluation and Analysis of Their Effect on the Flow Resistance Coefficient. Water 2018, 10, 753. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Castaings, W.; Dartus, D.; Le Dimet, F.-X.; Saulnier, G.-M. Sensitivity Analysis and Parameter Estimation for Distributed Hydrological Modeling: Potential of Variational Methods. Hydrol. Earth Syst. Sci. 2009, 13, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Laks, I.; Kałuża, T.; Sojka, M.; Walczak, Z.; Wróżyński, R. Problems with Modelling Water Distribution in Open Channels with Hydraulic Engineering Structures. Rocz. Ochr. Srodowiska 2013, 15, 245–257. [Google Scholar]
- Szałkiewicz, E.; Dysarz, T.; Kałuża, T.; Malinger, A.; Radecki-Pawlik, A. Analysis of in-stream restoration structures impact on hydraulic condition and sedimentation in the Flinta river, Poland. Carpath. J. Earth Environ. Sci. 2019, 14, 275–286. [Google Scholar] [CrossRef]
- Tymiński, T. (Ed.) Analysis of Impact of Flexible Vegetation on Hydraulic Conditions of Flow in Vegetated Channels. Part 1: Mechanical Properties of Elastic Plants; Monograph; Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2007; p. 82. (In Polish) [Google Scholar]
- Kastrup, J.; Kröbl, P.; Kuckelsberg, I. 2D-HN Model of the Danube between Straubing and Vilshofen. Flow Simulation in Hydraulic Engineering. In Dresdner Wasserbauliche Mitteilungen; TU Dresden: Dresden, Germany, 2006; Volume 32. (In German) [Google Scholar]
- Popek, Z. Calculating the Capacity of Flood Waters. In The Scientific Review; Warsaw University of Life Sciences: Warsaw, Poland, 1995; Volume 7. (In Polish) [Google Scholar]
- Kouwen, N.; Unny, T.E.; Hill, H.M. Flow Retardance in Vegetated Channels. J. Irrig. and Drain. Div. 1969, 95, 329–342. [Google Scholar] [CrossRef]
- Kouwen, N.; Unny, T.E. Flexible Roughness in Open Channels. J. Hydraul. Div. 1973, 99, 713–728. [Google Scholar] [CrossRef]
- Kouwen, N.; Li, R.-M. Biomechanics of Vegetative Channel Linings. J. Hydraul. Div. 1980, 106, 1085–1103. [Google Scholar] [CrossRef]
- Kouwen, N. Modern Approach to Design of Grassed Channels. J. Irrig. Drain Eng. 1992, 118, 733–743. [Google Scholar] [CrossRef]
- Kouwen, N. Field Estimation of the Biomechanical Properties of Grass. J. Hydraul. Res. 1988, 26, 559–568. [Google Scholar] [CrossRef]
- Tymiński, T.; Kałuża, T. Investigation of Mechanical Properties and Flow Resistance of Flexible Riverbank Vegetation. Pol. J. Environ. Stud. 2012, 21, 201–207. [Google Scholar]
- Walczak, N.; Walczak, Z.; Ficner, T. Determination of the Variation of the Geometric and Dynamic Parameters of the Floodplain Vegetation. Water 2022, 14, 1274. [Google Scholar] [CrossRef]
- Kubrak, E.; Marciszewska, K.; Dohojda, M. Low deflection of flexible elements after dynamic water pressure. Acta Sci. Pol. Archit. 2005, 4, 27–35. (In Polish) [Google Scholar]
- Kubrak, E.; Kubrak, J.; Rowiński, P.M. Vertical Velocity Distributions through and above Submerged, Flexible Vegetation. Hydrol. Sci. J. 2008, 53, 905–920. [Google Scholar] [CrossRef]
- Järvelä, J. Flow Resistance of Flexible and Stiff Vegetation: A Flume Study with Natural Plants. J. Hydrol. 2002, 269, 44–54. [Google Scholar] [CrossRef]
- Järvelä, J. Determination of Flow Resistance Caused by Non-submerged Woody Vegetation. Int. J. River Basin Manag. 2004, 2, 61–70. [Google Scholar] [CrossRef]
- Järvelä, J. Flow Resistance in Environmental Channels: Focus on Vegetation; Helsinki University of Technology Water Resources Publications: Espoo, Finland, 2004; ISBN 978-951-22-7074-3. [Google Scholar]
- Łoboda, A.; Karpiński, M.; Bialik, R. On the Relationship between Aquatic Plant Stem Characteristics and Drag Force: Is a Modeling Application Possible? Water 2018, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Bai, Y.; Cao, X.; Li, E. The Deformation and Shear Vortex Width of Flexible Vegetation Roots in an Artificial Floating Bed Channel. Sustainability 2022, 14, 11661. [Google Scholar] [CrossRef]
- Tsujimoto, T.; Kitamura, T. Flow over Flexible Vegetation and Formation of Honami Motion; Monograph of 9th APD-IAHR: Singapore, 1994. [Google Scholar]
- DVWK. Hydraulic Calculation of Watercourses; DVWK-Merkblätter; Verlag Paul Parey: Hamburg/Berlin, Germany, 1991. (In German) [Google Scholar]
- Lindner, K. The Flow Resistance of Plant Communities. In Mitteilungen des Leichtweiss-Instituts für Wasserbau; TU Braunschweig: Braunschweig, Germany, 1985; Volume 75. (In German) [Google Scholar]
- Pasche, E.; Rouvé, G. Overbank Flow with Vegetatively Roughened Flood Plains. J. Hydraul. Eng. 1985, 111, 1262–1278. [Google Scholar] [CrossRef]
- Pasche, E. Turbulence Mechanism in Natural Streams and the Possibility of Its Mechanical Representation. In Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft; TU Aachen: Aachen, Germany, 1984; Volume 52. (In German) [Google Scholar]
- Kaiser, W. Flow Resistance Conditions in Channels with Riparian Vegetation. In Wasserbau-Mitteilungen des Instituts für Wasserbau, Konstruktiver Wasserbau und Wasserwirtschaft; TH Darmstadt: Darmstadt, Germany, 1984; Volume 23. (In German) [Google Scholar]
- Nuding, A. Flow Resistance Behaviour in Channels with Riparian Shrubbery, Development of a Flow Law for Watercourses with and without Woody Vegetation, with Special Consideration of Riparian Shrubbery. Ph.D. Dissertation, Wasserbau-Mitteilungen des Instituts für Wasserbau, Konstruktiver Wasserbau und Wasserwirtschaft, TH Darmstadt, Darmstadt, Germany, 1991. (In German). [Google Scholar]
- Rickert, K. The Influence of Woody Plants on Light Conditions and Runoff Behaviour in Watercourses. Ph.D. Thesis, Mitteilungen des Instituts für Wasserwirtschaft, Hydrologie und Landwirtschaftlichen Wasserbau, Universität Hannover, Hannover, Germany, 1986. (In German). [Google Scholar]
- Rouvé, G. Hydraulic Problems in Near-Natural Watercourse Development; DFG, Forschungsbericht, VCH Verlabsgesellschaft: Weinheim, Germany, 1987. (In German) [Google Scholar]
- Vischer, D.; Oplatka, M. The flow resistance of a flexible riparian and foreshore vegetation. Wasserwirtschaft 1998, 88, 284–288. (In German) [Google Scholar]
- Petryk, S.; Bosmajian, G. Analysis of Flow through Vegetation. J. Hydrual. Div. 1975, 101, 871–884. [Google Scholar] [CrossRef]
- Mertens, W. On the hydraulic calculation of near-natural watercourses. Wasserwirtschaft 1989, 79, 170–179. (In German) [Google Scholar]
- Dalton, P.A.; Smith, R.J.; Truong, P.N.V. Vetiver Grass Hedges for Erosion Control on a Cropped Flood Plain: Hedge Hydraulics. Agric. Water Manag. 1996, 31, 91–104. [Google Scholar] [CrossRef]
- Klaassen, G.J.; Van Der Zwaard, J.J. Roughness Coefficients Of Vegetated Flood Plains. J. Hydraul. Res. 1974, 12, 43–63. [Google Scholar] [CrossRef]
- Klaassen, G.J.; van Urk, A. Resistance to Flow of Floodplains with Grasses and Hedges; 21-st IAHR Congress: Melbourne, Australia, 1985. [Google Scholar]
- Powell, R.W. Resistance to Flow in Rough Channels. Trans. Am.Geophys. Union 1950, 31, 575–582. [Google Scholar] [CrossRef]
- Lehmann, B. Recommendations for Near-Natural Watercourse Development in Urban Areas. In Mitteilungen des Instituts für Wasser und Gewässerentwicklung; University Karlsruhe (TH): Karlsruhe, Germany, 2005; p. 230. (In German) [Google Scholar]
- Fathi-Maghadam, M.; Kouwen, N. Nonrigid, Nonsubmerged, Vegetative Roughness on Floodplains. J. Hydraul. Eng. 1997, 123, 51–57. [Google Scholar] [CrossRef]
- Garbrecht, G. Discharge Calculations for Rivers and Canals. Wasserwirtschaft 1961, 51, 40–45. (In German) [Google Scholar]
- Västilä, K.; Järvelä, J.; Koivusalo, H. Flow–Vegetation–Sediment Interaction in a Cohesive Compound Channel. J. Hydraul. Eng. 2016, 142, 04015034. [Google Scholar] [CrossRef] [Green Version]
- Wolski, K.; Tymiński, T. Studies on the Threshold Density of Phragmites Australis Plant Concentration as a Factor of Hydraulic Interactions in the Riverbed. Ecol. Eng. 2020, 151, 105822. [Google Scholar] [CrossRef]
- Wu, F.-C.; Shen, H.W.; Chou, Y.-J. Variation of Roughness Coefficients for Unsubmerged and Submerged Vegetation. J. Hydraul. Eng. 1999, 125, 934–942. [Google Scholar] [CrossRef] [Green Version]
- Bretschneider, H.; Schulz, A. Application of Flow Formulas for Near-Natural Watercourse Development; DVWK-Schriften; Verlag Paul Parey: Hamburg/Berlin, Germany, 1985; Volume 72. (In German) [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill Book: New York, NY, USA, 1959. [Google Scholar]
- Finnemore, E.J.; Franzini, J.B. Fluid Mechanics with Engineering Applications, 10th ed.; The McGraw-Hill Series in Civil and Environmental Engineering; McGraw-Hill: Boston, MA, USA, 2002; ISBN 978-0-07-243202-2. [Google Scholar]
- Caroppi, G.; Västilä, K.; Järvelä, J.; Lee, C.; Ji, U.; Kim, H.S.; Kim, S. Flow and Wake Characteristics Associated with Riparian Vegetation Patches: Results from Field-scale Experiments. Hydrol. Process. 2022, 36, e14506. [Google Scholar] [CrossRef]
- Västilä, K.; Järvelä, J.; Aberle, J. Characteristic Reference Areas for Estimating Flow Resistance of Natural Foliated Vegetation. J. Hydrol. 2013, 492, 49–60. [Google Scholar] [CrossRef]
- Armanini, A.; Righetti, M.; Grisenti, P. Direct Measurement of Vegetation Resistance in Prototype Scale. J. Hydraul. Res. 2005, 43, 481–487. [Google Scholar] [CrossRef]
- Comiti, F.; Da Canal, M.; Surian, N.; Mao, L.; Picco, L.; Lenzi, M.A. Channel Adjustments and Vegetation Cover Dynamics in a Large Gravel Bed River over the Last 200 years. Geomorphology 2011, 125, 147–159. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.-M.; Muller, E.; Dcamps, H. Impacts of Riparian Vegetation on Hydrological Processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Kałuża, T.; Sojka, M.; Wróżyński, R.; Jaskuła, J.; Zaborowski, S.; Hämmerling, M. Modeling of River Channel Shading as a Factor for Changes in Hydromorphological Conditions of Small Lowland Rivers. Water 2020, 12, 527. [Google Scholar] [CrossRef]
- Posthumus, H.; Rouquette, J.R.; Morris, J.; Gowing, D.J.G.; Hess, T.M. A Framework for the Assessment of Ecosystem Goods and Services; a Case Study on Lowland Floodplains in England. Ecol. Econ. 2010, 69, 1510–1523. [Google Scholar] [CrossRef]
- Walczak, N.; Walczak, Z.; Kałuża, T.; Hämmerling, M.; Stachowski, P. The Impact of Shrubby Floodplain Vegetation Growth on the Discharge Capacity of River Valleys. Water 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Indlekofer, H.M.F. Use of the Strickler formula for flowing water with profile division and vegetation stocking. Wasserwirtschaft 2004, 11, 15–22. (In German) [Google Scholar] [CrossRef]
- Lecher, K.; Lühr, H.-P.; Zanke, U. Pocketbook of water management. In Taschenbuch der Wasserwirtschaft; Springer Verlag: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-658-31287-9. [Google Scholar]
- ISO 748: 2021 (En); Hydrometry—Measurement of Liquid Flow in Open Channels—Velocity Area Methods Using Point Velocity Measurements. ISO: Geneva, Switzerland, 2021.
Hydraulic Parameters | ||||
---|---|---|---|---|
qR | m3/(s·m) | 0.0072 | 0.0095 | 0.0105 |
h = f(q) | m | 0.072 | 0.092 | 0.099 |
F = f(q) | m2 | 0.0460 | 0.0594 | 0.0650 |
Rh = f(q) | m | 0.0655 | 0.0765 | 0.0878 |
IE | - | 0.0003 | 0.0003 | 0.0003 |
nb | m−1/3·s | 0.012 | 0.012 | 0.012 |
ntotal | m−1/3·s | 0.050 | 0.050 | 0.050 |
Ω = (v*/vk) | Parameter | |
---|---|---|
a | b | |
Ω < 1.0 | 0.15 | 1.85 |
1.0 < Ω < 1.5 | 0.20 | 2.70 |
1.5 < Ω < 2.5 | 0.28 | 3.08 |
2.5 < Ω | 0.29 | 3.50 |
Method of Calculation | Hydraulic Parameter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
q = 0.0072 m3/(s·m) | q = 0.0095 m3/(s·m) | q = 0.0105 m3/(s·m) | Relative Error | Remarks | |||||||
Drag Coefficient (Plants) | Drag Coefficient (Total) | Specific Discharge | Drag Coefficient (Plants) | Drag Coefficient (Total) | Specific Discharge | Drag Coefficient (Plants) | Drag Coefficient (Total) | Specific Discharge | |||
λR | λ | q·100 | λR | λ | q·100 | λR | λ | q·100 | δq/q | λb = 0.026 | |
- | - | m3/(sm) | - | - | m3/(sm) | - | - | m3/(sm) | % | ||
Lindner/Kaiser | 0.534 | 0.560 | 0.40 | 0.623 | 0.649 | 0.52 | 0.716 | 0.742 | 0.58 | ~40 | cw = 1.1 |
Garbrecht/Pasche | - | 0.516 | 0.42 | - | 0.633 | 0.53 | - | 0.773 | 0.57 | ~40 | n = 0.050 |
Chezy-Manning | - | 0.486 | 0.43 | - | 0.463 | 0.62 | - | 0.441 | 0.75 | ~30 | n = 0.050 |
Kouwen | 0.153 | 0.179 | 0.70 | 0.176 | 0.202 | 0.93 | 0.201 | 0.227 | 0.103 | ~2% | MEJ = 23.0 |
Measured | - | 0.176 | 0.72 | - | 0.196 | 0.95 | - | 0.220 | 0.105 | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tymiński, T.; Kałuża, T.; Hämmerling, M. Verification of Methods for Determining Flow Resistance Coefficients for Floodplains with Flexible Vegetation. Sustainability 2022, 14, 16170. https://doi.org/10.3390/su142316170
Tymiński T, Kałuża T, Hämmerling M. Verification of Methods for Determining Flow Resistance Coefficients for Floodplains with Flexible Vegetation. Sustainability. 2022; 14(23):16170. https://doi.org/10.3390/su142316170
Chicago/Turabian StyleTymiński, Tomasz, Tomasz Kałuża, and Mateusz Hämmerling. 2022. "Verification of Methods for Determining Flow Resistance Coefficients for Floodplains with Flexible Vegetation" Sustainability 14, no. 23: 16170. https://doi.org/10.3390/su142316170
APA StyleTymiński, T., Kałuża, T., & Hämmerling, M. (2022). Verification of Methods for Determining Flow Resistance Coefficients for Floodplains with Flexible Vegetation. Sustainability, 14(23), 16170. https://doi.org/10.3390/su142316170