Hydrogeochemistry and Water Quality Assessment in the Thamirabarani River Stretch by Applying GIS and PCA Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Zone 1 consists of the Ambasamudram Taluk.
- This zone covers the upper course of the river. This taluk has the Agasthiar Falls sampling point, which is the source point of the Thamirabarani river.
- Zone 2 consists of the Tirunelveli and Palayamkottai taluks combined together.
- This zone covers the middle course of the river. This is the most urbanized zone in this study. Tirunelveli is an ancient city and an important corporation in southern Tamilnadu.
- Zone 3 consists of Srivaikundam Taluk.
- This zone covers the stations, which are mainly in the Thoothukudi district.
- Zone 4 consists of Tiruchendur Taluk.
- This zone covers the lower course of the river. This zone contains most of the coastal areas.
2.2. Sample Collection
2.3. Field and Laboratory Setup
2.4. Spatial Interpolation Using GIS
2.5. Water Quality Index
- This method of calculation is quick, objective, and reproducible and it condenses all of the data that pertains to the analyzed parameters into a single value.
- The evaluation of changes in water quality in various regions [37].
2.6. Principal Component Analysis
2.6.1. Pretreatment
2.6.2. Analysis
3. Results
3.1. Hydrogeochemistry
3.2. Water Quality Index
3.2.1. Factor Analysis of Zone 1 (Ambasamudram Taluk)
3.2.2. Factor Analysis of Zone 2 (Tirunelveli Palayamkottai Taluks)
3.2.3. Factor Analysis of Zone 3 (Srivaikundam Taluk)
3.2.4. Factor Analysis of Zone 4 (Tiruchendur Taluk)
4. Conclusions
5. Scope for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phiri, O.; Mumba, P.; Moyo, B.H.Z. Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. Int. J. Environ. Sci. Technol. 2005, 2, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Venkatramanan, S.; Chung, S.Y.; Lee, S.Y.; Park, N. Assessment of River Water Quality Via Environmentric Multivariate Statistical Tools And Water Quality Index: A Case Study Of Nakdong River Basin, Korea. Carpathian J. Earth Environ. Sci. 2014, 9, 125–132. [Google Scholar]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of Seasonal Variations in Surface Water Quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef]
- Cui, B.; Yang, Q.; Yang, Z.; Zhang, K. Evaluating The Ecological Performance Of Wetland Restoration In The Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103. [Google Scholar] [CrossRef]
- Yahong, Z.; Peiyue, L.; Leilei, X.; Zihan, D.; Duo, L. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- Yu, S.; Shang, J.; Zhao, J.; Guo, H. Factor Analysis and Dynamics of Water Quality of the Sanghua River, Northeast China. Water Air Soil Pollut. 2003, 144, 159–169. [Google Scholar] [CrossRef]
- Galezzo, M.A.; Susa, M.R. The challenges ofmonitoring andcontrolling drinking-water quality indispersed rural areas: Acase study based ontwo settlements intheColombian Caribbean. Environ. Monit. Assess. 2021, 193, 373. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.; Padhy, P.K. Multivariate statistical techniques and water quality assessment: Discourse and review on some analytical models. Int. J. Environ. Sci. 2014, 5, 607. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1998; Volume 5, pp. 207–219. [Google Scholar]
- Kanade, S.B.; Gaikwad, V.B. A multivariate statistical analysis of bore well chemistry data: Nashik and Niphad Taluka of Maharashtra, India. Univers. J. Environ. Res. Technol. 2011, 1, 193–202. [Google Scholar]
- Aydin, H.; Ustaoğlu, F.; Tepe, Y.; Soylu, E.N. Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environ. Forensics 2020, 22, 270–287. [Google Scholar] [CrossRef]
- Nasirian, M. A new water quality index for environmental contamination contributed by mineral processing: A case study of Amang (Tin Tailing) processing activity. J. Appl. Sci. 2007, 7, 2977–2987. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.; Robescu, L.D. Chemical water quality assessment of the Danube river in the lower course using water quality indices. U.P.B. Sci. Bull. 2017, 79, 51–61. [Google Scholar]
- Effendi, H.; Wardiatno, R.Y. Water Quality Status of Ciambulawung River, Banten Province, Based on Pollution Index and NSF-WQI. Procedia Environ. Sci. 2015, 24, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Gazzaz, N.M.; Yusoff, M.K.; Aris, A.Z.; Juahir, H.; Ramli, M.F. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar. Pollut. Bull. 2012, 64, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- Rosu, A.; Rosu, B.; Constantin, D.E.; Voiculescu, M.; Arseni, M.; Calmuc, V.; Iticescu, C.; Georgescu, L.P. Overview of NO2 Pollution Level in the Lower Danube Basin during Dans Measurements Campaign. Theor. Mech. 2018, 41, 163–170. [Google Scholar] [CrossRef]
- Brown, R.M.; Mc Clelland, N.I.; Deininger, R.A.; Tozer, R.G. A Water Quality Index—Do We Dare. Water Sew. Work 1970, 117, 339–343. [Google Scholar]
- Saffran, K.; Cash, K.; Hallard, K.; Neary, B.; Wright, R. Canadian water quality guidelines for the protection of aquatic life. CCME Waterquality Index 2001, 1, 1–23. [Google Scholar]
- Adimalla, N. Groundwater quality for drinking and irrigation purposes and potential health risk assessment: A case study from semi-arid region of South India. Expo. Health 2019, 11, 109–123. [Google Scholar] [CrossRef]
- Mohana, P.; Nagamani, K.; Muthusamy, S.; Velmurugan, P.M. Environmental Impact Assessment of Thamirabarani River Basin, Tamil Nadu using Remote Sensing and GIS Techniques. Indian J. Sci. Technol. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Reymond, D.J.; Sudalaimuthu, K. Geospatial Water Quality Analysis of Downstream of Tamiraparani River—Tamilnadu. J. Eng. Res. 2022. [Google Scholar] [CrossRef]
- Murugesan, A.G.; Mophin-Kania, K. Evaluation and Classification of Water Quality of Perennial River Tamirabarani through Aggregation of Water Quality Index. Int. J. Environ. Prot. 2011, 1, 24–33. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American public Health Association: Washington DC, USA, 2012. [Google Scholar]
- Brindha, K.; Elango, L. Groundwater quality zonation in a shallow weathered rock aquifer using GIS. Geo-Spatial Inf. Sci. 2012, 15, 95–104. [Google Scholar] [CrossRef]
- Reddy, A.G.S.; Reddy, D.V.; Rao, P.N.; Prasad, K.M. Hydrogeochemical characterization of fluoride rich groundwater of Wailpalliwatershed, Nalgonda District, Andhra Pradesh, India. Environ. Monit. Assess. 2010, 171, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Ayyandurai, R.; Venkateswaran, S.; Karunanidhi, D. Hydrogeochemical assessment of groundwater quality and suitability for irrigation in the coastal part of Cuddalore district, Tamil Nadu, India. Mar. Pollut. Bull. 2022, 174, 113258. [Google Scholar] [CrossRef]
- Ranjith, S.; Shivapur, A.V.; Kumar, S.K.P.; Chandrashekarayya, G.H.; Dhungana, S. Water Quality Assessment of River Tungabhadra, India. Nat. Environ. Pollut. 2020, 19, 1957–1963. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington DC, USA, 2005. [Google Scholar]
- Kumar, P.J.S. GIS-based mapping of water-level fuctuations (WLF) and its impact on groundwater in an Agrarian District in Tamil Nadu, India. Environ. Dev. Sustain. 2021, 24, 994–1009. [Google Scholar] [CrossRef]
- Robinson, A.H.; Morrison, J.L.; Muehrcke, P.C.; Kimerling, A.J.; Guptil, S.C. Elements of Cartography, 6th ed.; John Wiley and Sons: New York, NY, USA, 1995. [Google Scholar]
- Chang, K. Introduction to Geographic Information Systems, 4th ed.; Tata McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Wu, H.W.E.; Hung, M.C. Comparison of Spatial Interpolation Techniques Using Visualization and Quantitative Assessment. In Applications of Spatial Statistics; IntechOpen: London, UK, 2016; pp. 17–34. [Google Scholar] [CrossRef] [Green Version]
- Duraisamy, S.; Govindhaswamy, V.; Duraisamy, K.; Krishinaraj, S.; Balasubramanian, A.; Thirumalaisamy, S. Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environ. Geochem. Health 2018, 41, 851–873. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Taş, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef]
- Chaurasia, A.K.; Pandey, H.K.; Tiwari, S.K.; Prakash, R.; Pandey, P.; Ram, A. Groundwater quality assessment using water quality index (WQI) in parts of Varanasi District, UttarPradesh, India. J. Geol. Soc. India 2018, 92, 76–82. [Google Scholar] [CrossRef]
- Rabeiy, R.E. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environ. Sci. Pollut. Res. 2017, 25, 30808–30817. [Google Scholar] [CrossRef]
- Ichwana, I.; Syahrul, S.; Nelly, W. Water Quality Index by Using National Sanitation Foundation-Water Quality Index (NSF-WQI) Method at Krueng Tamiang Aceh. In Proceedings of the International Conference on Technology, Innovation, and Society (ICTIS), Padang, India, 21–22 July 2016. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, V.; Krishnara, S.; Vijayaragavan, K.; Ganthi, R.R. Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ. Monit. Assess. 2010, 171, 595–609. [Google Scholar]
- Nasir, M.F.M.; Samsudin, M.S.; Mohamad, I.; Awaluddin, M.R.A.; Mansor, M.A.; Juahir, H.; Ramli, N. River Water Quality Modeling Using Combined Principle Component Analysis (PCA) and Multiple Linear Regressions (MLR): A Case Study at Klang River, Malaysia. World Appl. Sci. J. 2011, 14, 73–82. [Google Scholar]
- Garcia, C.A.B.; Garcia, H.L.; Mendonça, M.C.S.; Silva, A.F.; Alves, J.P.H.; Costa, S.S.L.; Araújo, G.O.; Silva, I.S. Assessment of water quality using principal component analysis: A case study of the açude da Macela—Sergipe—Brazil. Mod. Environ. Sci. Eng. 2017, 3, 690–700. [Google Scholar] [CrossRef]
- Tao, X.F.; Huang, T.; Li, X.F.; Peng, D.P. Application of a PCA based water quality classification method in water quality assessment in the Tongjiyan Irrigation Area, China. In Proceedings of the International Conference on Energy and Environmental Protection (ICEEP), Sanya, China, 21–23 November 2016; pp. 118–125. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.A.; Meraj, G.; Yaseen, S.; Pandit, A.K. Statistical Assessment of Water Quality Parameters for Pollution Source Identification in Sukhnag Stream: An Inflow Stream of Lake Wular (Ramsar Site), Kashmir Himalaya. J. Ecosyst. 2014, 2014, 898054. [Google Scholar] [CrossRef]
- Gupta, N.; Pandey, P.; Hussain, J. Effect of physicochemical and biological parameters on the quality of river water of Narmada, Madhya Pradesh, India. Water Sci. 2017, 31, 11–23. [Google Scholar] [CrossRef]
- Gnanachandrasamy, G.; Dushiyanthan, C.; Rajakumar, T.J.; Zhou, Y. Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: Using Geographical Information System (GIS) and Water Quality Index (WQI). Environ. Dev. Sustain. 2018, 22, 759–789. [Google Scholar] [CrossRef]
- Davis, S.N.; De Weist, R.J.M. Hydrogeology; John Wiley and Sons: New York, NY, USA, 1966; p. 463. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1979; 604p. [Google Scholar]
- Reddy, B.M.; Sunitha, V. Geochemical and health risk assessment of fluoride and nitrate toxicity in semi-arid region of Anantapur District, South India. Environ. Chem. Ecotoxicol. 2020, 2, 150–161. [Google Scholar]
- Saxena, U.; Saxena, S. Correlation Study on Physico-Chemical Parameters And Quality Assessment Of Ground Water Of Bassi Tehsil Of District Jaipur, Rajasthan, India, Suresh Gyan Vihar University. Int. J. Environ. Sci. Technol. 2015, 1, 78–91. [Google Scholar]
- Abbasnia, A.; Alimohammadi, M.; Mahvi, A.H.; Nabizadeh, R.; Yousefi, M.; Mohammadi, A.A.; Pasalari, H.; Mirzabeigi, M. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief 2018, 16, 182–192. [Google Scholar] [CrossRef]
- Rao, N.S.; Rao, J.P.; Subrahmanyam, A. Principal Component Analysis in Groundwater Quality in a Developing Urban Area of Andhra Pradesh. J. Geol. Soc. India 2007, 69, 959–969. [Google Scholar]
- Kumar, P.J.S. Hydrogeochemical and multivariate statistical appraisal of pollution sources in the groundwater of the lower Bhavani River basin in Tamil Nadu. Geol. Ecol. Landsc. 2020, 4, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Hua, A.K.; Kusin, F.M.; Praveena, S.M. Spatial Variation Assessment of River Water Quality Using Environmetric Techniques. Pol. J. Environ. Stud. 2016, 25, 2411–2421. [Google Scholar] [CrossRef] [PubMed]
Site No | Station Name | Taluk | Longitude | Latitude |
---|---|---|---|---|
1 | Agasthiyar Falls | Ambasamudram | 77.3637 | 8.7041 |
2 | Papanasam | Ambasamudram | 77.3674 | 8.7122 |
3 | V.K. puram | Ambasamudram | 77.3762 | 8.7048 |
4 | Manimuthar | Ambasamudram | 77.4068 | 8.6652 |
5 | Ambai | Ambasamudram | 77.4538 | 8.7041 |
6 | Kallidaikurichi | Ambasamudram | 77.4670 | 8.6895 |
7 | Mukkudal | Ambasamudram | 77.5222 | 8.7368 |
8 | Cheranmadevi | Ambasamudram | 77.5602 | 8.6736 |
9 | pathamadai | Ambasamudram | 77.5861 | 8.6721 |
10 | Keelaseval | Ambasamudram | 77.6238 | 8.6793 |
11 | C.N. village | Tirunelveli/Palaymkottai | 77.6959 | 8.7126 |
12 | Kurukkuthrai | Tirunelveli/Palaymkottai | 77.7008 | 8.7172 |
13 | Tirunelveli | Tirunelveli/Palaymkottai | 77.7077 | 8.7261 |
14 | Kokkirakulam | Tirunelveli/Palaymkottai | 77.7128 | 8.7247 |
15 | Sindhupundhurai | Tirunelveli/Palaymkottai | 77.7122 | 8.7325 |
16 | Manimortheeswaram | Tirunelveli/Palaymkottai | 77.7192 | 8.7431 |
17 | Narayamaalpuram | Tirunelveli/Palaymkottai | 77.7417 | 8.7605 |
18 | Melapalayam | Tirunelveli/Palaymkottai | 77.7148 | 8.6985 |
19 | Vellakovil | Tirunelveli/Palaymkottai | 77.7748 | 8.7090 |
20 | Murappanadu | Srivaikundam | 77.8310 | 8.7145 |
21 | Vallanadu | Srivaikundam | 77.8512 | 8.7165 |
22 | Karungulam | Srivaikundam | 77.8556 | 8.6475 |
23 | Srivaikundam | Srivaikundam | 77.9109 | 8.6297 |
24 | Alwarthirunagari | Srivaikundam | 77.9427 | 8.6059 |
25 | Irattaithirupathi | Srivaikundam | 77.9722 | 8.6121 |
26 | Mangalakurichi | Srivaikundam | 77.9974 | 8.6253 |
27 | Eral | Srivaikundam | 78.0253 | 8.6246 |
28 | Valavallan | Srivaikundam | 78.0479 | 8.6306 |
29 | Mukkani | Tiruchendur | 78.0715 | 8.6321 |
30 | SenthaMangalam | Tiruchendur | 78.0873 | 8.6361 |
31 | Punnakaayal | Tiruchendur | 78.1131 | 8.6343 |
32 | Athoor | Tiruchendur | 78.082 | 8.611 |
33 | Kayalpattinam | Tiruchendur | 78.125 | 8.570 |
34 | Thenthiruperai | Tiruchendur | 77.986 | 8.605 |
35 | Arumuganeri | Tiruchendur | 78.096 | 8.570 |
S. No | Parameter | Unit | Method |
---|---|---|---|
1 | pH | - | Hanna Portable Tester |
2 | TDS | mg/L | Hanna Portable Tester |
3 | Cl | mg/L | Standard Titration |
4 | HCO3 | mg/L | Standard Titration |
5 | SO4 | mg/L | Turbidity Meter |
6 | NO3 | mg/L | UV spectrophotometer |
7 | F | mg/L | SPADNS method |
8 | Na | mg/L | Flame Photometer |
9 | Ca | mg/L | Standard Titration |
10 | Mg | mg/L | Standard Titration |
11 | K | mg/L | Flame Photometer |
12 | TH | mg/L | EDTA titrimetric |
Parameters | BIS Stds | Weight (wi) | Relative Weight |
---|---|---|---|
TDS | 500 | 5 | 0.1724 |
NO3 | 10 | 5 | 0.1724 |
pH | 8.5 | 4 | 0.1379 |
SO4 | 200 | 4 | 0.1379 |
HCO3 | 300 | 3 | 0.1034 |
Cl | 250 | 2 | 0.0689 |
TH | 200 | 2 | 0.0689 |
Ca | 75 | 1 | 0.0344 |
Na | 200 | 1 | 0.0344 |
K | 20 | 1 | 0.0344 |
Mg | 30 | 1 | 0.0344 |
TOTAL | 29 | 1 |
Parameters | Maximum | Minimum | Average | WHO Stds (2014) |
---|---|---|---|---|
pH | 8.48 | 7 | 7.5 | 7.5 |
TDS | 788 | 78 | 190.5 | 500 |
TH | 283 | 11 | 56 | 200 |
Cl | 324 | 14 | 56 | 250 |
HCO3 | 7 | 12 | 29.6 | 300 |
SO4 | 78 | 8.5 | 21.8 | 200 |
NO3 | 6 | 0.11 | 2.9 | 45 |
F | 3 | 0.01 | 0.08 | 4 |
Na | 171 | 1.7 | 16.5 | 200 |
Ca | 98 | 2.37 | 11.6 | 75 |
Mg | 36 | 0.7 | 4.6 | 30 |
K | 23.07 | 0.5 | 2.9 | 20 |
WQI | Class | Quality | % of Samples |
---|---|---|---|
0–25 | I | Excellent | 15 |
26–50 | II | Good | 35 |
51–75 | III | Poor | 25 |
76–100 | IV | Very poor | 15 |
>100 | V | Unsuitable | 10 |
Total Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 4.483 | 37.357 | 37.357 | 4.483 | 37.357 | 37.357 | 4.432 | 36.932 | 36.932 |
2 | 2.498 | 20.820 | 58.177 | 2.498 | 20.820 | 58.177 | 2.134 | 17.780 | 54.712 |
3 | 1.804 | 15.035 | 73.212 | 1.804 | 15.035 | 73.212 | 2.073 | 17.277 | 71.989 |
4 | 1.550 | 12.915 | 86.128 | 1.550 | 12.915 | 86.128 | 1.697 | 14.139 | 86.128 |
5 | 0.886 | 7.380 | 93.507 | ||||||
6 | 0.364 | 3.036 | 96.543 | ||||||
7 | 0.193 | 1.606 | 98.149 | ||||||
8 | 0.182 | 1.514 | 99.663 | ||||||
9 | 0.040 | 0.337 | 100.000 | ||||||
10 | 7.37 × 10−17 | 6.14 × 10−16 | 100.000 | ||||||
11 | −1.44 × 10−16 | −1.20 × 10−15 | 100.000 | ||||||
12 | −1.20 × 10−15 | −1.00 × 10−14 | 100.000 |
Rotated Component Matrix | ||||
---|---|---|---|---|
Component | ||||
1 | 2 | 3 | 4 | |
pH | 0.920 | 0.166 | 0.066 | 0.200 |
Ca | 0.888 | −0.079 | −0.314 | −0.230 |
HCO3 | 0.880 | 0.006 | −0.320 | −0.250 |
F | 0.814 | −0.289 | 0.094 | 0.048 |
TDS | 0.791 | 0.262 | 0.439 | 0.276 |
Na | 0.102 | 0.890 | −0.398 | 0.017 |
Mg | −0.185 | 0.885 | −0.027 | −0.178 |
K | 0.059 | 0.588 | 0.111 | 0.262 |
TH | 0.168 | −0.096 | 0.932 | −0.045 |
SO4 | −0.484 | −0.108 | 0.781 | −0.169 |
NO3 | 0.099 | 0.014 | −0.099 | −0.926 |
Cl | 0.645 | −0.085 | 0.075 | −0.689 |
Total Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 4.550 | 37.915 | 37.915 | 4.550 | 37.915 | 37.915 | 4.454 | 37.118 | 37.118 |
2 | 2.906 | 24.220 | 62.135 | 2.906 | 24.220 | 62.135 | 2.836 | 23.631 | 60.749 |
3 | 2.163 | 18.024 | 80.158 | 2.163 | 18.024 | 80.158 | 2.329 | 19.410 | 80.158 |
4 | 0.795 | 6.623 | 86.782 | ||||||
5 | 0.671 | 5.592 | 92.374 | ||||||
6 | 0.425 | 3.539 | 95.913 | ||||||
7 | 0.338 | 2.816 | 98.729 | ||||||
8 | 0.153 | 1.271 | 100.000 | ||||||
9 | 9.80 × 10−16 | 8.16 × 10−15 | 100.000 | ||||||
10 | 3.22 × 10−16 | 2.68 × 10−15 | 100.000 | ||||||
11 | −6.32 × 10−17 | −5.26 × 10−16 | 100.000 | ||||||
12 | −3.19 × 10−16 | −2.66 × 10−15 | 100.000 |
Rotated Component Matrix | |||
---|---|---|---|
Component | |||
1 | 2 | 3 | |
K | 0.903 | 0.104 | −0.191 |
Ca | 0.892 | 0.091 | −0.222 |
TDS | 0.862 | 0.122 | −0.368 |
SO4 | 0.845 | −0.316 | 0.063 |
pH | −0.785 | 0.299 | −0.272 |
Mg | 0.735 | 0.250 | 0.303 |
HCO3 | 0.025 | −0.878 | 0.165 |
F | −0.163 | −0.024 | 0.230 |
Na | −0.354 | −0.789 | 0.272 |
NO3 | 0.130 | 0.866 | 0.316 |
Cl | 0.174 | 0.386 | −0.723 |
TH | −0.170 | 0.508 | 0.650 |
Total Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 4.390 | 36.583 | 36.583 | 4.390 | 36.583 | 36.583 | 3.776 | 31.466 | 31.466 |
2 | 3.367 | 28.057 | 64.640 | 3.367 | 28.057 | 64.640 | 3.239 | 26.995 | 58.462 |
3 | 1.548 | 12.902 | 77.542 | 1.548 | 12.902 | 77.542 | 1.984 | 16.530 | 74.991 |
4 | 1.252 | 10.435 | 87.976 | 1.252 | 10.435 | 87.976 | 1.558 | 12.985 | 87.976 |
5 | 0.610 | 5.086 | 93.062 | ||||||
6 | 0.469 | 3.910 | 96.972 | ||||||
7 | 0.246 | 2.050 | 99.022 | ||||||
8 | 0.117 | 0.978 | 100.000 | ||||||
9 | 9.50 × 10−17 | 7.92 × 10−16 | 100.000 | ||||||
10 | −6.85 × 10−17 | −5.71 × 10−16 | 100.000 | ||||||
11 | −1.63 × 10−16 | −1.36 × 10−15 | 100.000 | ||||||
12 | −1.23 × 10−15 | −1.02 × 10−14 | 100.000 |
Rotated Component Matrix | ||||
---|---|---|---|---|
Component | ||||
1 | 2 | 3 | 4 | |
Mg | 0.909 | −0.093 | −0.276 | −0.064 |
Cl | 0.763 | −0.174 | 0.416 | 0.162 |
NO3 | −0.763 | −0.327 | 0.073 | 0.189 |
TH | 0.738 | −0.080 | 0.649 | −0.040 |
Ca | 0.708 | 0.581 | 0.041 | −0.203 |
TDS | −0.020 | 0.971 | −0.153 | −0.171 |
pH | −0.249 | 0.928 | −0.189 | −0.131 |
K | −0.415 | −0.867 | 0.036 | −0.065 |
HCO3 | −0.006 | −0.089 | 0.905 | −0.117 |
Na | 0.288 | 0.372 | −0.635 | −0.422 |
SO4 | −0.229 | −0.209 | 0.030 | 0.871 |
F | 0.607 | 0.076 | −0.149 | 0.669 |
Total Variance Explained | |||||||||
---|---|---|---|---|---|---|---|---|---|
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 5.647 | 47.059 | 47.059 | 5.647 | 47.059 | 47.059 | 5.089 | 42.405 | 42.405 |
2 | 3.353 | 27.945 | 75.004 | 3.353 | 27.945 | 75.004 | 3.786 | 31.552 | 73.957 |
3 | 1.949 | 16.239 | 91.242 | 1.949 | 16.239 | 91.242 | 2.074 | 17.285 | 91.242 |
4 | 0.911 | 7.590 | 98.832 | ||||||
5 | 0.140 | 1.168 | 100.000 | ||||||
6 | 6.63 × 10−16 | 5.53 × 10−15 | 100.000 | ||||||
7 | 4.18 × 10−16 | 3.48 × 10−15 | 100.000 | ||||||
8 | 9.08 × 10−17 | 7.57 × 10−16 | 100.000 | ||||||
9 | 4.68 × 10−17 | 3.90 × 10−16 | 100.000 | ||||||
10 | −5.90 × 10−17 | −4.91 × 10−16 | 100.000 | ||||||
11 | −2.94 × 10−16 | −2.45 × 10−15 | 100.000 | ||||||
12 | −5.61 × 10−16 | −4.67 × 10−15 | 100.000 |
Rotated Component Matrix | |||
---|---|---|---|
Component | |||
1 | 2 | 3 | |
NO3 | 0.974 | 0.202 | −0.036 |
Mg | −0.972 | 0.068 | −0.088 |
Na | 0.968 | 0.026 | −0.065 |
Ca | −0.957 | −0.028 | −0.035 |
Cl | 0.705 | 0.414 | 0.565 |
F | −0.691 | 0.395 | −0.103 |
pH | −0.217 | −0.949 | −0.189 |
TDS | 0.280 | 0.943 | 0.128 |
K | 0.272 | 0.884 | 0.077 |
HCO3 | 0.036 | 0.841 | 0.125 |
TH | 0.260 | −0.200 | 0.927 |
SO4 | 0.318 | −0.308 | −0.892 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tharmar, E.; Abraham, M.; Prakash, R.; Sundaram, A.; Flores, E.S.; Canales, C.; Alam, M.A. Hydrogeochemistry and Water Quality Assessment in the Thamirabarani River Stretch by Applying GIS and PCA Techniques. Sustainability 2022, 14, 16368. https://doi.org/10.3390/su142416368
Tharmar E, Abraham M, Prakash R, Sundaram A, Flores ES, Canales C, Alam MA. Hydrogeochemistry and Water Quality Assessment in the Thamirabarani River Stretch by Applying GIS and PCA Techniques. Sustainability. 2022; 14(24):16368. https://doi.org/10.3390/su142416368
Chicago/Turabian StyleTharmar, Esakkimuthu, Marykutty Abraham, Ramaiah Prakash, Akila Sundaram, Erick Saavedra Flores, Cristian Canales, and Mohammad Ayaz Alam. 2022. "Hydrogeochemistry and Water Quality Assessment in the Thamirabarani River Stretch by Applying GIS and PCA Techniques" Sustainability 14, no. 24: 16368. https://doi.org/10.3390/su142416368
APA StyleTharmar, E., Abraham, M., Prakash, R., Sundaram, A., Flores, E. S., Canales, C., & Alam, M. A. (2022). Hydrogeochemistry and Water Quality Assessment in the Thamirabarani River Stretch by Applying GIS and PCA Techniques. Sustainability, 14(24), 16368. https://doi.org/10.3390/su142416368