Wastewater Treatment Performance of Aerated Lagoons, Activated Sludge and Constructed Wetlands under an Arid Algerian Climate
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Presentation of Studied Wastewater Treatment Plants
2.3. Data Collection and Analysis
2.4. Data Analyses Tools
3. Results
3.1. Characterization of Influent
3.2. Biological Oxygen Demand (BOD5)
3.3. Chemical Oxygen Demand (COD)
3.4. Suspended Solids
3.5. Nitrogen and Phosphorus Pollution
- Nitrite
- b.
- Nitrate
- c.
- Orthophosphate
4. General Discussion
4.1. Characteristics of the Raw Influent
4.2. Physical (SS) and Biological (BOD5, COD) Pollution Parameters
4.3. Nitrogen Pollution
4.4. Phosphorus Pollution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belksier, M.S.; Chaab, S.; Abour, F. Qualité hydro chimique des eaux de la nappe superficielle dans la région de l’Oued Righ et évaluation de sa vulnérabilité à la pollution. Rev. Sci. Technol. Synth. 2016, 32, 42–57. [Google Scholar]
- Khechana, S.; Derradji, F.; Derouiche, A. La gestion intégrée des ressources en eau dans la vallée d’Oued-Souf (SE Algérien): Enjeux d’adaptation d’une nouvelle stratégie. Rev. Sci. Fondam. Appl. 2010, 2, 22–36. [Google Scholar]
- Besbes, M.; Abdous, B.; Abidi, B.; Ayed, A.; Bachta, M.; Babasy, M.; Baccar, B.B.; el Batti, D.; Salah, Y.B.; Charreton, M.B.; et al. Système Aquifère du Sahara Septentrional, gestion commune d’un bassin transfrontière. Houille Blanche 2003, 89, 128–133. [Google Scholar] [CrossRef]
- Idder, T.; Idder, A.; Cheloufi, H.; Benzida, A.; Khemis, R.; Moguedet, G. La surexploitation des ressources hydriques au Sahara algérien et ses conséquences sur l’environnement. Un cas typique: L’oasis de Ouargla (Sahara septentrional). Tech. Sci. Méthodes 2013, 5, 31–39. [Google Scholar] [CrossRef]
- Sofiane, S.; Bachi, O.E.K.; Yamina, G. Etude de la Qualité Physico-chimique des Eaux de la Nappe Phréatique de la Région de Ouargla (Sahara Septentrional de L’Algérie). Tunis. J. Med. Plants Nat. Prod. 2013, 9, 44–48. [Google Scholar]
- Idder, T. 2007. Le problème des excédents hydriques à Ouargla: Situation actuelle et perspectives d’amélioration. Sécheresse 2007, 18, 161–167. [Google Scholar]
- Amiri, K.; Bekkari, N.; Débbakh, A.; Benmalek, A.; Bouchahm, N. Caractérisation des eaux usées des rejets domestiques de la ville de Touggourt (Algérie). J. Algér. Rég. Arid. 2017, 14, 104–108. [Google Scholar]
- Bouznad, I.; Zouini, D.; Nouiri, I.; Khelfaoui, F. Essai de Modélisation de la Gestion des ressources en eau dans la vallée d’Oued Righ (Sahara septentrional algérien) par l’Utilisation d’un outil d’aide à la décision WEAP. Rev. Sci. Technol. Synth. 2016, 33, 56–71. [Google Scholar]
- Saggaï, S.; Bachi, O.E.K.; Saggaï, A. Effect of quality of phreatic aquifer water and water upwelling on constructions. A case study of Ouargla. AIP Conf. Proc. 2016, 1758, 030026. [Google Scholar] [CrossRef]
- Remini, B.; Kechad, R. Impact of the water table razing on the degradation of El Oued palm plantation (Algeria) mechanisms and solutions. Geogr. Tech. 2011, 1, 48–56. [Google Scholar]
- Zajda, M.; Aleksander-Kwaterczak, U. Wastewater Treatment Methods for Effluents from the Confectionery Industry—An Overview. J. Ecol. Eng. 2019, 20, 293–304. [Google Scholar] [CrossRef]
- Ahammad, S.Z.; Graham, D.W.; Dolfing, J. Encyclopedia of Environmental Management. In Wastewater Treatment: Biological; IWA Publishing: London, UK, 2013; pp. 2645–2656. [Google Scholar]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour. Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Hernandez Leal, L.; Temmink, H.; Zeeman, G.; Buisman, C. Comparison of three systems for biological greywater treatment. Water 2010, 2, 155–169. [Google Scholar] [CrossRef]
- Boutin, C. Eléments de comparaison techniques et économiques des filières d’épuration adaptées aux petites collectivités. Ingénieries Eau. Agric. Territ. 2003, 34, 47–55. [Google Scholar]
- Jung, C.G.; Fontana, A.; Cretenot, D.; Belkhodja, M. Traitement des boues d’épuration: Comparaison entre les procédés par oxydation par voie humide et par incinération. L’Eau L’industrie Les. Nuis. 2002, 249, 49–53. [Google Scholar]
- Kibi, N.; Sasseville, J.L.; Martel, J.M.; Blais, J.F. Choix multicritère de procédés d’épuration des eaux usées municipales. Rev. Sci. L’eau/J. Water Sci. 2000, 13, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Bachi, O.E.K.; Halilata, M.T.; Bissati, S. Etude comparative de deux techniques d’épuration des eaux usées sous un milieu aride (lagunage aéré et phyto-épuration) Cas de la wilaya de Ouargla. Rev. BioRessour. 2016, 6, 125–138. [Google Scholar] [CrossRef]
- Bachi, O.E.K.; Halilata, M.T.; Bissati, S. Sewage in Algerian Oasis: Comparison of the purifying efficiency of two processes (WWTP and WWTAS). Energy Procedia 2015, 74, 752–759. [Google Scholar] [CrossRef] [Green Version]
- De Martonne, E. Aréisme et Indice d’aridité. In Comptes Rendus de L’Academy of Science; Wikipedia: Paris, France, 1926; pp. 1395–1398. [Google Scholar]
- Tradat, M.H. Chimie Des Eaux; Première, le Griffon D’argile Inc.: Sainte-Foy, QC, Canada, 1992; 537p. [Google Scholar]
- Rejsek, F. Analyse Des Eaux Aspects Réglementaires et Techniques; CRDP: Aquitaine, France, 2002; 358p. [Google Scholar]
- Clair, N.S.; Perry, L.M.; Gene, F.P. Chemistry for Environmental Engineering and Science, 5th ed.; McGraw-Hill Companies Inc.: New York, NY, USA, 2003; 233p. [Google Scholar]
- FAO. L’irrigation Avec Des Eaux Usées Traitées: Manuel D’utilisation; University of Liège: Liège, Belgium, 2003; 73p. [Google Scholar]
- JORA. Norms of the rejected treated wastewater. Annex. Alger. Repub. Off. J. 1993, 46, 7. [Google Scholar]
- WHO. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture; Technical report, No. 778; World health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- JORA. Maximum limit values for substance content harmful effects of non-domestic wastewater when they are released into a network public sewer or in a wastewater treatment plant. Annex. Alger. Repub. Off. J. 2009, 36, 18. [Google Scholar]
- Metcalf and Eddy, Inc. Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed.; McGraw-Hill, Inc.: Singapore, 1991. [Google Scholar]
- Ashley, R.; Hvitved-Jacobsen, T.; Krajewski, J.L.B. Quo vadis sewer process modeling? Water Sci. Technol. 1999, 39, 9–22. [Google Scholar] [CrossRef]
- Klimiuk, E.; Łebkowska, M. Biotechnologia w Ochronie Środowiska; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008. [Google Scholar]
- Ekama, G.A.; Wenzel, M.C. Denitrification kinetics in biological N and P removal acti-vated sludge systems treating municipal wastewater. Water Sci. Technol. 1999, 39, 69–77. [Google Scholar] [CrossRef]
- Hamid, C.; El Watik, L.; Ramchoun, Y.; Fathallah, R.; Ayyach, A.; Fathallah, Z.; El Midaoui, A.; Hbaiz, E. Étude des performances épuratoires de la technique du lagunage aéré appliquée à la station d’épuration de la ville d’Errachidia—Maroc. Afr. Sci. 2014, 10, 173–183. [Google Scholar]
- Maiga, A.H.; Konate, Y.; Wethe, J.; Denyigba, K.; Zoungrana, D.; Togola, L. Performances épuratoires d’une filière de trois bassins en série de lagunage à microphytes sous climat sahélien: Cas de la station de traitement des eaux usées de 21E (groupe EIER-ETSHER). Rev. Sci. L’eau/J. Water Sci. 2008, 21, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Hamaidi-Chergui, F.; Zoubiri, A.F.; Hamaidi, M.S.; Debib, A.; Kais, H. Evaluation de l’efficacité de la station d’épuration de Médéa (Algérie). Larhyss J. 2016, 26, 113–128. [Google Scholar]
- Tahri, M.; Larif, M.; Quabli, H.; Taky, M.; Elamrani, M.; El Midaoui, A.; Benazouz, K.; Khimani, M. Étude et suivi des performances des traitements primaire et secondaire des eaux usées de la station d’épuration de Marrakech. Eur. Sci. J. 2015, 11, 139–154. [Google Scholar]
- Obaid, H.A.; Shahid, S.; Basim, K.N.; Chelliapan, S. Modeling of wastewater quality in an urban area during festival and rainy days. Water Sci. Technol. 2015, 72, 1029–1042. [Google Scholar] [CrossRef]
- Von Sperling, M.; de LemosChernicharo, C.A. Biological Wastewater Treatment in Warm Climate Regions; IWA Publishing: Padstow, UK, 2005; Volume II, pp. 839–1460. [Google Scholar]
- Musy, A.; Higy, C. Hydrologie: Une Science de la Nature; PPUR Presses Polytechniques: Lausanne, Switzerland, 2004; 314p. [Google Scholar]
- Livingstone, D.M.; Lotter, A.F. The relationship between air and water temperatures in lakes of the Swiss Plateau: A case study with palæolimnological implications. J. Paleolimnol. 1998, 19, 181–198. [Google Scholar] [CrossRef]
- Preud’homme, E.B.; Stefan, H.G. Relationship between Water Temperatures and Air Temperatures for Central, U.S. Streams; Project Report No. 333. ST; Anthony Falls Hydraulic Laboratory, University of Minnesota: St. Paul, MI, USA, 1992. [Google Scholar]
- Walczyńska, A.; Sobczyk, Ł. The underestimated role of temperature–oxygen relationship in large-scale studies on size to temperature response. Ecol. Evol. 2017, 7, 7434–7441. [Google Scholar] [CrossRef]
- Harvey, R.; Lye, L.; Khan, A.; Paterson, R. The Influence of Air Temperature on Water Temperature and the Concentration of Dissolved Oxygen in Newfoundland Rivers. Can. Water Resour. J. 2011, 36, 171–192. [Google Scholar] [CrossRef]
- Anonyme. La dynamique de la vie. L’eau support de la vie. L’oxygène de l’eau. Cahier indicateurs N° 1. Loire Estuaire Cellule de Mesures et de Bilans. 2002. Available online: https://www.loire-estuaire.org/upload/iedit/1/pj/43684_2860_CMB_206106_L2A1.pdf (accessed on 25 August 2022).
- Moatar, F.; Poirel, A.; Obled, C. Analyse de séries temporelles de mesures de l’oxygène dissous et du pH sur la Loire au niveau du site nucléaire de Dampierre (Loiret): 1. Compréhension des variations temporelles des teneurs en oxygène dissous et du pH en relation avec des données hydrométéorologiques. Hydroécol. Appl. 1999, 11, 127–151. [Google Scholar]
- Andreoni, V. Anaerobic Digestion of Swine Slurry and agro-industrial Wastes in fixed bed up–flow digesters. In Proceedings of the Symposium, Nice, France, 19–21 June 1989; pp. 4–6, Technical Advances in Biofilm Reactor. [Google Scholar]
- Boyd, E.C.; Teichert-Coddington, D. Relationship between wind speed and reaeration in small aquaculture ponds. Aquac. Eng. 1992, 11, 121–131. [Google Scholar] [CrossRef]
- Yu, S.L.; Hamrick, J.M.; Lee, D. Wind Effects on Air-Water Oxygen Transfer in a Lake. In Gas Transfer at Water Surfaces; Brutsaert, W., Jirka, G.H., Eds.; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 1984; Volume 2. [Google Scholar]
- Sprynskyy, M.; Lebedynets, M.; Zbytniewski, R.; Namieśnik, J.; Buszewski, B. Ammonium removal from aqueous solution by natural zeolite, Transcarpathianmordenite, kinetics, equilibrium and column tests. Sep. Purif. Technol. 2005, 46, 155–160. [Google Scholar] [CrossRef]
- Eriksson, E.; Auffarth, K.; Henze, M.; Ledin, A. Characteristics of grey wastewater. Urban Water 2002, 4, 85–104. [Google Scholar] [CrossRef]
- Koller, E. Traitement Des Pollutions Industrielles. Eau–Air–Déchêts–Sols–Boues; Dunod: Paris, France, 2004; 424p. [Google Scholar]
- Argilier, C.; Augeard, B.; Baudoin, J.M.; Poulain, P.B.; Beaujeu, G.; Bellier, J.; Benhassen, F.; Bolzan, D.; Bouligand, S.; Bourrain, X.; et al. Guide Technique Relatif à L’évaluation de L’état Des Eaux de Surface Continentales (Cours D’eau, Canaux, Plans D’eau); L’Institut National de Recherche en Sciences et Technologies pour L’Environnement et L’Agriculture: Irstea, France, 2016; 106p. [Google Scholar]
- CEAEQ. Détermination Des Nitrates et Des Nitrites: Méthode Colorimétrique Automatisée Avec le Sulfate D’hydrazine et le N.E.D.; MA. 300–NO3 2.0; Rév. 2 Centre d’Expertise en Analyse Environnementale du Québec; Ministère du Développement Durable, de l’Environnement et de la Lutte Contre Les Changements Climatiques: Quebec City, QC, Canada, 2014; 13p. [Google Scholar]
- Deronzier, G.; Schétrite, S.; Racault, Y.; Canler, J.P.; Liénard, A.; Héduit, A.; Duchène, P. Traitement de L’azote Dans Les Stations D’épuration Biologique Des Petites Collectivités: Le Document Technique FNDAE n° 25; Cemagref Éditions: Grenoble, France, 2001; 79p. [Google Scholar]
- Da-Riz, V.; Guillard, A.S. Nitrites et nitrates dans les produits alimentaires: Le point sur la normalisation. Bull. Liaison CTSCCV 2000, 10, 403–412. [Google Scholar]
- Villebrun, J.F. La Déphosphatation Biologique Appliquée à la Station d’épuration de Craon. Rapport de la DDAF de la Mayenne. 1989.
- CEAEQ. Détermination Des Orthophosphates Dans L’eau: Méthode Colorimétrique Automatisée à L’acide Ascorbique; MA. 303–P 1.1, Rév. 2; Centre d’Expertise en Analyse Environnementale du Québec, Ministère du Développement durable, de l’Environnement et de la Lutte Contre les Changements Climatiques: Quebec City, QC, Canada, 2016; 11p. [Google Scholar]
- Deronzier, G.; Choubert, J.M. Traitement du phosphore dans les petites stations d’épuration à boues activées Comparaisons techniques et économiques des voies de traitement biologique et physico-chimique. FNDAE n° 29, 1er édition coordonnée par le Cemagref. Doc. Tech. FNDAE 2004, 29. Available online: http://www.fndae.fr/documentation/PDF/Fndae29_a.pdf (accessed on 25 August 2022).
Pollution Parameters | Test Methods |
---|---|
BOD5 (mg/L) | Standard Methods for the Examination of Water and Wastewater. File 5210B |
COD (mg/L) | Standard Methods for the Examination of Water and Wastewater. File 5220B |
SS (mg/L) | Standard Methods for the Examination of Water and Wastewater. File 2540D |
Nitrogen (Nitrite) (mg/L) | United States Environmental Protection Agency (USEPA) Diazotization Method Federal Register, 44(85), 25,505, 0.002 to 0.300 mg/L NO2−-N by Spectrophotometer |
Nitrogen (Nitrate) (mg/L) | UV Screening Method Adapted from Standard Methods for the Examination of Water and Wastewater’ Published by the American Public Health Association APHA Standard, Part 4500-NO3–B, 0.1 to 10.0 mg/L NO3−-N by Spectrophotometer |
Phosphorus (Orthophosphate) (mg/L) | USEPA PhosVer 3 Standard Procedure is Equivalent to USEPA and Standard Method 4500-P-E for Wastewater, 0.02 to 2.50 mg/L PO43– by Spectrophotometer |
Sum of Squares | Df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 1394.048 | 2 | 697.024 | 39.999 | 0.000 |
Within Groups | 365.950 | 21 | 17.426 | ||
Total | 1759.998 | 23 |
(I) Station | (J) Station | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
AL (OGX) | AS (TGR) | −16.94125 * | 2.08723 | 0.000 | −21.2819 | −12.6006 |
PB (TMC) | −15.26250 * | 2.08723 | 0.000 | −19.6031 | −10.9219 | |
AS (TGR) | AL (OGX) | 16.94125 * | 2.08723 | 0.000 | 12.6006 | 21.2819 |
PB (TMC) | 1.67875 | 2.08723 | 0.430 | −2.6619 | 6.0194 | |
PB (TMC) | AL (OGX) | 15.26250 * | 2.08723 | 0.000 | 10.9219 | 19.6031 |
AS (TGR) | −1.67875 | 2.08723 | 0.430 | −6.0194 | 2.6619 |
Sum of Squares | Df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 2321.320 | 2 | 1160.660 | 71.867 | 0.000 |
Within Groups | 339.154 | 21 | 16.150 | ||
Total | 2660.475 | 23 |
(I) Station | (J) Station | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
AL (OGX) | AS (TGR) | −21.33125 * | 2.00937 | 0.000 | −25.5100 | −17.1525 |
PB (TMC) | −20.36000 * | 2.00937 | 0.000 | −24.5387 | −16.1813 | |
AS (TGR) | AL (OGX) | 21.33125 * | 2.00937 | 0.000 | 17.1525 | 25.5100 |
PB (TMC) | 0.97125 | 2.00937 | 0.634 | −3.2075 | 5.1500 | |
PB (TMC) | AL (OGX) | 20.36000 * | 2.00937 | 0.000 | 16.1813 | 24.5387 |
AS (TGR) | −0.97125 | 2.00937 | 0.634 | −5.1500 | 3.2075 |
Sum of Squares | Df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between Groups | 9310.668 | 2 | 4655.334 | 122.649 | 0.000 |
Within Groups | 797.089 | 21 | 37.957 | ||
Total | 10,107.757 | 23 |
(I) Station | (J) Station | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
AL (OGX) | AS (TGR) | −43.23250 * | 3.08045 | 0.000 | −49.6386 | −36.8264 |
PB (TMC) | −40.16250 * | 3.08045 | 0.000 | −46.5686 | −33.7564 | |
AS (TGR) | AL (OGX) | 43.23250 * | 3.08045 | 0.000 | 36.8264 | 49.6386 |
PB (TMC) | 3.07000 | 3.08045 | 0.330 | −3.3361 | 9.4761 | |
PB (TMC) | AL (OGX) | 40.16250 * | 3.08045 | 0.000 | 33.7564 | 46.5686 |
AS (TGR) | −3.07000 | 3.08045 | 0.330 | −9.4761 | 3.3361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachi, O.E.; Halilat, M.T.; Bissati, S.; Al-Ansari, N.; Saggai, S.; Kouadri, S.; Najm, H.M. Wastewater Treatment Performance of Aerated Lagoons, Activated Sludge and Constructed Wetlands under an Arid Algerian Climate. Sustainability 2022, 14, 16503. https://doi.org/10.3390/su142416503
Bachi OE, Halilat MT, Bissati S, Al-Ansari N, Saggai S, Kouadri S, Najm HM. Wastewater Treatment Performance of Aerated Lagoons, Activated Sludge and Constructed Wetlands under an Arid Algerian Climate. Sustainability. 2022; 14(24):16503. https://doi.org/10.3390/su142416503
Chicago/Turabian StyleBachi, Oum Elkheir, Mohammed Tahar Halilat, Samia Bissati, Nadhir Al-Ansari, Sofiane Saggai, Saber Kouadri, and Hadee Mohammed Najm. 2022. "Wastewater Treatment Performance of Aerated Lagoons, Activated Sludge and Constructed Wetlands under an Arid Algerian Climate" Sustainability 14, no. 24: 16503. https://doi.org/10.3390/su142416503
APA StyleBachi, O. E., Halilat, M. T., Bissati, S., Al-Ansari, N., Saggai, S., Kouadri, S., & Najm, H. M. (2022). Wastewater Treatment Performance of Aerated Lagoons, Activated Sludge and Constructed Wetlands under an Arid Algerian Climate. Sustainability, 14(24), 16503. https://doi.org/10.3390/su142416503