Influence of Recycling Agents Addition Methods on Asphalt Mixtures Properties Containing Reclaimed Asphalt Pavement (RAP)
Abstract
:1. Introduction
Study Objectives
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Binder
2.1.2. Aggregate
2.1.3. Recycling Agents (RAs)
2.2. Methodology
2.2.1. Experimental Plan
2.2.2. Mix Design
2.2.3. Sample Preparation
2.2.4. Testing Program
Hamburg Wheel Tracking (HWT) Test
Semi-Circular Bending (SCB) Test
Indirect Tensile Strength (ITS) Test
3. Results and Discussion
3.1. Hamburg Wheel Tracking (HWT) Test Results
3.2. Semi-Circular Bending (SCB) Test Results
3.2.1. Intermediate-Temperature Cracking
3.2.2. Low-Temperature Cracking
3.3. Indirect Tensile Strength (ITS) Test Results
3.4. Statistical Analysis
4. More Discussion on the Results
5. Conclusions
- -
- Adding RAP material stiffens the asphalt mixtures, and using RAs compensates for the stiffening effect of the RAP materials. Therefore, the rut depth is decreased by adding RAP and using RAs to increase the rut depth.
- -
- Increasing the RAP content results in a substantial reduction in the crack resistance of asphalt mixtures at intermediate temperatures. Using RAs improves the cracking resistance of the mixtures; however, the effectiveness of the RAs depends on their location.
- -
- The wet and dry ITS test results showed that the moisture resistance of the mixtures does not change significantly by changing the location of the RA. The results show that all TSR values are higher than the acceptable threshold (80%).
- -
- Based on the study results, the best location for adding the RAs highly depends on the RA type. The results of all tests of this study show that the best place for adding the vegetable, paraffinic and aromatic extract oils in terms are in the final mixture, virgin binder, and in the RAP, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, B.; Gu, X.; Wu, M.; Ni, F. Application of a high percentage of reclaimed asphalt pavement in an asphalt mixture: Blending process and performance investigation. Road Mater. Pavement Des. 2017, 18, 753–765. [Google Scholar] [CrossRef]
- Zaumanis, M.; Boesiger, L.; Kunz, B.; Cavalli, M.C.; Poulikakos, L. Determining optimum rejuvenator addition location in asphalt production plant. Constr. Build. Mater. 2019, 198, 368–378. [Google Scholar] [CrossRef]
- Zaumanis, M.; Cavalli, M.C.; Poulikakos, L.D. Effect of rejuvenator addition location in plant on mechanical and chemical properties of RAP binder. Int. J. Pavement Eng. 2020, 21, 507–515. [Google Scholar] [CrossRef]
- Martin, A.E.; Kaseer, F.; Arambula-Mercado, E.; Bajaj, A.; Cucalon, L.G.; Yin, F.; Chowdhury, A.; Epps, J.; Glover, C.; Hajj, E.; et al. Evaluating the effects of recycling agents on asphalt mixtures with high RAS and RAP binder ratios. NCHRP Res. Rep. 2020, 927. Available online: https://nap.nationalacademies.org/catalog/25749/evaluating-the-effects-of-recycling-agents-on-asphalt-mixtures-with-high-ras-and-rap-binder-ratios (accessed on 1 December 2022).
- Xie, Z.; Rizvi, H.; Purdy, C.; Ali, A.; Mehta, Y. Effect of rejuvenator types and mixing procedures on volumetric properties of asphalt mixtures with 50% RAP. Constr. Build. Mater. 2019, 218, 457–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Bahia, H.U. Extended aging performance of high RAP mixtures and the role of softening oils. Int. J. Pavement Eng. 2022, 23, 2773–2784. [Google Scholar] [CrossRef]
- Xie, Z.; Tran, N.; Taylor, A.J.; Turnera, P. Laboratory evaluation of effect of addition methods of rejuvenators on properties of recycled asphalt mixtures. J. Mater. Civ. Eng. 2020, 32, 4020101. [Google Scholar] [CrossRef]
- Rathore, M.; Zaumanis, M. Impact of laboratory mixing procedure on the properties of reclaimed asphalt pavement mixtures. Constr. Build. Mater. 2020, 264, 120709. [Google Scholar] [CrossRef]
- Kaseer, F.; Arámbula-Mercado, E.; Martin, A.E. A method to quantify reclaimed asphalt pavement binder availability (effective RAP binder) in recycled asphalt mixes. Transp. Res. Rec. 2019, 2673, 205–216. [Google Scholar] [CrossRef]
- Haghshenas, H.; Nsengiyumva, G.; Kim, Y.R.; Santosh, K.; Amelian, S. Research on High-RAP Asphalt Mixtures with Rejuvenators-Phase II. In Nebraska Department of Transportation Research Reports; University of Nebraska-Lincoln: Lincoln, NE, USA, 2019; Volume 217. [Google Scholar]
- Saleh, M.; Nguyen, N.H. Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content. Constr. Build. Mater. 2019, 197, 792–802. [Google Scholar]
- ASTM-D70; Standard Test Method for Specific Gravity and Density of Semi-Solid Bituminous Materials (Pycnometer Method). American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM-D5; Standard Test Method for Penetration of Bituminous Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.
- ASTM-D36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- ASTM-D1754; Standard Test Method for Effect of Heat and Air on Asphaltic Materials (Thin-Film Oven Test). American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- ASTM-D113; Standard Test Method for Ductility of Asphalt Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- ASTM-D92; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- AASHTO-T316; Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2019.
- ASTM-C127; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- ASTM-C128; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- ASTM-C131; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- ASTM-D5821; Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- AASHTO-T176; Standard method of test for plastic fines in graded aggregates and soils by use of the sand equivalent test. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2008.
- ASTM-D445; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM-D1298; Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- AASHTO-T164; Standard Method of Test for Quantitative Extraction of Asphalt Binder from Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2014.
- ASTM-D5404; Standard Practice for Recovery of Asphalt from Solution Using the Rotary Evaporator. American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- ASTM-D1856; Standard Test Method for Recovery of Asphalt from Solution by Abson Method. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- AASHTO-M323; Standard Specification for Superpave Volumetric Mix Design. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017.
- AASHTO-R35; Standard Practice for Superpave Volumetric Design for Asphalt Mixtures. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015.
- AASHTO-T308; Standard Method of Test for Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016.
- AASHTO-R30; Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015.
- Al-Qadi, I.L.; Ozer, H.; Zhu, Z.; Singhvi, P.; Ali, U.M.; Sawalha, M.; Luque, A.F.E.; Mainieri, J.J.G. Development of Long-Term Aging Protocol for Implementation of the Illinois Flexibility Index Test (I-FIT); FHWA-ICT-19-009; Illinois Center for Transportation/Illinois Department of Transportation: Urbana, IL, USA, 2019. [Google Scholar]
- AASHTO-T283; Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2014.
- AASHTO-T324; Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017.
- AASHTO-TP124; Standard Method of Test for Determining the Fracture Potential of Asphalt Mixtures Using Semicircular Bend Geometry (SCB) at Intermediate Temperature. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016.
- Al-Qadi, I.L.; Ozer, H.; Lambros, J.; El Khatib, A.; Singhvi, P.; Khan, T.; Rivera-Perez, J.; Doll, B. Testing Protocols to Ensure Performance of High Asphalt Binder Replacement Mixes Using RAP and RAS; Research Report No. FHWA-ICT-15-017; Illinois Center for Transportation/Illinois Department of Transportation: Urbana, IL, USA, 2015. [Google Scholar]
- Zhang, Y.; Bahia, H.U. Effects of recycling agents (RAs) on rutting resistance and moisture susceptibility of mixtures with high RAP/RAS content. Constr. Build. Mater. 2021, 270, 121369. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Y. Study of rejuvenators dynamic diffusion behavior into aged asphalt and its effects. Constr. Build. Mater. 2020, 261, 120673. [Google Scholar] [CrossRef]
- Haghshenas, H.F.; Fini, E.; Rea, R.; Khodaii, A. Increasing the efficacy of recycling agents with simultaneous addition of zinc diethyldithiocarbamate as an antioxidant. Constr. Build. Mater. 2021, 271, 121892. [Google Scholar] [CrossRef]
- Haghshenas, H.F.; Rea, R.; Fini, E.; Reinke, G.; Zaumanis, M. Relationship between colloidal index and chemo-rheological properties of asphalt binders modified by various recycling agents. Constr. Build. Mater. 2022, 318, 126161. [Google Scholar] [CrossRef]
- Zhou, Z.; Gu, X.; Dong, Q.; Ni, F.; Jiang, Y. Investigation of the oxidation ageing of RAP asphalt blend binders and mixtures. Int. J. Pavement Eng. 2022, 23, 571–587. [Google Scholar] [CrossRef]
- Nabizadeh, H.; Haghshenas, H.F.; Kim, Y.-R.; Aragão, F.T.S. Effects of rejuvenators on high-RAP mixtures based on laboratory tests of asphalt concrete (AC) mixtures and fine aggregate matrix (FAM) mixtures. Constr. Build. Mater. 2017, 152, 65–73. [Google Scholar] [CrossRef]
- West, R.; Timm, D.; Powell, B.; Tran, N.; Yin, F.; Bowers, B.; Nakhaei, M. NCAT Report PHASE VII (2018–2021) NCAT Test Track Findings; National Center for Asphalt Technology at Auburn University: Auburn, AL, USA, 2021. [Google Scholar]
- Yousefi, A.A.; Sobhi, S.; Aliha, M.M.; Pirmohammad, S.; Haghshenas, H.F. Cracking properties of warm mix asphalts containing reclaimed asphalt pavement and recycling agents under different loading modes. Constr. Build. Mater. 2021, 300, 124130. [Google Scholar] [CrossRef]
- Transportation Research Circulur. Application of Reclaimed Asphalt Pavement and Recycled Asphalt Shingles in Hot Mix Asphalt: National and International Perspectiveson Current Practice; Number-E-C188; Citeseer: State College, PA, USA, 2014. [Google Scholar]
- Moon, K.H.; Cannone Falchetto, A.; Wang, D.; Kim, Y.S. Experimental investigation on fatigue and low temperature properties of asphalt mixtures designed with reclaimed asphalt pavement and taconite aggregate. Transp. Res. Rec. 2019, 2673, 472–484. [Google Scholar] [CrossRef]
- Devulapalli, L.; Kothandaraman, S.; Sarang, G. Evaluation of rejuvenator’s effectiveness on the reclaimed asphalt pavement incorporated stone matrix asphalt mixtures. Constr. Build. Mater. 2019, 224, 909–919. [Google Scholar] [CrossRef]
- Mirhosseini, A.F.; Tahami, S.A.; Hoff, I.; Dessouky, S.; Ho, C.H. Performance evaluation of asphalt mixtures containing high-RAP binder content and bio-oil rejuvenator. Constr. Build. Mater. 2019, 227, 116465. [Google Scholar] [CrossRef]
- Haghshenas, H.F.; Rea, R.; Reinke, G.; Haghshenas, D.F. Chemical Characterization of Recycling Agents. J. Mater. Civ. Eng. 2020, 32, 6020005. [Google Scholar] [CrossRef]
- Haghshenas, H.F.; Rea, R.; Reinke, G.; Yousefi, A.; Haghshenas, D.F.; Ayar, P. Effect of Recycling Agents on the Resistance of Asphalt Binders to Cracking and Moisture Damage. J. Mater. Civ. Eng. 2021, 33, 4021292. [Google Scholar] [CrossRef]
Test | Standard | Results | |
---|---|---|---|
Virgin Binder | RAP Binder | ||
Specific gravity | ASTM D70 [12] | 1.03 | 1.04 |
Penetration (0.1 mm) | ASTM D5 [13] | 66 | 29 |
Softening point (°C) | ASTM D36 [14] | 50 | 61 |
Loss of heating (%) | ASTM D1754 [15] | 0.75 | 0.75 |
Ductility (cm) | ASTM D113 [16] | >100 | 34 |
Flashpoint (°C) | ASTM D92 [17] | 305 | 280 |
Rotational viscosity @135 °C (Pa·s) | AASHTO T316 [18] | 0.360 | 2.783 |
Physical Properties | Standard | Values (%) | Specification Limit (%) | |
---|---|---|---|---|
Virgin Aggregates | RAP Aggregates | |||
Coarse aggregate specific gravity | ASTM C127 [19] | 2.659 | 2.593 | - |
Fine aggregate specific gravity | ASTM C128 [20] | 2.639 | 2.464 | - |
Los Angeles abrasion (%) | ASTM C131 [21] | 21.5 | 23.5 | <30 |
Water absorption (%) | ASTM C128 [20] | 0.7 | 0.8 | <2.5 |
Fractured particles in one face | ASTM D5821 [22] | 98 | 97 | >50 |
Fractured particles in two faces and more | ASTM D5821 [22] | 95 | 94 | >80 |
Sand equivalent | AASHTO T176 [23] | 72 | 69 | >50 |
Property | Standard | RA | ||
---|---|---|---|---|
Vegetable Oil (V) | Paraffinic Oil (P) | Aromatic Extract Oil (A) | ||
Kinematic viscosity at 100 °C (cSt) | ASTM D445 [24] | 15.5 | 13 | 60 |
Flashpoint (°C) | ASTM D92 [17] | 290 | 250 | 300 |
Color | - | Clear yellow | Brown | Dark green |
Specific gravity at 15 °C | ASTM D1298 [25] | 0.925 | 0.900 | 0.995 |
RA ID | RA Type | 75% RAP Binder + 25% Virgin Binder | 50% RAP Binder + 50% Virgin Binder |
---|---|---|---|
V | Vegetable oil | 4.5 | 5.2 |
P | Paraffinic oil | 5.5 | 7.2 |
A | Aromatic extract oil | 9.7 | 12.9 |
Mixture ID | Mixture Composition | OBC | Gmm | Gmb | VMA | VFA | D/B |
---|---|---|---|---|---|---|---|
C | 100% Virgin | 4.91 | 2.484 | 2.385 | 14.37 | 72.16 | 0.89 |
R25 | 75% Virgin + 25% RAP | 5.42 | 2.438 | 2.340 | 15.35 | 73.94 | 0.80 |
R25V-R | 75% Virgin + 25% RAP + V (R) 1 | 5.29 | 2.437 | 2.340 | 15.27 | 73.80 | 0.81 |
R25V-B | 75% Virgin + 25% RAP + V (B) | 5.21 | 2.441 | 2.343 | 15.06 | 73.43 | 0.82 |
R25V-M | 75% Virgin + 25% RAP + V (M) | 5.26 | 2.440 | 2.342 | 15.14 | 73.57 | 0.82 |
R25P-R | 75% Virgin + 25% RAP + P (R) | 5.33 | 2.437 | 2.340 | 15.30 | 73.86 | 0.80 |
R25P-B | 75% Virgin + 25% RAP + P (B) | 5.25 | 2.440 | 2.342 | 15.13 | 73.56 | 0.82 |
R25P-M | 75% Virgin + 25% RAP + P (M) | 5.28 | 2.440 | 2.342 | 15.15 | 73.60 | 0.82 |
R25A-R | 75% Virgin + 25% RAP + A (R) | 5.35 | 2.438 | 2.340 | 15.29 | 73.83 | 0.81 |
R25A-B | 75% Virgin + 25% RAP + A (B) | 5.28 | 2.441 | 2.343 | 15.12 | 73.54 | 0.82 |
R25A-M | 75% Virgin + 25% RAP + A (M) | 5.32 | 2.441 | 2.343 | 15.16 | 73.61 | 0.82 |
R50 | 50% Virgin + 50% RAP | 5.86 | 2.413 | 2.316 | 15.57 | 74.32 | 0.78 |
R50V-R | 50% Virgin + 50% RAP + V (R) | 5.42 | 2.416 | 2.319 | 15.07 | 73.46 | 0.81 |
R50V-B | 50% Virgin + 50% RAP + V (B) | 5.31 | 2.423 | 2.326 | 14.73 | 72.84 | 0.84 |
R50V-M | 50% Virgin + 50% RAP + V (M) | 5.35 | 2.419 | 2.322 | 14.91 | 73.16 | 0.83 |
R50P-R | 50% Virgin + 50% RAP + P (R) | 5.51 | 2.413 | 2.316 | 15.26 | 73.79 | 0.80 |
R50P-B | 50% Virgin + 50% RAP + P (B) | 5.38 | 2.418 | 2.321 | 14.97 | 73.28 | 0.82 |
R50P-M | 50% Virgin + 50% RAP + P (M) | 5.43 | 2.416 | 2.319 | 15.08 | 73.48 | 0.81 |
R50A-R | 50% Virgin + 50% RAP + A (R) | 5.60 | 2.412 | 2.316 | 15.38 | 73.98 | 0.79 |
R50A-B | 50% Virgin + 50% RAP + A (B) | 5.51 | 2.419 | 2.322 | 15.05 | 73.42 | 0.82 |
R50A-M | 50% Virgin + 50% RAP + A (M) | 5.54 | 2.416 | 2.319 | 15.18 | 73.65 | 0.81 |
RA ID | RA Type |
---|---|
Radius (R) | 75 mm |
Thickness (T) | 50 mm |
Noth length (a) | 15 mm |
Noth width (t) | 1.5 mm |
Geometry factors (Yi) | 3.059 |
Distances of span support | 120 mm |
Constant load line displacement at +25 ℃ | 50 mm/min |
Constant load line displacement at −12 ℃ | 0.7 mm/min |
Source | Type III Sum of Squares | Degree of Freedom (df) | Mean Square | F-Values | p-Values |
---|---|---|---|---|---|
(a) RD | |||||
Corrected Model | 130.071 | 20 | 6.504 | 105.983 | 0.000 |
Intercept | 2553.265 | 1 | 2553.265 | 41,608.329 | 0.000 |
RAP | 79.327 | 2 | 39.663 | 646.358 | 0.000 |
RAs | 1.199 | 2 | 0.599 | 9.769 | 0.001 |
location | 3.613 | 2 | 1.807 | 29.439 | 0.000 |
Error | 1.289 | 21 | 0.061 | ||
Total | 2942.826 | 42 | |||
Corrected Total | 131.360 | 41 | |||
R Squared = 0.990 (Adjusted R Squared = 0.981) | |||||
(b) FI | |||||
Corrected Model | 24.380 | 20 | 1.219 | 17.545 | 0.000 |
Intercept | 1013.920 | 1 | 1013.920 | 14,593.106 | 0.000 |
RAP | 16.020 | 2 | 8.010 | 115.286 | 0.000 |
RAs | 0.646 | 2 | 0.323 | 4.647 | 0.015 |
location | 0.481 | 2 | 0.241 | 3.464 | 0.041 |
Error | 2.918 | 42 | 0.069 | ||
Total | 1203.980 | 63 | |||
Corrected Total | 27.299 | 62 | |||
R Squared = 0.860 (Adjusted R Squared = 0.793) | |||||
(c) KI | |||||
Corrected Model | 0.427 | 20 | 0.021 | 32.150 | 0.000 |
Intercept | 21.257 | 1 | 21.257 | 32,037.527 | 0.000 |
RAP | 0.219 | 2 | 0.110 | 165.060 | 0.000 |
RAs | 0.018 | 2 | 0.009 | 13.207 | 0.000 |
location | 0.013 | 2 | 0.006 | 9.691 | 0.000 |
Error | 0.028 | 42 | 0.001 | ||
Total | 27.033 | 63 | |||
Corrected Total | 0.454 | 62 | |||
R Squared = 0.939 (Adjusted R Squared = 0.909) | |||||
(d) Dry ITS | |||||
Corrected Model | 305,844.090 | 20 | 15292.205 | 33.845 | 0.000 |
Intercept | 25,981,777.277 | 1 | 25,981,777.277 | 57,503.065 | 0.000 |
RAP | 179,651.845 | 2 | 89,825.923 | 198.803 | 0.000 |
RAs | 3235.914 | 2 | 1617.957 | 3.581 | 0.037 |
location | 4091.422 | 2 | 2045.711 | 4.528 | 0.017 |
Error | 18,976.982 | 42 | 451.833 | ||
Total | 32,307,920.077 | 63 | |||
Corrected Total | 324,821.072 | 62 | |||
R Squared = 0.942 (Adjusted R Squared = 0.914) | |||||
(e) Wet ITS | |||||
Corrected Model | 171,427.857 | 20 | 8571.393 | 19.447 | 0.000 |
Intercept | 18,665,108.256 | 1 | 18,665,108.256 | 42,346.988 | 0.000 |
RAP | 95,880.956 | 2 | 47,940.478 | 108.766 | 0.000 |
RAs | 9057.862 | 2 | 4528.931 | 10.275 | 0.000 |
location | 3245.562 | 2 | 1622.781 | 3.682 | 0.034 |
Error | 18512.168 | 42 | 440.766 | ||
Total | 23,031,073.211 | 63 | |||
Corrected Total | 189,940.025 | 62 | |||
R Squared = 0.903 (Adjusted R Squared = 0.856) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziari, H.; Hajiloo, M.; Ayar, P. Influence of Recycling Agents Addition Methods on Asphalt Mixtures Properties Containing Reclaimed Asphalt Pavement (RAP). Sustainability 2022, 14, 16717. https://doi.org/10.3390/su142416717
Ziari H, Hajiloo M, Ayar P. Influence of Recycling Agents Addition Methods on Asphalt Mixtures Properties Containing Reclaimed Asphalt Pavement (RAP). Sustainability. 2022; 14(24):16717. https://doi.org/10.3390/su142416717
Chicago/Turabian StyleZiari, Hassan, Mojtaba Hajiloo, and Pooyan Ayar. 2022. "Influence of Recycling Agents Addition Methods on Asphalt Mixtures Properties Containing Reclaimed Asphalt Pavement (RAP)" Sustainability 14, no. 24: 16717. https://doi.org/10.3390/su142416717
APA StyleZiari, H., Hajiloo, M., & Ayar, P. (2022). Influence of Recycling Agents Addition Methods on Asphalt Mixtures Properties Containing Reclaimed Asphalt Pavement (RAP). Sustainability, 14(24), 16717. https://doi.org/10.3390/su142416717