Challenges for a Sustainable Food Supply Chain: A Review on Food Losses and Waste
Abstract
:1. Introduction
2. Quantification of FLW in the European Union (EU)
3. Economic Evaluation and Costs of FLW
4. Environmental Issues
5. Social Implications
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef] [PubMed]
- HLPE. Food losses and waste in the context of sustainable food systems. In A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2014. [Google Scholar]
- Amicarelli, V.; Bux, C. Food waste measurement toward a fair, healthy and environmental-friendly food system: A critical review. Br. Food J. 2020, 123, 2907–2935. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste: Extent, Causes and Prevention; Study Conducted for the International Congress Save Food! at Interpack 2011, [16–17 May], Düsseldorf, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-107205-9. [Google Scholar]
- Corrado, S.; Caldeira, C.; Eriksson, M.; Hanssen, O.J.; Hauser, H.-E.; van Holsteijn, F.; Liu, G.; Östergren, K.; Parry, A.; Secondi, L.; et al. Food waste accounting methodologies: Challenges, opportunities, and further advancements. Glob. Food Secur. 2019, 20, 93–100. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. In Resolution Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015. [Google Scholar]
- FAO. The State of Food and Agriculture 2019. In Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- Ottomano Palmisano, G.; Bottalico, F.; El Bilali, H.; Cardone, G.; Capone, R. Food losses and waste in the context of sustainable food and nutrition security. In Food Security and Nutrition; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–255. ISBN 978-0-12-820521-1. [Google Scholar]
- Pinstrup Andersen, P.; Gitz, V.; Meybeck, A. Food Losses and Waste and the debate on food and nutrition security. In Food Losses and Waste and the Debate on Food and Nutrition Security; Pritchard, B., Ortiz, R., Shekar, M., Eds.; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2016; pp. 283–308. ISBN 978-1-138-34349-8. [Google Scholar]
- Poças Ribeiro, A.; Rok, J.; Harmsen, R.; Rosales Carreón, J.; Worrell, E. Food waste in an alternative food network—A case-study. Resour. Conserv. Recycl. 2019, 149, 210–219. [Google Scholar] [CrossRef]
- Jaiswal, D.K.; Krishna, R.; Chouhan, G.K.; de Araujo Pereira, A.P.; Ade, A.B.; Prakash, S.; Verma, S.K.; Prasad, R.; Yadav, J.; Verma, J.P. Bio-fortification of minerals in crops: Current scenario and future prospects for sustainable agriculture and human health. Plant Growth Regul. 2022, 98, 5–22. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef]
- Drabik, D.; de Gorter, H.; Reynolds, C. A conceptual and empirical framework to analyze the economics of consumer food waste. Resour. Conserv. Recycl. 2019, 149, 500–509. [Google Scholar] [CrossRef]
- FUSIONS. Definitional Framework for Food Waste. Available online: https://www.eu-fusions.org/phocadownload/Publications/FUSIONS%20Definitional%20Framework%20for%20Food%20Waste%202014.pdf (accessed on 20 September 2022).
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, C.; Corrado, S.; Sala, S. Food Waste Accounting Methodologies, Challenges and Opportunities; European Commission; Joint Research Centre: Ispra, Italy, 2017. [Google Scholar]
- Parry, A.; Keith, J.; LeRoux, S. Strategies to Achieve Economic and Environmental Gains by Reducing Food Waste. 2015. Available online: https://newclimateeconomy.report/workingpapers/wp-content/uploads/sites/5/2016/04/WRAP-NCE_Economic-environmental-gains-food-waste.pdf (accessed on 20 June 2022).
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- Lipinski, B.; Hanson, C.; Lomax, J.; Kitinoja, L.; Waite, R.; Searchinger, T. Reducing Food Loss and Waste. 2013. Available online: http://pdf.wri.org/reducing_food_loss_and_waste.pdf (accessed on 1 September 2021).
- European Commission. EUGreenDeal Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Losses, inefficiencies and waste in the global food system. Agric. Syst. 2017, 153, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Otles, S.; Despoudi, S.; Bucatariu, C.; Kartal, C. Food waste management, valorization, and sustainability in the food industry. In Food Waste Recovery; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–23. ISBN 978-0-12-800351-0. [Google Scholar]
- Pfaltzgraff, L.A.; De Bruyn, M.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food waste biomass: A resource for high-value chemicals. Green Chem. 2013, 15, 307. [Google Scholar] [CrossRef]
- Lundqvist, J.; de Fraiture, C.; Molden, D. Saving Water: From Field to Fork Curbing Losses and Wastage in the Food Chain; Stockholm. 2008, p. 67. Available online: https://siwi.org/wp-content/uploads/2015/09/PB_From_Filed_to_fork_2008.pdf (accessed on 20 June 2021).
- Aiello, G.; Enea, M.; Muriana, C. Economic benefits from food recovery at the retail stage: An application to Italian food chains. Waste Manag. 2014, 34, 1306–1316. [Google Scholar] [CrossRef]
- FAO SAVE FOOD: Global Initiative on Food Loss and Waste Reduction Definitional Framework of Food Loss; FAO: Rome, Italy, 2014.
- Kader, A.A. Handling of Horticultural Perishables in Developing vs. Developed Countries. Acta Hortic. 2010, 877, 121–126. [Google Scholar] [CrossRef]
- Monier, V. Preparatory Study on Food Waste Across EU 27; European Commission: Brussels, Belgium, 2010; ISBN 978-92-79-22138-5. [Google Scholar]
- Bräutigam, K.-R.; Jörissen, J.; Priefer, C. The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results. Waste Manag. Res. 2014, 32, 683–694. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- van Holsteijn, F.; Kemna, R. Minimizing food waste by improving storage conditions in household refrigeration. Resour. Conserv. Recycl. 2018, 128, 25–31. [Google Scholar] [CrossRef]
- Hanson, C.; Lipinski, B.; Robertson, K. World Resources Institute (WRI), Food Loss and Waste Accounting and Reporting Standard; 2016. Available online: https://flwprotocol.org/wp-content/uploads/2017/05/FLW_Standard_final_2016.pdf (accessed on 20 June 2022).
- Tostivint, C.; Östergren, K.; Quested, T.; Soethoudt, H.; Stenmarck, Å.; Svanes, E.; O’Connor, C. Food Waste Quantification Manual to Monitor Food Waste Amounts and Progression. 2016. Available online: https://www.eu-fusions.org/phocadownload/Publications/FUSIONS%20Food%20Waste%20Quantification%20Manual.pdf (accessed on 20 April 2022).
- European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 OnWaste and Repealing Certain Directives (Text with EEA Relevance); European Union: Mestreech, The Netherlands, 2008; Volume OJL 312, pp. 3–30. [Google Scholar]
- Segrè, A.; Falasconi, L.; Politano, A.; Vittuari, M. Background Paper on the Economics of Food Loss and Waste. 2014. Available online: https://www.fao.org/3/at143e/at143e.pdf (accessed on 1 June 2022).
- Amicarelli, V.; Bux, C. Food waste in Italian households during the Covid-19 pandemic: A self-reporting approach. Food Secur. 2021, 13, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Dudziak, A.; Stoma, M.; Derkacz, A.J. Circular Economy in the Context of Food Losses and Waste. Sustainability 2022, 14, 10116. [Google Scholar] [CrossRef]
- Campoy-Muñoz, P.; Cardenete, M.A.; Delgado, M.C. Economic impact assessment of food waste reduction on European countries through social accounting matrices. Resour. Conserv. Recycl. 2017, 122, 202–209. [Google Scholar] [CrossRef]
- Porter, S.D.; Reay, D.S.; Higgins, P.; Bomberg, E. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain. Sci. Total Environ. 2016, 571, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, A.; Sánchez, M.V.; Torero, M.; Vos, R. Reducing food loss and waste: Five challenges for policy and research. Food Policy 2021, 98, 101974. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.A.; Siddiki, S.Y.A.; Ahmed, S.F.; Rony, Z.I.; Chowdhury, M.A.K.; Mofijur, M. Estimation of Sustainable Bioenergy Production from Olive Mill Solid Waste. Energies 2021, 14, 7654. [Google Scholar] [CrossRef]
- Annosi, M.C.; Brunetta, F.; Bimbo, F.; Kostoula, M. Digitalization within food supply chains to prevent food waste. Drivers, barriers and collaboration practices. Ind. Mark. Manag. 2021, 93, 208–220. [Google Scholar] [CrossRef]
- Benyam, A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; D’Antuono, I.; Conte, A.; Del Nobile, M.A. Cereal foods fortified with by-products from the olive oil industry. Food Biosci. 2020, 33, 100490. [Google Scholar] [CrossRef]
- Chegere, M.J. Post-harvest losses reduction by small-scale maize farmers: The role of handling practices. Food Policy 2018, 77, 103–115. [Google Scholar] [CrossRef]
- Eriksson, M.; Strid, I.; Hansson, P.-A. Carbon footprint of food waste management options in the waste hierarchy—A Swedish case study. J. Clean. Prod. 2015, 93, 115–125. [Google Scholar] [CrossRef]
- Tonini, D.; Albizzati, P.F.; Astrup, T.F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018, 76, 744–766. [Google Scholar] [CrossRef] [PubMed]
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Wastage Footprint: Impacts on Natural Resources: Summary Report; FAO: Rome, Italy, 2013; p. 63. [Google Scholar]
- Pandey, P.K.; Cao, W.; Biswas, S.; Vaddella, V. A new closed loop heating system for composting of green and food wastes. J. Clean. Prod. 2016, 133, 1252–1259. [Google Scholar] [CrossRef]
- Roma, R.; Corrado, S.; De Boni, A.; Forleo, M.B.; Fantin, V.; Moretti, M.; Palmieri, N.; Vitali, A.; Camillo, D.C. Life Cycle Assessment in the Livestock and Derived Edible Products Sector. In Life Cycle Assessment in the Agri-food Sector; Notarnicola, B., Salomone, R., Petti, L., Renzulli, P.A., Roma, R., Cerutti, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 251–332. ISBN 978-3-319-11939-7. [Google Scholar]
- Grizzetti, B.; Pretato, U.; Lassaletta, L.; Billen, G.; Garnier, J. The contribution of food waste to global and European nitrogen pollution. Environ. Sci. Policy 2013, 33, 186–195. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A. The shape of nitrogen to come. Nature 2013, 494, 435–437. [Google Scholar] [CrossRef] [Green Version]
- Kamble, S.S.; Gunasekaran, A.; Ghadge, A.; Raut, R. A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs—A review and empirical investigation. Int. J. Prod. Econ. 2020, 229, 107853. [Google Scholar] [CrossRef]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Piras, S.; Pancotto, F.; Righi, S.; Vittuari, M.; Setti, M. Community social capital and status: The social dilemma of food waste. Ecol. Econ. 2021, 183, 106954. [Google Scholar] [CrossRef]
- Schanes, K.; Dobernig, K.; Gözet, B. Food waste matters—A systematic review of household food waste practices and their policy implications. J. Clean. Prod. 2018, 182, 978–991. [Google Scholar] [CrossRef]
- Mondéjar-Jiménez, J.-A.; Ferrari, G.; Secondi, L.; Principato, L. From the table to waste: An exploratory study on behaviour towards food waste of Spanish and Italian youths. J. Clean. Prod. 2016, 138, 8–18. [Google Scholar] [CrossRef]
- Hebrok, M.; Boks, C. Household food waste: Drivers and potential intervention points for design—An extensive review. J. Clean. Prod. 2017, 151, 380–392. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426. [Google Scholar] [CrossRef]
- Dora, M.; Biswas, S.; Choudhary, S.; Nayak, R.; Irani, Z. A system-wide interdisciplinary conceptual framework for food loss and waste mitigation strategies in the supply chain. Ind. Mark. Manag. 2021, 93, 492–508. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.G.; Sharif, S.; Yada, R.Y. Transparency in food supply chains: A review of enabling technology solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [Google Scholar] [CrossRef]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Bux, C.; Amicarelli, V. Separate collection and bio-waste valorization in the Italian poultry sector by material flow analysis. J. Mater. Cycles Waste Manag. 2022, 24, 811–823. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Pontonio, E.; Dingeo, C.; Gobbetti, M.; Rizzello, C.G. Maize Milling By-Products: From Food Wastes to Functional Ingredients Through Lactic Acid Bacteria Fermentation. Front. Microbiol. 2019, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Panagiotopoulou, M.; Papadaki, S.; Bagia, H.; Krokida, M. Valorisation of olive processing waste for the development of value-added products. Sustain. Chem. Pharm. 2022, 28, 100736. [Google Scholar] [CrossRef]
- Gunes, B.; Stokes, J.; Davis, P.; Connolly, C.; Lawler, J. Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review. Renew. Sustain. Energy Rev. 2019, 113, 109281. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Lü, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and bioactive compounds in dried tomato processing waste. CyTA J. Food 2018, 16, 222–229. [Google Scholar] [CrossRef]
- Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr. Polym. 2013, 97, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.-S.; Tian, Y.-J.; He, Y.-Z.; Li, L.; Hu, S.-Q.; Li, B. Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech J. Food Sci. 2010, 28, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Niemi, P.; Tamminen, T.; Smeds, A.; Viljanen, K.; Ohra-aho, T.; Holopainen-Mantila, U.; Faulds, C.B.; Poutanen, K.; Buchert, J. Characterization of Lipids and Lignans in Brewer’s Spent Grain and Its Enzymatically Extracted Fraction. J. Agric. Food Chem. 2012, 60, 9910–9917. [Google Scholar] [CrossRef]
- Vieira, E.; Rocha, M.A.M.; Coelho, E.; Pinho, O.; Saraiva, J.A.; Ferreira, I.M.P.L.V.O.; Coimbra, M.A. Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Ind. Crops Prod. 2014, 52, 136–143. [Google Scholar] [CrossRef]
- Reis, S.F.; Coelho, E.; Coimbra, M.A.; Abu-Ghannam, N. Influence of grain particle sizes on the structure of arabinoxylans from brewer’s spent grain. Carbohydr. Polym. 2015, 130, 222–226. [Google Scholar] [CrossRef]
- Iadecola, R.; Ciccoritti, R.; Ceccantoni, B.; Bellincontro, A.; Amoriello, T. Optimization of Phenolic Compound Extraction from Brewers’ Spent Grain Using Ultrasound Technologies Coupled with Response Surface Methodology. Sustainability 2022, 14, 3309. [Google Scholar] [CrossRef]
- Lasekan, A.; Abu Bakar, F.; Hashim, D. Potential of chicken by-products as sources of useful biological resources. Waste Manag. 2013, 33, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; He, L.; Liang, Y.; Yue, L.; Peng, W.; Jin, G.; Ma, M. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem. 2019, 284, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.B.; Costa, C.M.; Bonifácio-Lopes, T.; Silva, S.; Veiga, M.; Monforte, A.R.; Nunes, J.; Vicente, A.A.; Pintado, M. Prebiotic effects of olive pomace powders in the gut: In vitro evaluation of the inhibition of adhesion of pathogens, prebiotic and antioxidant effects. Food Hydrocoll. 2021, 112, 106312. [Google Scholar] [CrossRef]
- Daverey, A.; Pakshirajan, K.; Sumalatha, S. Sophorolipids production by Candida bombicola using dairy industry wastewater. Clean Technol. Environ. Policy 2011, 13, 481–488. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Papapostolou, H.; Dimitrellou, D.; Kopsahelis, N.; Katechaki, E.; Bekatorou, A.; Bosnea, L.A. Whey valorisation: A complete and novel technology development for dairy industry starter culture production. Bioresour. Technol. 2009, 100, 3734–3739. [Google Scholar] [CrossRef]
- Izzo, L.; Luz, C.; Ritieni, A.; Mañes, J.; Meca, G. Whey fermented by using Lactobacillus plantarum strains: A promising approach to increase the shelf life of pita bread. J. Dairy Sci. 2020, 103, 5906–5915. [Google Scholar] [CrossRef]
- Shahidi, F.; Synowiecki, J. Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 1991, 39, 1527–1532. [Google Scholar] [CrossRef]
- Lopes da Silva, T.; Santos, A.R.; Gomes, R.; Reis, A. Valorizing fish canning industry by-products to produce ω-3 compounds and biodiesel. Environ. Technol. Innov. 2018, 9, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X. Tilapia skin peptides, a by-product of fish processing, ameliorate DSS-induced colitis by regulating inflammation and inhibiting apoptosis. Front. Nutr. 2022, 9, 988758. [Google Scholar]
- De Boni, A.; Melucci, F.M.; Acciani, C.; Roma, R. Community composting: A multidisciplinary evaluation of an inclusive, participative, and eco-friendly approach to biowaste management. Clean. Environ. Syst. 2022, 6, 100092. [Google Scholar] [CrossRef]
- Carus, M.; Dammer, L. The Circular Bioeconomy—Concepts, Opportunities, and Limitations. Ind. Biotechnol. 2018, 14, 83–91. [Google Scholar] [CrossRef]
- Grasso, S.; Asioli, D. Consumer preferences for upcycled ingredients: A case study with biscuits. Food Qual. Prefer. 2020, 84, 103951. [Google Scholar] [CrossRef]
- Temkov, M.; Velickova, E.; Stamatovska, V.; Nakov, G. Consumer perception on food waste management and incorporation of grape pomace powder in cookies. J. Agric. Econ. Rural Dev. 2021, 21, 753–762. [Google Scholar]
Total Amount (kg/y/Capita) | Share (%) at Each Phase of the Food Supply Chain | References | ||||
---|---|---|---|---|---|---|
Primary Production | Livestock Production | Processing and Manufacturing | Retail and Distribution | Consumption | ||
180 | - | - | 39 | 5 | 56 | [33] |
275 | 47 | - | 12 | 7 | 34 | [5,22] |
289 | 43 | - | 12 | 5 | 40 | [34] |
173 | 11 | - | 19 | 5 | 65 | [17] |
179 | - | - | 39 | 5 | 56 | [35] |
290 | 9 | - | 21 | 12 | 58 | [36] |
- | 8.4 | 12 | 36 | 19 | 33 | [26] |
257 | 25 | 24 | 5 | 46 | [2] |
Food Supply Chain Stage | Food Groups | References | |||||||
---|---|---|---|---|---|---|---|---|---|
Fruit and Vegetables | Cereals | Meat | Oil Crops | Roots and Tubers | Dairy | Fish | Eggs | ||
Primary production | 18.0–20.0 | 1.5–4.3 | 0.8–3.2 | 2.5–10.0 | 2.8–20.0 | 0.3–3.5 | 9.4 | 4.0–4.8 | [12,20,35] |
Storage and Handling | 5.0–7.3 | 3.9–4.0 | 0.7 | 1.0–1.2 | 7.6–9.0 | 0.5–1.7 | 0.5–7.9 | 1.9 | [20,35] |
Processing and manufacturing | 2.0–6.4 | 3.2–10.5 | 4.7–5.0 | 5.0–28.2 | 4.9–15.0 | 0.7–1.2 | 6.0 | 0.5–1.6 | [12,20,35] |
Retail and distribution | 1.2–10.0 | 2.0–3.0 | 2.8–4.0 | 0.7–7.0 | 0.3–1.0 | 0.3–0.8 | 9.0 | 1.6–2.0 | [12,20,35] |
Consumption | 17.9–26.2 | 13.0–27.0 | 11.0–14.6 | 4.0–5.0 | 13.3–25.5 | 9.8–15.0 | 8.0–22.6 | 2.0 | [12,20,34,35] |
Food Groups | FBPW Sources | Bioactive Compounds | References |
---|---|---|---|
Fruit and vegetables | Apple pomace | Fibers | [22] |
Apple seeds | Polyphenols | [73] | |
Apple pomace | Pectine | [74] | |
Tomato pomace | Polyphenols | [75] | |
Tomato pomace | Lycopene | [76] | |
Orange peels | Pectine | [74,77] | |
Vine crops | Grape pomace (white wine) | Fibers | [70] |
Grape pomace (red wine) | Fibers | [70] | |
Grape pomace (red wine) | Polyphenols | [70] | |
Grape pomace (white wine) | Polyphenols | [70] | |
Grape pomace (white wine) | Fibers | [70] | |
Cereals | Brewers’ spent grain | Proteins | [78] |
Brewers’ spent grain | Fibers | [79] | |
Brewers’ spent grain | Fibers | [80,81] | |
Brewers’ spent grain | Polyphenols | [82] | |
Maize bran and germ | Fermented byproducts | [71] | |
Meat | Poultry byproducts | Amino acids | [83] |
Poultry byproducts | PUFA | [83] | |
Pig bones | Collagen peptides | [84] | |
Oil crops | Olive pomace | Polyphenol | [85] |
Dairy | Cheese whey | Sophorolipids | [86] |
Cheese whey | Dairy starter cultures | [87] | |
Cheese whey | Bacteriocins | [88] | |
Fish | Shrimp and different parts of crab | Chitin | [89] |
Shrimp and different parts of crab | Carotenoid pigments | [89] | |
Fish waste | Protein hydrolysates | [90,91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Boni, A.; Ottomano Palmisano, G.; De Angelis, M.; Minervini, F. Challenges for a Sustainable Food Supply Chain: A Review on Food Losses and Waste. Sustainability 2022, 14, 16764. https://doi.org/10.3390/su142416764
De Boni A, Ottomano Palmisano G, De Angelis M, Minervini F. Challenges for a Sustainable Food Supply Chain: A Review on Food Losses and Waste. Sustainability. 2022; 14(24):16764. https://doi.org/10.3390/su142416764
Chicago/Turabian StyleDe Boni, Annalisa, Giovanni Ottomano Palmisano, Maria De Angelis, and Fabio Minervini. 2022. "Challenges for a Sustainable Food Supply Chain: A Review on Food Losses and Waste" Sustainability 14, no. 24: 16764. https://doi.org/10.3390/su142416764
APA StyleDe Boni, A., Ottomano Palmisano, G., De Angelis, M., & Minervini, F. (2022). Challenges for a Sustainable Food Supply Chain: A Review on Food Losses and Waste. Sustainability, 14(24), 16764. https://doi.org/10.3390/su142416764