Cost Sharing in Insurance Communities: A Hybrid Approach Based on Multiple-Choice Objective Programming and Cooperative Games
Abstract
:1. Introduction
2. Preliminaries
3. Insurance Community Decision Optimization Model Based on the Multi-Choice Goal Programming Method
3.1. Establishment of a Decision Optimization Model for the Insurance Community
3.2. Solution of the Decision Optimization Model for the Insurance Community
4. Cooperative Game Model of Cost Allocation in the Insurance Community
4.1. Cooperative Game and Shapley Value
4.2. Construction of the Cooperative Game Model of the Insurance Community
5. The Simulation Analysis
5.1. Sensitivity Analysis of the Multi-Objective Optimization Effect
5.2. Sensitivity Analysis for the Weight of Bias Variables
5.3. Sensitivity Analysis of the Cost Allocation Results
6. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robock, S.H. Political risk-identification and assessment. Columbia J. World Bus. 1971, 6, 6–20. [Google Scholar]
- Chen, L.; Wu, K.Z.; Tan, J.H.; Li, M.F. Study on Social Risk Appraise of Construction Project in China—A Case from Guangzhou. J. Appl. Mech. Mater. 2012, 174, 2916–2924. [Google Scholar] [CrossRef]
- Lv, X.; Li, M.; Zhang, Y. Financial Stability and Economic Activity in China: Based on Mixed-Frequency Spillover Method. Sustainability 2022, 14, 12926. [Google Scholar] [CrossRef]
- Reinhart, C.M.; Rogoff, K.S. Growth in a Time of Debt. Am. Econ. Rev. 2010, 100, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, J. Old problems remain, new ones crop up: Political risk in the 21st century. Bus. Horiz. 2010, 53, 481–490. [Google Scholar] [CrossRef]
- Solórzan, J.; Morante-Carballo, F.; Montalván-Burbano, N.; Briones-Bitar, J.; Carrión-Mero, P. A Systematic Review of the Relationship between Geotechnics and Disasters. Sustainability 2022, 14, 12835. [Google Scholar] [CrossRef]
- Xia, Q. Preliminary Study on Construction of China’s Overseas Investment Insurance System Based on Comparative Analysis of Investment Insurance Systems of the US, Japan, Germany, and MIGA. Discret. Dyn. Nat. Soc. 2022, 2022, 4384657. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, J.; Zhang, L.; Chen, X. OFDI agglomeration and Chinese firm location decisions under the “Belt and Road” initiative. Sustainability 2018, 10, 4060. [Google Scholar] [CrossRef] [Green Version]
- Jaffee, D.M.; Russell, T. Catastrophe insurance, capital markets, and uninsurable risks. J. Risk Insur. 1997, 64, 205–230. [Google Scholar] [CrossRef] [Green Version]
- Zanjani, G. Pricing and capital allocation in catastrophe insurance. J. Financ. Econ. 2002, 65, 283–305. [Google Scholar] [CrossRef]
- Fan, H.; He, Z.; Qian, Z. The 21st century maritime silk road: Current situation, opportunities, challenges and solutions. Int. Econ. Rev. 2017, 24, 116–133. [Google Scholar]
- Raykov, R.S. Catastrophe insurance equilibrium with correlated claims. Theory Decis. 2015, 78, 89–115. [Google Scholar] [CrossRef]
- Sherchan, R.; Rai, R.K.; Rai, R.; Dhakal, A. Designing a community-based insurance scheme to reduce human–wildlife conflict. Environ. Dev. Sustain. 2022, 24, 5112–5130. [Google Scholar] [CrossRef]
- Crew, M. Coinsurance and the welfare economics of medical care. Am. Econ. Rev. 1969, 59, 906–908. [Google Scholar]
- Ekman, B. Community-based health insurance in low-income countries: A systematic review of the evidence. Health Policy Plan. 2004, 19, 249–270. [Google Scholar] [CrossRef]
- Yim, M.S.; Vaganov, P.A. Effects of education on nuclear risk perception and attitude: Theory. Prog. Nucl. Energy 2003, 42, 221–235. [Google Scholar] [CrossRef]
- Palm, R.I.; Hodgson, M.E.; Blanchard, R.D.; Lyons, D.I. Earthquake Insurance in California: Environmental Policy and Individual Decision-Making; Routledge: London, UK, 2019. [Google Scholar]
- Skees, J.R.; Hazell, P.; Miranda, M. New Approaches to Public/Private Crop Yield Insurance; Unpublished Working Paper; The World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Habib, S.S.; Perveen, S.; Khuwaja, H.M.A. The role of micro health insurance in providing financial risk protection in developing countries-a systematic review. BMC Public Health 2016, 16, 281. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Qu, S.; Li, Y.; Ji, Y. The mixed integer robust maximum expert consensus models for large-scale GDM under uncertainty circumstances. Appl. Soft Comput. 2021, 107, 107369. [Google Scholar] [CrossRef]
- Yan, D.; Hu, Y.; Lai, K. A nonlinear interval portfolio selection model and its application in banks. J. Syst. Sci. Complex. 2018, 31, 696–733. [Google Scholar] [CrossRef]
- Samouilidis, J.E.; Pappas, I.A. A goal programming approach to energy forecasting. Eur. J. Oper. Res. 1980, 5, 321–331. [Google Scholar] [CrossRef]
- Qu, S.; Xu, L.; Mangla, S.K.; Felix, T.S.C.; Zhu, J.; Arisian, S. Matchmaking in Reward-Based Crowdfunding Platforms: A Hybrid Machine Learning Approach. Int. J. Prod. Res. 2022, 60, 7551–7571. [Google Scholar] [CrossRef]
- Qu, S.; Wei, J.; Wang, Q.; Li, Y.; Jin, X.; Chaib, L. Robust minimum cost consensus models with various individual preference scenarios under unit adjustment cost uncertainty. Inf. Fusion 2022, 89, 510–526. [Google Scholar] [CrossRef]
- Chen, Z.F. Chinese bank efficiency during the global financial crisis: A combined approach using satisficing DEA and Support Vector Machines. N. Am. J. Econ. Financ. 2018, 43, 71–86. [Google Scholar] [CrossRef]
- Qu, S.; Feng, C.; Jiang, S.; Wei, J.; Xu, Y. Data-Driven Robust DEA Models for Measuring Operational Efficiency of Endowment Insurance System of Different Provinces in China. Sustainability 2022, 14, 9954. [Google Scholar] [CrossRef]
- Wang, Y.; Que, M. Hesitant fuzzy TOPSIS multi-attribute decision method based on prospect theory. Control. Decis. 2017, 32, 864–870. [Google Scholar]
- Xue, Y.; Li, Y. Cohesion of Agricultural Crowdfunding Risk Prevention under Sustainable Development Based on Gray–Rough Set and FAHP-TOPSIS. Sustainability 2022, 14, 12709. [Google Scholar] [CrossRef]
- Babbar, C.; Amin, S.H. A multi-objective mathematical model integrating environmental concerns for supplier selection and order allocation based on fuzzy QFD in beverages industry. Expert Syst. Appl. 2018, 92, 27–38. [Google Scholar] [CrossRef]
- Yan, H.B.; Meng, X.S.; Ma, T.; Huynh, V.-N. An uncertain target-oriented QFD approach to service design based on service standardization with an application to bank window service. IISE Trans. 2019, 51, 1167–1189. [Google Scholar] [CrossRef]
- Kouaissah, N.; Hocine, A. Optimizing sustainable and renewable energy portfolios using a fuzzy interval goal programming approach. Comput. Ind. Eng. 2020, 144, 106448. [Google Scholar] [CrossRef]
- Zheng, X.X.; Chang, C.T. Topology design of remote patient monitoring system concerning qualitative and quantitative issues. Omega 2021, 98, 102137. [Google Scholar] [CrossRef]
- Zheng, X.X.; Liu, Z.; Li, D.F.; Tang, J. Research on cooperative game for cost sharing of producer responsibility organization based on multi-choice goal programming method. Syst. Eng.—Theory Pract. 2021, 41, 2512–2523. [Google Scholar]
- Cummins, J.D.; Doherty, N.; Lo, A. Can insurers pay for the “big one”? Measuring the capacity of the insurance market to respond to catastrophic losses. J. Bank. Financ. 2002, 26, 557–583. [Google Scholar] [CrossRef]
- Gillies, D.B. Some Theorems on N-Person Games; Princeton University Press: Princeton, NJ, USA, 1953; pp. 2–11. [Google Scholar]
- Aumann, R.J.; Myerson, R.B. Endogenous formation of links between players and of coalitions: An application of the Shapley value. In Networks and Groups; Springer: Berlin/Heidelberg, Germany, 2003; pp. 207–220. [Google Scholar]
- Shapley, L.S. A value for n-person games. In Contributions to the Theory of Games, Annals of Mathematical Studies; Tucker, A.W., Ed.; Princeton University Press: Princeton, NJ, USA, 1953; Volume 28, pp. 307–318. [Google Scholar]
- Shapley, L.S. Cores of convex games. Int. J. Game Theory 1971, 1, 11–26. [Google Scholar] [CrossRef]
- Schmeidler, D. The nucleolus of a characteristic function game. SIAM J. Appl. Math. 1969, 17, 1163–1170. [Google Scholar] [CrossRef]
- Owen, G. Values of games with a priori unions. In Mathematical Economics and Game Theory; Springer: Berlin/Heidelberg, Germany, 1977; pp. 76–88. [Google Scholar]
- Lemaire, J. An application of game theory: Cost allocation. ASTIN Bull. J. IAA 1984, 14, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, J. Cooperative game theory and its insurance applications. ASTIN Bull. J. IAA 1991, 21, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Kihlstrom, R.E.; Roth, A.E. Risk aversion and the negotiation of insurance contracts. J. Risk Insur. 1982, 49, 372–387. [Google Scholar] [CrossRef]
- Tapiero, C.S. The optimal control of a jump mutual insurance process. ASTIN Bull. J. IAA 1982, 13, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Fenn, P.; Vlachonikolis, I. Bargaining Behaviour by Defendant Insurers: An Economic Model. J. Geneva Pap. Risk Insur. Issues Pract. 1990, 54, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Kalai, E.; Samet, D. On weighted Shapley values. Int. J. Game Theory 1987, 16, 205–222. [Google Scholar] [CrossRef]
- Goyal, S. Interaction structure and social change. J. Inst. Theor. Econ. 1996, 152, 472–494. [Google Scholar]
- Hong, S.; Lv, R.; Wang, P. Research on Cost Sharing of Terminal Joint Distribution of Express Enterprise. Manag. Sci. Res. 2016, 5, 1–6. [Google Scholar]
- Li, L.; Wang, X.; Lin, Y.; Zhou, F.; Chen, S. Cooperative game-based profit allocation for joint distribution alliance under online shopping environment: A case in Southwest China. Asia Pac. J. Mark. Logist. 2019, 31, 302–326. [Google Scholar] [CrossRef]
- Clemente, G.P.; Cornaro, A. A multilayer approach for systemic risk in the insurance sector. Chaos Solitons Fractals 2022, 162, 112398. [Google Scholar] [CrossRef]
- Ji, Y.; Li, H.; Zhang, H. Risk-averse two-stage stochastic minimum cost consensus models with asymmetric adjustment cost. Group Decis. Negot. 2022, 31, 261–291. [Google Scholar] [CrossRef]
- Wang, J.; Peng, X.; Du, Y.; Wang, F. A tripartite evolutionary game research on information sharing of the subjects of agricultural product supply chain with a farmer cooperative as the core enterprise. Manag. Decis. Econ. 2022, 43, 159–177. [Google Scholar] [CrossRef]
- Savaskan, R.C.; Bhattacharya, S.; Van Wassenhove, L.N. Closed-loop supply chain models with product remanufacturing. Manag. Sci. 2004, 50, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Atasu, A.; Souza, G.C. How does product recovery affect quality choice? Prod. Oper. Manag. 2013, 22, 991–1010. [Google Scholar] [CrossRef]
- Zu-Jun, M.; Zhang, N.; Dai, Y.; Hu, S. Managing channel profits of different cooperative models in closed-loop supply chains. Omega 2016, 59, 251–262. [Google Scholar] [CrossRef]
- Winternitz, K.; Heggie, M.; Baird, J. Extended producer responsibility for waste tyres in the EU: Lessons learnt from three case studies–Belgium, Italy and the Netherlands. Waste Manag. 2019, 89, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.T. Revised multi-choice goal programming. Appl. Math. Model. 2008, 32, 2587–2595. [Google Scholar] [CrossRef]
- Chang, C.T. Multi-choice goal programming with utility functions. Eur. J. Oper. Res. 2011, 215, 439–445. [Google Scholar] [CrossRef]
- Leng, M.; Parlar, M. Allocation of cost savings in a three-level supply chain with demand information sharing: A cooperative-game approach. Oper. Res. 2009, 57, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Liu, Z.; Li, K.W.; Huang, J.; Chen, J. Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns. Int. J. Prod. Econ. 2019, 212, 92–110. [Google Scholar] [CrossRef]
Parameter Symbol | Parameter Meaning |
---|---|
The total demand for insurance in the country where insurance company is located. | |
The investment risk in the country where the insurer i is located is used to measure the likelihood of a disaster in the country where insurance company i is located. | |
Insurance company ’s coverage size. | |
The coverage ratio in the country where insurance company is located, . | |
The cost of underwriting for insurance company . | |
Market access mechanism and minimum underwriting ratio. | |
The scale parameter of the insurance company. | |
The coefficient of the government subsidy. | |
Underwriting requirements under the insurance community, . | |
The coverage size of the insurance community, . | |
The coverage ratio of the insurance community, . |
Test Group | Underwriting Demand and Investment Risk | |||
---|---|---|---|---|
Test group 1 | (1000, 0.1) | (2000, 0.2) | (3000, 0.3) | (4000, 0.4) |
Test group 2 | (2500, 0.1) | (2500, 0.2) | (2500, 0.3) | (2500, 0.4) |
(0.2, 0.3, 0.1, 0.5) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.3,0.4, 0.2, 0.6) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.4, 0.5, 0.3, 0.7) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.5, 0.6, 0.7, 0.8) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.6, 0.7, 0.8, 0.9) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.5, 0.1, 0.3, 0.2) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.6, 0.2, 0.4, 0.3) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.7, 0.3, 0.5, 0.4) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.8, 0.4, 0.6, 0.5) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
(0.9, 0.5, 0.7, 0.6) | 0.2009818 | 0.3819637 | 0.5429455 | 0.6839273 |
0.1 | 60 | 90 | 140 | 210 | 24.43 | 79.66 | 128.68 | 197.69 | 28.16 | 80.95 | 128.77 | 192.59 |
0.2 | 220 | 280 | 380 | 520 | 123.48 | 221.55 | 353.67 | 447.94 | 121.71 | 223.11 | 351.73 | 450.08 |
0.3 | 480 | 570 | 720 | 930 | 311.77 | 473.06 | 664.04 | 798.83 | 294.37 | 468.36 | 666.10 | 818.88 |
0.4 | 840 | 960 | 1160 | 1440 | 603.26 | 818.90 | 1079.20 | 1241.62 | 557.47 | 804.84 | 1087.94 | 1292.73 |
0.5 | 1300 | 1450 | 1700 | 2050 | 993.71 | 1264.58 | 1594.15 | 1783.02 | 907.67 | 1237.08 | 1613.45 | 1877.25 |
0.6 | 1860 | 2040 | 2340 | 2760 | 1483.57 | 1810.17 | 2208.99 | 2423.62 | 1345.38 | 1765.19 | 2242.78 | 2573.01 |
0.7 | 2520 | 2730 | 3080 | 3570 | 2075.82 | 2458.46 | 2915.52 | 3166.48 | 1872.98 | 2391.42 | 2969.39 | 3382.49 |
0.8 | 3280 | 3520 | 3920 | 4480 | 2914.21 | 3275.76 | 3652.20 | 4064.26 | 2609.50 | 3176.87 | 3756.15 | 4363.93 |
0.9 | 4140 | 4410 | 4860 | 5490 | 3952.44 | 4246.34 | 4646.34 | 5209.68 | 3523.05 | 4119.27 | 4800.36 | 5612.12 |
1 | 5100 | 5400 | 5900 | 6600 | 5100.00 | 5400.00 | 5900.00 | 6600.00 | 4540.00 | 5240.00 | 6100.00 | 7120.00 |
100 | 75 | 225 | 475 | 825 | 3.84 | 15.05 | 56.00 | 406.00 | 12.69 | 31.28 | 73.65 | 363.27 |
200 | 100 | 250 | 500 | 850 | 3.09 | 8.07 | 10.25 | 349.98 | 9.90 | 21.31 | 30.48 | 309.69 |
300 | 125 | 275 | 525 | 875 | 85.67 | 56.73 | 185.35 | 380.59 | 82.70 | 73.71 | 190.78 | 361.14 |
400 | 150 | 300 | 550 | 900 | 125.92 | 130.17 | 341.28 | 567.26 | 124.03 | 150.72 | 342.90 | 546.98 |
500 | 175 | 325 | 575 | 925 | 121.15 | 227.99 | 422.40 | 711.15 | 126.58 | 241.70 | 426.88 | 687.53 |
600 | 200 | 350 | 600 | 950 | 121.38 | 298.47 | 481.02 | 822.23 | 131.57 | 307.70 | 488.21 | 795.64 |
700 | 225 | 375 | 625 | 975 | 124.84 | 342.39 | 546.80 | 905.88 | 138.27 | 350.71 | 552.63 | 878.30 |
800 | 250 | 400 | 650 | 1000 | 128.11 | 379.10 | 593.57 | 961.49 | 143.74 | 385.77 | 598.59 | 934.17 |
900 | 275 | 425 | 675 | 1025 | 122.76 | 390.22 | 617.00 | 975.83 | 140.32 | 396.41 | 619.95 | 949.13 |
1000 | 300 | 450 | 700 | 1050 | 122.16 | 398.30 | 643.39 | 988.47 | 140.78 | 404.73 | 643.85 | 962.97 |
2000 | 550 | 700 | 950 | 1300 | 295.57 | 567.01 | 871.04 | 1132.98 | 293.78 | 568.27 | 868.83 | 1135.71 |
3000 | 800 | 950 | 1200 | 1550 | 519.62 | 788.44 | 1106.74 | 1331.38 | 490.62 | 780.60 | 1110.16 | 1364.80 |
4000 | 1050 | 1200 | 1450 | 1800 | 754.08 | 1023.63 | 1349.00 | 1552.02 | 696.84 | 1006.05 | 1359.92 | 1615.92 |
5000 | 1300 | 1450 | 1700 | 2050 | 993.71 | 1264.58 | 1594.15 | 1783.02 | 907.67 | 1237.08 | 1613.45 | 1877.25 |
6000 | 1550 | 1700 | 1950 | 2300 | 1236.31 | 1508.47 | 1840.83 | 2019.69 | 1121.15 | 1470.99 | 1868.98 | 2144.17 |
7000 | 1800 | 1950 | 2200 | 2550 | 1480.77 | 1754.08 | 2088.40 | 2259.81 | 1336.27 | 1706.58 | 2125.71 | 2414.49 |
8000 | 2050 | 2200 | 2450 | 2800 | 1726.47 | 2000.76 | 2336.56 | 2502.20 | 1552.49 | 1943.25 | 2383.21 | 2687.04 |
9000 | 2300 | 2450 | 2700 | 3050 | 1973.03 | 2248.17 | 2585.10 | 2746.15 | 1769.48 | 2180.63 | 2641.23 | 2961.12 |
10,000 | 2550 | 2700 | 2950 | 3300 | 2220.23 | 2496.09 | 2833.93 | 2991.23 | 1987.01 | 2418.53 | 2899.63 | 3236.31 |
0 | 1375 | 1500 | 1625 | 1750 | 612.15 | 1224.31 | 1836.46 | 2448.61 |
0.1 | 1375 | 1500 | 1625 | 1750 | 683.96 | 1249.89 | 1813.40 | 2374.28 |
0.2 | 1375 | 1500 | 1625 | 1750 | 755.77 | 1275.47 | 1790.34 | 2299.95 |
0.3 | 1375 | 1500 | 1625 | 1750 | 827.58 | 1301.05 | 1767.28 | 2225.61 |
0.4 | 1375 | 1500 | 1625 | 1750 | 899.39 | 1326.64 | 1744.22 | 2151.28 |
0.5 | 1375 | 1500 | 1625 | 1750 | 971.20 | 1352.22 | 1721.16 | 2076.95 |
0.6 | 1375 | 1500 | 1625 | 1750 | 1043.01 | 1377.80 | 1698.10 | 2002.62 |
0.7 | 1375 | 1500 | 1625 | 1750 | 1114.82 | 1403.39 | 1675.04 | 1928.28 |
0.8 | 1375 | 1500 | 1625 | 1750 | 1186.63 | 1428.97 | 1651.98 | 1853.95 |
0.9 | 1375 | 1500 | 1625 | 1750 | 1258.44 | 1454.55 | 1628.92 | 1779.62 |
1 | 1375 | 1500 | 1625 | 1750 | 1330.24 | 1480.13 | 1605.86 | 1705.29 |
1330.24 | 1480.13 | 1605.86 | 1705.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cao, X.; Qu, S.; Ji, Y.; Xia, Z. Cost Sharing in Insurance Communities: A Hybrid Approach Based on Multiple-Choice Objective Programming and Cooperative Games. Sustainability 2022, 14, 16792. https://doi.org/10.3390/su142416792
Li Y, Cao X, Qu S, Ji Y, Xia Z. Cost Sharing in Insurance Communities: A Hybrid Approach Based on Multiple-Choice Objective Programming and Cooperative Games. Sustainability. 2022; 14(24):16792. https://doi.org/10.3390/su142416792
Chicago/Turabian StyleLi, Yuanzhong, Xinbang Cao, Shaojian Qu, Ying Ji, and Zilong Xia. 2022. "Cost Sharing in Insurance Communities: A Hybrid Approach Based on Multiple-Choice Objective Programming and Cooperative Games" Sustainability 14, no. 24: 16792. https://doi.org/10.3390/su142416792
APA StyleLi, Y., Cao, X., Qu, S., Ji, Y., & Xia, Z. (2022). Cost Sharing in Insurance Communities: A Hybrid Approach Based on Multiple-Choice Objective Programming and Cooperative Games. Sustainability, 14(24), 16792. https://doi.org/10.3390/su142416792