The Prevalence of Active Commuting to School and the Factors Influencing Mode Choice: A Study of University Students in a Secondary City of Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Techniques
2.3. Data Collection
2.4. Outcome Variable
2.5. Explanatory Variables/Factors
2.6. Statistical Analyses
2.7. Multiple Logistic Regression Model
3. Results
3.1. The Prevalence of Active Commuting Mode
3.2. Summary Statistics of Socio-Demographic Variables/Factors
3.3. Association of Commuting Mode Choice with Socio-Demographic Characteristics and Psychological Factors
3.4. Assessing the Mean Difference
3.5. Logistic Regression for Individual Factors
3.6. Multiple Logistic Regression Model
3.7. Model Evaluation
4. Discussion
5. Conclusions
6. Limitation of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO/ILO. Almost 2 Million People Die from Work-Related Causes Each Year. Available online: https://www.who.int/news/item/16-09-2021-who-ilo-almost-2-million-people-die-from-work-related-causes-each-year (accessed on 22 October 2022).
- WHO. New WHO-led Study Says Majority of Adolescents Worldwide Are Not Sufficiently Physically Active, Putting Their Current and Future Health at Risk. Available online: https://www.who.int/news/item/22-11-2019-new-who-led-study-says-majority-of-adolescents-worldwide-are-not-sufficiently-physically-active-putting-their-current-and-future-health-at-risk (accessed on 22 October 2022).
- Rahman, K.; Vandoni, M.; Cheval, B.; Asaduzzaman, M.; Hasan, M.N.; Rahman, S.T. Exploring two pandemics in academic arena: Physical activity and sedentary behaviors profile of university students in Bangladesh. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 358–371. [Google Scholar] [CrossRef]
- Parks, S.E.; Housemann, R.A.; Brownson, R.C. Differential correlates of physical activity in urban and rural adults of various socioeconomic backgrounds in the United States. J. Epidemiol. Commun. Health 2003, 57, 29–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.H.; Ogilvie, D. Motivations for active commuting: A qualitative investigation of the period of home or work relocation. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siiba, A. Active travel to school: Understanding the Ghanaian context of the underlying driving factors and the implications for transport planning. J. Trans. Health 2020, 18, 100869. [Google Scholar] [CrossRef]
- Sahlqvist, S.; Song, Y.; Ogilvie, D. Is active travel associated with greater physical activity? The contribution of commuting and non-commuting active travel to total physical activity in adults. Prevent. Med. 2012, 55, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, L.; Panter, J.; Heinen, E.; Prins, R.; Ogilvie, D. Changes in active commuting and changes in physical activity in adults: A cohort study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Whalen, K.E.; Páez, A.; Carrasco, J.A. Mode choice of university students commuting to school and the role of active travel. J. Trans. Geogr. 2013, 31, 132–142. [Google Scholar] [CrossRef]
- Olojede, O.; Yoade, A.; Olufemi, B. Determinants of walking as an active travel mode in a Nigerian city. J. Trans. Health 2017, 6, 327–334. [Google Scholar] [CrossRef]
- Potoglou, D.; Arslangulova, B. Factors influencing active travel to primary and secondary schools in Wales. Trans. Plann. Technol. 2017, 40, 80–99. [Google Scholar] [CrossRef]
- Leung, A.; Le, T.P.L. Factors associated with adolescent active travel: A perceptive and mobility culture approach–insights from HO Chi Minh City, Vietnam. Trans. Res. Part Policy Pract. 2019, 123, 54–67. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Fong, C.S.; Sulaiman, N.M.; Aghamohammadi, N. Motivations and built environment factors associated with campus walkability in the tropical settings. Sci. Total Environ. 2020, 749, 141457. [Google Scholar] [CrossRef]
- Cools, M.; Moons, E.; Creemers, L.; Wets, G. Changes in travel behavior in response to weather conditions: Do type of weather and trip purpose matter? Trans. Res. Record 2010, 2157, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.; Ghani, N.A.; Kamil, A.A.; Mustafa, A. Analysis of pedestrian free flow walking speed in a least developing country: A factorial design study. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 4299–4304. [Google Scholar]
- Rahman, K.; Ghani, N.A.; Kamil, A.A.; Mustafa, A. Weighted regression method for the study of pedestrian flow characteristics in Dhaka, Bangladesh. Mod. Appl. Sci. 2013, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Nikitas, A.; Wang, J.Y.; Knamiller, C. Exploring parental perceptions about school travel and walking school buses: A thematic analysis approach. Trans. Res. Part Policy Pract. 2019, 124, 468–487. [Google Scholar] [CrossRef]
- Heelan, K.A.; Donnelly, J.E.; Jacobsen, D.J.; Mayo, M.S.; Washburn, R.; Greene, L. Active commuting to and from school and BMI in elementary school children–preliminary data. Child Care Health Dev. 2005, 31, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.S.; Pizarro, A.N.; Garcia, L.M.T.; Mota, J.; Santos, M.P. Which social support and psychological factors are associated to active commuting to school? Prevent. Med. 2014, 63, 20–23. [Google Scholar] [CrossRef]
- García, J.; Mars, L.; Arroyo, R.; Casquero, D.; di Ciommo, F.; Ruiz, T. Personal values, attitudes and travel intentions towards cycling and walking, and actual behavior. Sustainability 2019, 11, 3574. [Google Scholar] [CrossRef] [Green Version]
- Pojani, E.; Van Acker, V.; Pojani, D. Cars as a status symbol: Youth attitudes toward sustainable transport in a post-socialist city. Trans. Res. Part Traffic Psychol. Behav. 2018, 58, 210–227. [Google Scholar] [CrossRef]
- Long, Z.; Axsen, J. Who will use new mobility technologies? Exploring demand for shared, electric, and automated vehicles in three Canadian metropolitan regions. Energy Res. Soc. Sci. 2022, 88, 102506. [Google Scholar] [CrossRef]
- UN-Habitat/UNICEF. Analysis of Multiple Deprivations in Secondary Cities in Sub-Saharan Africa. Available online: https://www.unicef.org/esa/reports/analysis-multiple-deprivations-secondary-cities-sub-saharan-africa (accessed on 22 October 2022).
- Moniruzzaman, M.; Zaman, M.M.; Islalm, M.; Ahasan, H.; Kabir, H.; Yasmin, R. Physical activity levels in Bangladeshi adults: Results from STEPS survey 2010. Public Health 2016, 137, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Uddin, R.; Hasan, M.; Saif-Ur-Rahman, K.; Mandic, S.; Khan, A. Physical activity and sedentary behaviour in Bangladesh: A systematic scoping review. Public Health 2020, 179, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S. Private university students’ mode choice behaviour for travel to university: Analysis in the context of Dhaka city. In Transportation Research; Springer: Berlin/Heidelberg, Germany, 2020; pp. 299–310. [Google Scholar]
- Loong, C.; van Lierop, D.; El-Geneidy, A. On time and ready to go: An analysis of commuters’ punctuality and energy levels at work or school. Trans. Res. Part Traffic Psychol. Behav. 2017, 45, 13. [Google Scholar] [CrossRef]
- Fogelholm, M.; Malmberg, J.; Suni, J.; Santtila, M.; Kyrolainen, H.; Mantysaari, M.; Oja, P. International physical activity questionnaire: Validity against fitness. Med. Sci. Sports Exerc. 2006, 38, 753. [Google Scholar] [CrossRef]
- Forde, C. Scoring the International Physical Activity Questionnaire (IPAQ); University of Dublin: Dublin, Ireland, 2018; Volume 3. [Google Scholar]
- Gujarathi, D.M. Gujarati: Basic Econometrics; McGraw-hill: New York, NY, USA, 2022. [Google Scholar]
- Hasan, M.N.; Chowdhury, M.A.B.; Jahan, J.; Jahan, S.; Ahmed, N.U.; Uddin, M.J. Cesarean delivery and early childhood diseases in Bangladesh: An analysis of Demographic and Health Survey (BDHS) and Multiple Indicator Cluster Survey (MICS). PLoS ONE 2020, 15, e0242864. [Google Scholar] [CrossRef]
- Shannon, T.; Giles-Corti, B.; Pikora, T.; Bulsara, M.; Shilton, T.; Bull, F. Active commuting in a university setting: Assessing commuting habits and potential for modal change. Trans. Policy 2006, 13, 240–253. [Google Scholar] [CrossRef]
- Palma-Leal, X.; Parra-Saldías, M.; Aubert, S.; Chillón, P. Active Commuting to University Is Positively Associated with Physical Activity and Perceived Fitness. Healthcare 2022, 10, 990. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.S.; Vasques, D.G.; de Oliveira Martins, C.; Williams, L.A.; Lopes, A.S. Active commuting: Prevalence, barriers, and associated variables. J. Phys. Act. Health 2011, 8, 750–757. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Quintero, A.P.; Hernández, E.; Correa-Bautista, J.E.; Izquierdo, M.; Tordecilla-Sanders, A.; Prieto-Benavides, D.; Sandoval-Cuellar, C.; González-Ruíz, K.; Villa-González, E. Active commuting to and from university, obesity and metabolic syndrome among Colombian university students. BMC Public Health 2018, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Lien, N.; Kumar, B.N.; Holmboe-Ottesen, G. Physical activity and associated socio-demographic factors among school adolescents in Jiangsu Province, China. Prevent. Med. 2006, 43, 218–221. [Google Scholar] [CrossRef]
- Pinto, A.d.A.; Claumann, G.S.; Angelo, H.C.C.d.; Menezes, E.C.; Dias, D.T.; Pelegrini, A. Active commuting to school and associated factors among adolescents: A systematic review. J. Phys. Educ. 2018, 28, e2859. [Google Scholar] [CrossRef]
- Babey, S.H.; Hastert, T.A.; Huang, W.; Brown, E.R. Sociodemographic, family, and environmental factors associated with active commuting to school among US adolescents. J. Public Health Policy 2009, 30, S203–S220. [Google Scholar] [CrossRef] [PubMed]
- Easton, S.; Ferrari, E. Children’s travel to school—The interaction of individual, neighbourhood and school factors. Trans. Pol. 2015, 44, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Su, J.G.; Jerrett, M.; McConnell, R.; Berhane, K.; Dunton, G.; Shankardass, K.; Reynolds, K.; Chang, R.; Wolch, J. Factors influencing whether children walk to school. Health Place 2013, 22, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.C.; Harris, M.A.; Teschke, K.; Cripton, P.A.; Winters, M. The impact of transportation infrastructure on bicycling injuries and crashes: A review of the literature. Environ. Health 2009, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, F.; Gálvez-Fernández, P.; Huertas-Delgado, F.J.; Aranda-Balboa, M.J.; Saucedo-Araujo, R.G.; Herrador-Colmenero, M. Parent’s sociodemographic factors, physical activity and active commuting are predictors of independent mobility to school. Int. J. Health Geogr. 2021, 20, 11. [Google Scholar] [CrossRef]
- Molina-García, J.; Sallis, J.F.; Castillo, I. Active commuting and sociodemographic factors among university students in Spain. J. Phys. Act. Health 2014, 11, 359–363. [Google Scholar] [CrossRef]
- Sims, D.; Bopp, M.; Wilson, O.W. Examining influences on active travel by sex among college students. J. Trans. Health 2018, 9, 73–82. [Google Scholar] [CrossRef]
- Molina-García, J.; Menescardi, C.; Estevan, I.; Martínez-Bello, V.; Queralt, A. Neighborhood built environment and socioeconomic status are associated with active commuting and sedentary behavior, but not with leisure-time physical activity, in university students. Int. J. Environ. Res. Public Health 2019, 16, 3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo-Paredes, A.; Inostroza Jiménez, N.; Parra-Saldías, M.; Palma-Leal, X.; Felipe, J.L.; Págola Aldazabal, I.; Díaz-Martínez, X.; Rodríguez-Rodríguez, F. Environmental and psychosocial barriers affect the active commuting to university in chilean students. Int. J. Environ. Res. Public Health 2021, 18, 1818. [Google Scholar] [CrossRef]
- Aparicio-Ugarriza, R.; Mielgo-Ayuso, J.; Ruiz, E.; Ávila, J.M.; Aranceta-Bartrina, J.; Gil, Á.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; González-Gross, M. Active commuting, physical activity, and sedentary behaviors in children and adolescents from Spain: Findings from the ANIBES Study. Int. J. Environ. Res. Public Health 2020, 17, 668. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Ainsworth, B.E.; Popkin, B.M. Active commuting to school. Sports Med. 2001, 31, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Bergström, A.; Magnusson, R. Potential of transferring car trips to bicycle during winter. Trans. Res. Part Policy Pract. 2003, 37, 649–666. [Google Scholar] [CrossRef]
- Liu, C.; Susilo, Y.O.; Karlström, A. The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden. Trans. Pol. 2015, 41, 147–158. [Google Scholar] [CrossRef]
Factors | Active Mode | Passive Mode | Total | p-Values (χ2) |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
Sex | ||||
Male | 110 (46.2) | 128 (53.8) | 238 (68.4) | 0.222 |
Female | 40 (36.4) | 70 (63.6) | 110 (31.6) | |
Semester | ||||
First Year | 36 (54.5) | 30(45.5) | 66 (19.0) | 0.404 |
Second Year | 24 (37.5) | 40 (62.5) | 64 (18.4) | |
Third Year | 22 (35.5) | 40 (64.5) | 62 (17.8) | |
Fourth Year | 20 (35.7) | 36 (64.3) | 56 (16.1) | |
Masters | 48 (48.0) | 52 (52.0) | 100 (28.7) | |
Home division | ||||
Dhaka | 50 (54.3) | 42 (45.7) | 92 (26.4) | 0.023 |
Chattogram | 38 (38.0) | 62 (62.0) | 100 (28.7) | |
Rajshahi | 8 (44.4) | 10 (55.6) | 18 (5.2) | |
Khulana/ Barisal | 8 (44.4) | 10 (55.6) | 18 (5.2) | |
Sylhet | 6 (12.5) | 42 (87.5) | 48 (13.8) | |
Rangpur | 16 (61.5) | 10 (38.5) | 26 (7.5) | |
Mymensingh | 24 (52.2) | 22 (47.8) | 46 (13.2) | |
Place of residence with family | ||||
Urban | 94 (37.0) | 160 (63.0) | 254 (73.0) | 0.008 |
Rural | 56 (59.6) | 38 (40.4) | 94 (27.0) | |
Father’s education | ||||
No Education/Primary | 20 (52.6) | 18 (47.4) | 38 (10.9) | 0.455 |
Secondary | 24 (35.3) | 44 (64.7) | 68 (19.5) | |
Above Secondary | 106 (43.8) | 136 (56.2) | 242 (69.5) | |
Mother’s education | ||||
No Education/Primary | 26 (52.0) | 24 (48.0) | 50 (14.4) | 0.582 |
Secondary | 56 (40.0) | 84 (60.0) | 140 (40.2) | |
Above Secondary | 68 (43.0) | 90 (57.0) | 158 (45.4) | |
Father’s occupation | ||||
Agricultural Labor/Farming | 16 (61.5) | 10 (38.5) | 26 (7.5) | 0.218 |
Job/Service | 60 (37.5) | 100 (62.5) | 160 (46.0) | |
Others | 74 (45.7) | 88 (54.3) | 162 (46.6) | |
Mother’s occupation | ||||
Housewife | 134 (43.2) | 176 (56.8) | 310 (89.1) | 0.926 |
Job/Service/Others | 16 (42.1) | 22 (57.9) | 38 (10.9) | |
Family type | ||||
Nuclear family | 126 (41.7) | 176 (58.3) | 302 (86.8) | 0.346 |
Joint Or Extended Family | 24 (52.2) | 22 (47.8) | 46 (13.2) | |
Place of residence in Sylhet | ||||
Hall | 48 (63.2) | 28 (36.8) | 76 (21.8) | <0.001 |
Mess | 96 (45.3) | 116 (54.7) | 212 (60.9) | |
Own Residence | 6 (10.0) | 52 (90.0) | 60 (17.2) | |
Involved in sports/gym | ||||
Yes | 44 (44.0) | 56 (56.0) | 100 (28.7) | 0.879 |
No | 106 (42.7) | 142 (57.3) | 248 (71.3) | |
Chronic complications | ||||
Yes | 22 (44.0) | 28 (56.0) | 50 (14.4) | 0.922 |
No | 128 (43.0) | 170 (57.0) | 298 (85.6) | |
Cost matters for transportation | ||||
Yes | 110 (43.3) | 144 (56.7) | 254 (73.0) | 0.929 |
No | 40 (42.6) | 54 (57.4) | 94 (27.0) | |
Total | 150 (43.1) | 198 (56.9) | 348 (100.0) |
Factors | Active Mode | Passive Mode | Total | p-Values (χ2) |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
Mate commuting mode choice | ||||
Walking/Cycling | 121 (86.8) | 18 (13.2) | 139 (39.8) | <0.001 |
Vehicle | 31 (14.6) | 178 (85.4) | 209 (60.2) | |
Has the influnce of mate’s commuting mode? | ||||
Yes | 122 (47.7) | 134 (52.3) | 156 (73.6) | 0.043 |
No | 28 (30.4) | 64 (69.6) | 92 (26.4) | |
Walking/cycling is time consuming | ||||
Yes | 76 (37.6) | 126 (62.4) | 202 (58.1) | 0.086 |
No | 74 (50.7) | 72 (49.3) | 146 (41.9) | |
Adverse effects on your impression | ||||
Yes | 32 (40.0) | 28 (60.0) | 80 (23.0) | 0.652 |
No | 118 (44.0) | 150 (56.0) | 268 (77.0) | |
Walking/cycling is good for health | ||||
Yes | 150 (43.6) | 194 (56.4) | 344 (98.9) | 0.216 |
No | 0 (0.00) | 4 (100.0) | 4 (1.1) | |
Feel safe walking/cycling to campus (road safety) | ||||
Yes | 144 (47.1) | 162 (52.9) | 306 (87.9) | 0.004 |
No | 6 (14.3) | 36 (85.7) | 42 (12.1) | |
Should have restriction on vehicle | ||||
Yes | 90 (46.9) | 102 (53.1) | 192 (55.2) | 0.265 |
No | 60 (38.5) | 96 (61.5) | 156 (44.8) | |
Self-assessed socioeconomic class | ||||
Lower | 114 (50.4) | 112 (49.6) | 226 (64.9) | 0.008 |
Upper | 36 (29.5) | 83 (70.5) | 122 (35.1) | |
Degree of healthiness | ||||
Unsatisfied | 62 (46.3) | 72 (53.7) | 134 (38.5) | 0.505 |
Satisfied | 88 (41.1) | 126 (58.9) | 214 (61.5) | |
Weather condition has an effect | ||||
Yes | 132 (41.0) | 190 (59.0) | 322 (92.5) | 0.048 |
No | 18 (69.2) | 8 (30.8) | 26 (7.5) | |
Total | 150 (43.1) | 198 (56.9) | 348 (100.0) |
Factors | Active Mode | Passive Mode | t/U | p-Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Student’s BMI | 22.58 ± 3.33 | 22.45 ± 3.35 | 0.25 | 0.800 |
Distance between residence and campus | 1.59 ± 1.35 | 3.21 ± 2.35 | −1.34 | 0.182 |
Monthly family income | 37,380 ± 33,977.02 | 44,080.81 ± 30,760.32 | −5.73 | <0.001 |
Times on internet | 4.387 ± 2.47 | 5.005 ± 2.93 | −1.51 | 0.134 |
MET-minutes/week (median) | 1367.50 | 1183.50 | 3644.50 | 0.836 |
Sitting minutes/week (median) | 1245 | 1620 | 3302 | 0.212 |
Model | Crude Model | Adjusted Model | ||
---|---|---|---|---|
Factor | OR (95% CI) | p-Value | OR (95% CI) | p-Value |
Monthly family income | 0.99 (0.99–1.01) | 0.184 | - | - |
Mate commuting mode choice | ||||
Passive mode | Reference | - | Reference | - |
Active mode | 38.46 (15.80–93.63) | <0.001 | 30.04 (11.53–78.31) | <0.001 |
Has the influnce of mate’s commuting mode? | ||||
No | Reference | - | Reference | - |
Yes | 2.081 (1.02–4.26) | 0.045 | 1.02 (0.33–3.09) | 0.987 |
Time-consuming | ||||
No | Reference | - | Reference | - |
Yes | 0.59 (0.32–1.08) | 0.087 | 0.81 (0.32–2.07) | 0.665 |
Road safety | ||||
No | Reference | - | Reference | - |
Yes | 5.33 (1.51–18.86) | 0.009 | 1.34 (0.24–7.38) | 0.739 |
Internet | 0.92 (0.81–1.03) | 0.147 | 0.99 (0.86–1.17) | 0.982 |
Distance | 0.52 (0.40–0.69) | <0.001 | 0.70 (0.53–0.94) | 0.018 |
Weather effect | ||||
No | Reference | - | Reference | - |
Yes | 0.31 (0.91–1.05) | 0.059 | 0.51 (0.09–3.02) | 0.448 |
Residence Sylhet | ||||
Hall | Reference | - | - | - |
Mess | 0.07 (0.02–0.25) | <0.001 | - | - |
Own residence | 0.48 (0.23–1.03) | 0.061 | - | - |
Division | ||||
Dhaka | - | - | - | - |
Chattogram | 0.52 (0.23–1.16) | 0.11 | - | - |
Rajshahi | 0.67 (0.16–2.83) | 0.588 | - | - |
Sylhet | 0.12 (0.03–0.12) | 0.002 | - | - |
Khulna/Barisal | 0.67 (0.67–0.16) | 0.588 | - | - |
Rangpur | 1.34 (0.38–4.73) | 0.645 | - | - |
Mymensingh | 0.92 (0.34–2.50) | 0.864 | - | - |
Self-assessed socioeconomic class | ||||
Upper | Reference | - | Reference | - |
Lower | 2.43 (1.25–4.72) | 0.009 | 1.95 (0.72–5.28) | 0.192 |
Residence | ||||
Urban | Reference | - | Reference | - |
Rural | 2.51 (1.27–4.98) | 0.008 | 1.16 (0.39–3.38) | 0.793 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urmi, U.F.; Rahman, K.; Uddin, M.J.; Hasan, M.N. The Prevalence of Active Commuting to School and the Factors Influencing Mode Choice: A Study of University Students in a Secondary City of Bangladesh. Sustainability 2022, 14, 16949. https://doi.org/10.3390/su142416949
Urmi UF, Rahman K, Uddin MJ, Hasan MN. The Prevalence of Active Commuting to School and the Factors Influencing Mode Choice: A Study of University Students in a Secondary City of Bangladesh. Sustainability. 2022; 14(24):16949. https://doi.org/10.3390/su142416949
Chicago/Turabian StyleUrmi, Ummay Fatema, Khalidur Rahman, Md Jamal Uddin, and Mohammad Nayeem Hasan. 2022. "The Prevalence of Active Commuting to School and the Factors Influencing Mode Choice: A Study of University Students in a Secondary City of Bangladesh" Sustainability 14, no. 24: 16949. https://doi.org/10.3390/su142416949
APA StyleUrmi, U. F., Rahman, K., Uddin, M. J., & Hasan, M. N. (2022). The Prevalence of Active Commuting to School and the Factors Influencing Mode Choice: A Study of University Students in a Secondary City of Bangladesh. Sustainability, 14(24), 16949. https://doi.org/10.3390/su142416949