Physical Activity and Nutritional Pattern Related to Maturation and Development
Abstract
:1. Background
2. Materials and Methods
Search Methods and Strategies for Research Identification
3. Physical Activity and Nutritional Status in Pregnancy
- ○
- The heart rate, stroke volume, cardiac output, tidal volume, and blood pressure with respect to baseline
- ○
- Alterations in thermoregulation in which the core temperature increases.
- ○
- Process of hemoconcentration, an increase in the red series, given a loss of plasma volume. Finally, given the same training load, absolute energy expenditure is increased for a pregnant woman.
- Uncontrolled type I diabetes, thyroid disease, or other serious cardiovascular, respiratory, or systemic disorders.
- Persistent second or third trimester bleeding, ruptured membranes, previous spontaneous abortion, preterm labor or previous preterm birth, hypertensive disorders of pregnancy, incompetent cervix.
- Growth-restricted fetus, anemia (Hb: 100 g/L), high-order multiple gestation, malnutrition or eating disorder, placenta previa after 28th wk, twin pregnancy after 28th wk, persistent second or third trimester bleeding.
- Vaginal bleeding, abdominal pain, regular painful contractions, amniotic fluid leakage, dyspnea before exertion, dizziness, headache, chest pain, muscle weakness affecting balance, calf pain or swelling.
4. Physical Activity in Neonatal Maturation
5. Nutrition in Neonatal Maturation
6. Physical Activity and Nutritional Status in Childhood
7. The Impact of Physical Activity in Cognitive Development
8. The Impact of Nutrition in Cognitive Development
9. Practical Statements
- Breastfeeding is the most important factor of nutrition in newborns because it enhances immune system, nervous system development, and microbiota.
- Passive exercises are recommended for newborns since they foster correct growth, especially among preterm newborns.
- There is weak evidence for cognitive benefits of physical activity in preschool children.
- Increased physical activity may provide motor and cognitive benefits across preadolescence.
- Aerobic exercise seems to be the most used type of activity to improve cognitive processes in childhood and adolescence.
- There seems to be an association between diet in early childhood and cognitive function.
- Poor dietary patterns are associated with increased brain dysfunction.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Nikolaidis, P.A.; Belando, N.; Tornero-Aguilera, J.F. Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic. Physiol. Behav. 2022, 244, 113667. [Google Scholar] [CrossRef]
- Martínez-González, M.B.; Arenas-Rivera, C.; Cardozo-Rusinque, A.; Morales-Cuadro, A.; Acuña-Rodríguez, M.; Turizo-Palencia, Y.; Clemente-Suárez, V. Psychological and Gender Differences in a Simulated Cheating Coercion Situation at School. Soc. Sci. 2021, 10, 265. [Google Scholar] [CrossRef]
- Beltrán-Velasco, A.I.; Mendoza-Castejón, D.; Fuentes-García, J.P.; Clemente-Suárez, V.J. Behavioural, psychological, and physiological stress markers and academic performance in immigrant and non-immigrant preschool and school students. Physiol. Behav. 2020, 225, 113081. [Google Scholar] [CrossRef]
- Zama, A.M.; Uzumcu, M. Fetal and Neonatal Exposure to the Endocrine Disruptor Methoxychlor Causes Epigenetic Alterations in Adult Ovarian Genes. Endocrinology 2009, 150, 4681–4691. [Google Scholar] [CrossRef] [PubMed]
- Ekamper, P.; van Poppel, F.; Stein, A.D.; Lumey, L.H. Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between age 18–63 years. Soc. Sci. Med. 2014, 119, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobi, E.W.; Slieker, R.C.; Luijk, R.; Dekkers, K.F.; Stein, A.D.; Xu, K.M.; Slagboom, P.E.; van Zwet, E.W.; Lumey, L.H.; Heijmans, B.T.; et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 2018, 4, 2375–2548. [Google Scholar] [CrossRef] [Green Version]
- Ravelli, A.C.; van der Meulen, J.H.; Osmond, C.; Barker, D.J.; Bleker, O.P. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr. 1999, 70, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Roseboom, T.; de Rooij, S.; Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 2006, 82, 485–491. [Google Scholar] [CrossRef]
- Painter, R.; Osmond, C.; Gluckman, P.; Hanson, M.; Phillips, D.; Roseboom, T. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 1243–1249. [Google Scholar] [CrossRef]
- Micha, R.; Rogers, P.J.; Nelson, M. Glycaemic index and glycaemic load of breakfast predict cognitive function and mood in school children: A randomised controlled trial. Br. J. Nutr. 2011, 106, 1552–1561. [Google Scholar] [CrossRef]
- Fleming, T.P.; Kwong, W.Y.; Porter, R.; Ursell, E.; Fesenko, I.; Wilkins, A.; Miller, D.J.; Watkins, A.; Eckert, J.J. The Embryo and Its Future. Biol. Reprod. 2004, 71, 1046–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratesi, A. Skeletal muscle: An endocrine organ. Clin. Cases Miner. Bone Metab. 2013, 10, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Castejón, D.; Clemente-Suárez, V.J. Autonomic Profile, Physical Activity, Body Mass Index and Academic Performance of School Students. Sustainability 2020, 12, 6718. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.; Ramos-Campo, D.; Mielgo-Ayuso, J.; Dalamitros, A.; Nikolaidis, P.; Hormeño-Holgado, A.; Tornero-Aguilera, J. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021, 13, 1924. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.; Navarro-Jiménez, E.; Ruisoto, P.; Dalamitros, A.; Beltran-Velasco, A.; Hormeño-Holgado, A.; Laborde-Cárdenas, C.; Tornero-Aguilera, J. Performance of Fuzzy Multi-Criteria Decision Analysis of Emergency System in COVID-19 Pandemic. An Extensive Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 5208. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.; Navarro-Jiménez, E.; Jimenez, M.; Hormeño-Holgado, A.; Martinez-Gonzalez, M.; Benitez-Agudelo, J.; Perez-Palencia, N.; Laborde-Cárdenas, C.; Tornero-Aguilera, J. Impact of COVID-19 Pandemic in Public Mental Health: An Extensive Narrative Review. Sustainability 2021, 13, 3221. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Hormeño-Holgado, A.; Jiménez, M.; Benitez-Agudelo, J.C.; Navarro-Jiménez, E.; Perez-Palencia, N.; Maestre-Serrano, R.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic. Vaccines 2020, 8, 236. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martínez-González, M.B.; Benitez-Agudelo, J.C.; Navarro-Jiménez, E.; Beltran-Velasco, A.I.; Ruisoto, P.; Arroyo, E.D.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Impact of the COVID-19 Pandemic on Mental Disorders. A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 10041. [Google Scholar] [CrossRef]
- Ferraro, Z.M.; Gaudet, L.; Adamo, K.B. The Potential Impact of Physical Activity During Pregnancy on Maternal and Neonatal Outcomes. Obstet. Gynecol. Surv. 2012, 67, 99–110. [Google Scholar] [CrossRef]
- Berghella, V.; Saccone, G. Exercise in pregnancy! Am. J. Obstet. Gynecol. 2017, 216, 335–337. [Google Scholar] [CrossRef]
- Liu, J.; Laditka, J.N.; Mayer-Davis, E.J.; Pate, R.R. Does Physical Activity During Pregnancy Reduce the Risk of Gestational Diabetes among Previously Inactive Women? Birth 2008, 35, 188–195. [Google Scholar] [CrossRef]
- Kramer, M.S.; McDonald, S.W. Aerobic exercise for women during pregnancy. Cochrane Database Syst. Rev. 2006, 3, CD000180. [Google Scholar] [CrossRef]
- De Oliveria Melo, A.S.; Silva, J.L.P.; Tavares, J.S.; Barros, V.O.; Leite, D.F.B.; Amorim, M.M.R. Effect of a Physical Exercise Program During Pregnancy on Uteroplacental and Fetal Blood Flow and Fetal Growth. Obstet. Gynecol. 2012, 120, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, B.B.; Amini, S.B.; Kappeler, K. Exercise in Pregnancy. Med. Sci. Sports Exerc. 2012, 44, 2263–2269. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; van der Waerden, J.; Melchior, M.; Bolze, C.; El-Khoury, F.; Pryor, L. Physical activity during pregnancy and postpartum depression: Systematic review and meta-analysis. J. Affect. Disord. 2019, 246, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Pelaez, M.; Lopez, C.; Montejo, R.; Coteron, J. Exercise during pregnancy reduces the rate of cesarean and instrumental deliveries: Results of a randomized controlled trial. J. Matern. Neonatal Med. 2012, 25, 2372–2376. [Google Scholar] [CrossRef] [Green Version]
- Pennick, V.; Liddle, S.D. Interventions for preventing and treating pelvic and back pain in pregnancy. In Cochrane Database of Systematic Reviews; Pennick, V., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Marín-Jiménez, N.; Acosta-Manzano, P.; Borges-Cosic, M.; Baena-García, L.; Coll-Risco, I.; Romero-Gallardo, L.; Aparicio, V.A. Association of self-reported physical fitness with pain during pregnancy: The Gestafit Project. Scand. J. Med. Sci. Sports 2019, 29, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wei, Y.; Zhang, X.; Zhang, Y.; Xu, Q.; Sun, Y.; Su, S.; Zhang, L.; Liu, C.; Feng, Y.; et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am. J. Obstet. Gynecol. 2017, 216, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Magro-Malosso, E.R.; Saccone, G.; di Tommaso, M.; Roman, A.; Berghella, V. Exercise during pregnancy and risk of gestational hypertensive disorders: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 96, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Magro-Malosso, E.R.; Saccone, G.; di Mascio, D.; di Tommaso, M.; Berghella, V. Exercise during pregnancy and risk of preterm birth in overweight and obese women: A systematic review and meta-analysis of randomized controlled trials. Acta Obstet. Gynecol. Scand. 2017, 96, 263–273. [Google Scholar] [CrossRef]
- Di Mascio, D.; Magro-Malosso, E.R.; Saccone, G.; Marhefka, G.D.; Berghella, G.D. Exercise during pregnancy in normal-weight women and risk of preterm birth: A systematic review and meta-analysis of randomized controlled trials. Am. J. Obstet. Gynecol. 2016, 215, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adesegun, D.; Cai, C.; Sivak, A.; Chari, R.; Davenport, M.H. Prenatal Exercise and Pre-gestational Diseases: A Systematic Review and Meta-analysis. J. Obstet. Gynaecol. Canada 2019, 41, 1134–1143.e17. [Google Scholar] [CrossRef] [PubMed]
- Gavard, J.A.; Artal, R. Effect of Exercise on Pregnancy Outcome. Clin. Obstet. Gynecol. 2008, 51, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.A.L.; Wolfe, L.A.; Mottola, M.F.; MacKinnon, C. Joint SOGC/CSEP Clinical Practice Guideline: Exercise in Pregnancy and the Postpartum Period. Can. J. Appl. Physiol. 2003, 28, 329–341. [Google Scholar] [CrossRef]
- Aguilar-Cordero, M.J.; Sánchez-García, J.C.; Rodriguez-Blanque, R.; Sánchez-López, A.M.; Mur-Villar, N. Moderate Physical Activity in an Aquatic Environment During Pregnancy (SWEP Study) and Its Influence in Preventing Postpartum Depression. J. Am. Psychiatr. Nurses Assoc. 2019, 25, 112–121. [Google Scholar] [CrossRef]
- Jackson, M.R.; Gott, P.; Lye, S.J.; Knox Ritchie, J.W.; Clapp, J.F. The effects of maternal aerobic exercise on human placental development: Placental volumetric composition and surface areas. Placenta 1995, 16, 179–191. [Google Scholar] [CrossRef]
- Clapp, J.F.; Capeless, E.L. Neonatal morphometrics after endurance exercise during pregnancy. Am. J. Obstet. Gynecol. 1990, 163, 1805–1811. [Google Scholar] [CrossRef]
- Clapp, J.F.; Kim, H.; Burciu, B.; Schmidt, S.; Petry, K.; Lopez, B. Continuing regular exercise during pregnancy: Effect of exercise volume on fetoplacental growth. Am. J. Obstet. Gynecol. 2002, 186, 142–147. [Google Scholar] [CrossRef]
- May, L.E.; Glaros, A.; Yeh, H.W.; Clapp, J.F.; Gustafson, K.M. Aerobic exercise during pregnancy influences fetal cardiac autonomic control of heart rate and heart rate variability. Early Hum. Dev. 2010, 86, 213–217. [Google Scholar] [CrossRef]
- Gillman, M.W.; Rifas-Shiman, S.; Berkey, C.S.; Field, A.E.; Colditz, G.A. Maternal Gestational Diabetes, Birth Weight, and Adolescent Obesity. Pediatrics 2003, 111, e221–e226. [Google Scholar] [CrossRef]
- Barker, D.J.P. The Developmental Origins of Insulin Resistance. Horm. Res. Paediatr. 2005, 64, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.T.; Phelan, S.T. Nutrition During Pregnancy. Obstet. Gynecol. Clin. 2008, 35, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, H.; Myszczyszyn, G.; Dębińska, A.; Myszkal, A.; Boznański, A.; Hirnle, L. Diet in pregnancy—More than food. Eur. J. Pediatr. 2017, 176, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Chatzi, L.; Torrent, M.; Romieu, I.; Garcia-Esteban, R.; Ferrer, C.; Vioque, J.; Kogevinas, M.; Sunyer, J. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax 2008, 63, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Z.; Shi, B.; Chen, C.; Shi, J.; Wu, J.; Xu, X. Maternal malnutrition, environmental exposure during pregnancy and the risk of non-syndromic orofacial clefts. Oral Dis. 2011, 17, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Rundle, R.; Soltani, H.; Duxbury, A. Exploring the views of young women and their healthcare professionals on dietary habits and supplementation practices in adolescent pregnancy: A qualitative study. BMC Nutr. 2018, 4, 45. [Google Scholar] [CrossRef]
- Larsen, V.G.; Ierodiakonou, D.; Jarrold, K.; Cunha, S.; Chivinge, J.; Robinson, Z.; Geoghegan, N.; Ruparelia, A.; Devani, P.; Trivella, M.; et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med. 2018, 15, e1002507. [Google Scholar] [CrossRef]
- Scholl, T.O.; Johnson, W.G. Folic acid: Influence on the outcome of pregnancy. Am. J. Clin. Nutr. 2000, 71, 1295S–1303S. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Godfrey, K.M.; Poston, L.; Szajewska, H.; Van Goudoever, J.B.; De Waard, M.; Brands, B.; Grivell, R.M.; Deussen, A.R.; Dodd, J.M.; et al. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Ann. Nutr. Metab. 2019, 74, 93–106. [Google Scholar] [CrossRef]
- Koletzko, B.; Boey, C.C.; Campoy, C.; Carlson, S.E.; Chang, N.; Guillermo-Tuazon, M.A.; Joshi, S.; Prell, C.; Quak, S.H.; Sjarif, D.R.; et al. Current Information and Asian Perspectives on Long-Chain Polyunsaturated Fatty Acids in Pregnancy, Lactation, and Infancy: Systematic Review and Practice Recommendations from an Early Nutrition Academy Workshop. Ann. Nutr. Metab. 2014, 65, 49–80. [Google Scholar] [CrossRef]
- Godfrey, K.M.; Costello, P.M.; Lillycrop, K.A. The developmental environment, epigenetic biomarkers and long-term health. J. Dev. Orig. Health Dis. 2015, 6, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Bischoff-Ferrari, H.A. Vitamin D—Role in Pregnancy and Early Childhood. Ann. Nutr. Metab. 2011, 59, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L. Prevalence of High Body Mass Index in US Children and Adolescents, 2007–2008. JAMA 2010, 303, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worobey, J. Physical activity in infancy: Developmental aspects, measurement, and importance. Am. J. Clin. Nutr. 2014, 99, 729S–733S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, J.G.B.; Alves, G.V. Effects of physical activity on children’s growth. J. De Pediatr. 2019, 95, 72–78. [Google Scholar] [CrossRef]
- De Vries, A.; Huiting, H.; van den Heuvel, E.; L’Abée, C.; Corpeleijn, E.; Stolk, R. An activity stimulation programme during a child’s first year reduces some indicators of adiposity at the age of two-and-a-half. Acta Paediatr. 2015, 104, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, B.J.; Schmidt, M.D.; Huynh, Q.L.; Dwyer, T.; Venn, A.J.; Magnussen, C.G. Tracking of muscular strength and power from youth to young adulthood: Longitudinal findings from the Childhood Determinants of Adult Health Study. J. Sci. Med. Sport 2017, 20, 927–931. [Google Scholar] [CrossRef]
- Twisk, J.W.R. Physical Activity Guidelines for Children and Adolescents. Sports Med. 2001, 31, 617–627. [Google Scholar] [CrossRef]
- Li, R.; O’Connor, L.; Buckley, D.; Specker, B. Relation of activity levels to body fat in infants 6 to 12 months of age. J. Pediatr. 1995, 126, 353–357. [Google Scholar] [CrossRef]
- Slining, M.M.; Adair, L.; Goldman, B.; Borja, J.; Bentley, M. Infant temperament contributes to early infant growth: A prospective cohort of African American infants. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Harrod, C.S.; Chasan-Taber, L.; Reynolds, R.M.; Fingerlin, T.E.; Glueck, D.H.; Brinton, J.T.; Dabelea, D. Physical Activity in Pregnancy and Neonatal Body Composition. Obstet. Gynecol. 2014, 124, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, D.W.; Eaton, W.O. Sex differences in the activity level of infants. Infant Child Dev. 1999, 8, 1–17. [Google Scholar] [CrossRef]
- Moyer-Mileur, L.J.; Brunstetter, V.; McNaught, T.P.; Gill, G.; Chan, G.M. Daily Physical Activity Program Increases Bone Mineralization and Growth in Preterm Very Low Birth Weight Infants. Pediatrics 2000, 106, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Diego, M.A.; Field, T.; Hernandez-Reif, M. Preterm infant weight gain is increased by massage therapy and exercise via different underlying mechanisms. Early Hum. Dev. 2014, 90, 137–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litmanovitz, I.; Erez, H.; Eliakim, A.; Bauer-Rusek, S.; Arnon, S.; Regev, R.H.; Sirota, G.; Nemet, D. The Effect of Assisted Exercise Frequency on Bone Strength in Very Low Birth Weight Preterm Infants: A Randomized Control Trial. Calcif. Tissue Res. 2016, 99, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Schulzke, S.M.; Kaempfen, S.; Trachsel, D.; Patole, S.K. Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst. Rev. 2014, 4, CD005387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stalnaker, K.A.; Poskey, G.A. Osteopenia of Prematurity: Does Physical Activity Improve Bone Mineralization in Preterm Infants? Neonatal Netw. 2016, 35, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.C.; Sankar, M.J.; Thukral, A.; Natarajan, C.K.; Deorari, A.K.; Paul, V.K.; Agarwal, R. Assisted Physical Exercise for Improving Bone Strength in Preterm Infants Less than 35 Weeks Gestation: A Randomized Controlled Trial. Indian Pediatr. 2017, 55, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loprinzi, P.D.; Cardinal, B.J. Measuring Children’s Physical Activity and Sedentary Behaviors. J. Exerc. Sci. Fit. 2011, 9, 15–23. [Google Scholar] [CrossRef]
- Carranza Carnicero, J.A.; Pérez-López, J.; del Carmen González Salinas, M.; Martínez-Fuentes, M.T. A longitudinal study of temperament in infancy: Stability and convergence of measures. Eur. J. Pers. 2000, 14, 21–37. [Google Scholar] [CrossRef]
- Van Cauwenberghe, E.; Gubbels, J.; De Bourdeaudhuij, I.; Cardon, G. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Xue, M.; Mei, Z.; Oetomo, S.B.; Chen, W. A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates. Sensors 2016, 16, 2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitchford, E.A.; Ketcheson, L.R.; Kwon, H.-J.; Ulrich, D.A. Minimum Accelerometer Wear Time in Infants: A Generalizability Study. J. Phys. Act. Health 2017, 14, 421–428. [Google Scholar] [CrossRef]
- Kuzik, N.; Poitras, V.J.; Tremblay, M.S.; Lee, E.-Y.; Hunter, S.; Carson, V. Systematic review of the relationships between combinations of movement behaviours and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.E.; Cormack, B.E.; Alexander, T.; Alsweiler, J.M.; Bloomfield, F.H. Advances in nutrition of the newborn infant. Lancet 2017, 389, 1660–1668. [Google Scholar] [CrossRef]
- Wiedmeier, J.E.; Joss-Moore, L.; Lane, R.H.; Neu, J. Early postnatal nutrition and programming of the preterm neonate. Nutr. Rev. 2011, 69, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Henderickx, J.G.E.; Zwittink, R.D.; Van Lingen, R.A.; Knol, J.; Belzer, C. The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Front. Cell. Infect. Microbiol. 2019, 9, 85. [Google Scholar] [CrossRef]
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; Franca, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.S.; Chalmers, B.; Hodnett, E.D.; Sevkovskaya, Z.; Dzikovich, I.; Shapiro, S.; Collet, J.-P.; Vanilovich, I.; Mezen, I.; Ducruet, T.; et al. Promotion of Breastfeeding Intervention Trial (PROBIT). JAMA 2001, 285, 413–420. [Google Scholar] [CrossRef]
- Jacobi, S.K.; Odle, J. Nutritional Factors Influencing Intestinal Health of the Neonate. Adv. Nutr. Int. Rev. J. 2012, 3, 687–696. [Google Scholar] [CrossRef] [Green Version]
- Morales, E.; Bustamante, M.; Gonzalez, J.R.; Guxens, M.; Torrent, M.; Mendez, M.; Garcia-Esteban, R.; Julvez, J.; Forns, J.; Vrijheid, M.; et al. Genetic Variants of the FADS Gene Cluster and ELOVL Gene Family, Colostrums LC-PUFA Levels, Breastfeeding, and Child Cognition. PLoS ONE 2011, 6, e17181. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.S.; Matush, L.; Vanilovich, I.; Platt, R.; Bogdanovich, N.; Sevkovskaya, Z.; Dzikovich, I.; Shishko, G.; Mazer, B. Effect of prolonged and exclusive breast feeding on risk of allergy and asthma: Cluster randomised trial. BMJ 2007, 335, 815. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.S.; Matush, L.; Vanilovich, I.; Platt, R.W.; Bogdanovich, N.; Sevkovskaya, Z.; Dzikovich, I.; Shishko, G.; Collet, J.P.; Martin, R.M.; et al. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: Evidence from a large randomized trial. Am. J. Clin. Nutr. 2007, 86, 1717–1721. [Google Scholar] [CrossRef]
- Martin, R.M.; Kramer, M.S.; Patel, R.; Rifas-Shiman, S.L.; Thompson, J.; Yang, S.; Vilchuck, K.; Bogdanovich, N.; Hameza, M.; Tilling, K.; et al. Effects of Promoting Long-term, Exclusive Breastfeeding on Adolescent Adiposity, Blood Pressure, and Growth Trajectories. JAMA Pediatr. 2017, 171, e170698. [Google Scholar] [CrossRef] [PubMed]
- Christian, P.; Mullany, L.C.; Hurley, K.M.; Katz, J.; Black, R.E. Nutrition and maternal, neonatal, and child health. Semin. Perinatol. 2015, 39, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Edmond, K.M.; Zandoh, C.; Quigley, M.A.; Amenga-Etego, S.; Owusu-Agyei, S.; Kirkwood, B.R. Delayed Breastfeeding Initiation Increases Risk of Neonatal Mortality. Pediatrics 2006, 117, e380–e386. [Google Scholar] [CrossRef] [Green Version]
- Mullany, L.C.; Katz, J.; Li, Y.M.; Khatry, S.K.; LeClerq, S.C.; Darmstadt, G.L.; Tielsch, J. Breast-Feeding Patterns, Time to Initiation, and Mortality Risk among Newborns in Southern Nepal. J. Nutr. 2008, 138, 599–603. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.R.; Mullany, L.C.; Rahmathullah, L.; Katz, J.; Thulasiraj, R.D.; Sheeladevi, S.; Coles, C.; Tielsch, J. Breast-feeding initiation time and neonatal mortality risk among newborns in South India. J. Perinatol. 2010, 31, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Fleddermann, M.; Rauh-Pfeiffer, A.; Demmelmair, H.; Holdt, L.; Teupser, D.; Koletzko, B. Effects of a Follow-On Formula Containing Isomaltulose (Palatinose™) on Metabolic Response, Acceptance, Tolerance and Safety in Infants: A Randomized-Controlled Trial. PLoS ONE 2016, 11, e0151614. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Lien, E.L.; Capeding, M.R.; Fitzgerald, M.; Ramanujam, K.; Yuhas, R.; Northington, R.; Lebumfacil, J.; Wang, L.; DeRusso, P.A. Effects of Term Infant Formulas Containing High sn-2 Palmitate with and Without Oligofructose on Stool Composition, Stool Characteristics, and Bifidogenicity. J. Craniofacial Surg. 2014, 59, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Indrio, F.; Martini, S.; Francavilla, R.; Corvaglia, L.; Cristofori, F.; Mastrolia, S.A.; Neu, J.; Rautava, S.; Spena, G.R.; Raimondi, F.; et al. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Front. Pediatr. 2017, 5, 178. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Brands, B.; Poston, L.; Godfrey, K.; Demmelmair, H. Early nutrition programming of long-term health. Proc. Nutr. Soc. 2012, 71, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, M.; Walker, W.A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 2013, 4, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, Y.M.; Tomicic, S.; Lundberg, A.; Böttcher, M.F.; Björkstén, B.; Sverremark-Ekström, E.; Jenmalm, M.C. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses: Gut microbiota and immune responses. Clin. Exp. Allergy 2009, 39, 1842–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.M.; Staels, B. Peroxisome Proliferator-Activated Receptor γ and Adipose Tissue—Understanding Obesity-Related Changes in Regulation of Lipid and Glucose Metabolism. J. Clin. Endocrinol. Metab. 2006, 92, 386–395. [Google Scholar] [CrossRef]
- Mahony, S.M.O.; Stilling, R.; Dinan, T.; Cryan, J.F. The microbiome and childhood diseases: Focus on brain-gut axis. Birth Defects Res. Part C Embryo Today Rev. 2015, 105, 296–313. [Google Scholar] [CrossRef]
- Maqsood, R.; Stone, T.W. The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem. Res. 2016, 41, 2819–2835. [Google Scholar] [CrossRef] [PubMed]
- Keunen, K.; van Elburg, R.M.; van Bel, F.; Benders, M.J.N.L. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr. Res. 2014, 77, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deverman, B.E.; Patterson, P.H. Cytokines and CNS Development. Neuron 2009, 64, 61–78. [Google Scholar] [CrossRef]
- Collins, L.M.; Toulouse, A.; Connor, T.J.; Nolan, Y.M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 2012, 62, 2154–2168. [Google Scholar] [CrossRef] [Green Version]
- Lampron, A.; ElAli, A.; Rivest, S. Innate Immunity in the CNS: Redefining the Relationship between the CNS and Its Environment. Neuron 2013, 78, 214–232. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.L.; Combs, C.K.; Rosenberger, T.A. Modulation of Inflammatory Cytokines and Mitogen-activated Protein Kinases by Acetate in Primary Astrocytes. J. Neuroimmune Pharmacol. 2012, 8, 287–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villeda, S.A.; Luo, J.; Mosher, K.I.; Zou, B.; Britschgi, M.; Bieri, G.; Stan, T.M.; Fainberg, N.; Ding, Z.; Eggel, A.; et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011, 477, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caron, E.; Ciofi, P.; Prevot, V.; Bouret, S.G. Alteration in Neonatal Nutrition Causes Perturbations in Hypothalamic Neural Circuits Controlling Reproductive Function. J. Neurosci. 2012, 32, 11486–11494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, A.W.; Olude, O. Nutrition Education and Counselling Provided during Pregnancy: Effects on Maternal, Neonatal and Child Health Outcomes. Paediatr. Perinat. Epidemiol. 2012, 26, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Timmons, B.W.; LeBlanc, A.G.; Carson, V.; Gorber, S.C.; Dillman, C.; Janssen, I.; Kho, M.E.; Spence, J.C.; Stearns, J.A.; Tremblay, M.S. Systematic review of physical activity and health in the early years (aged 0–4 years). Appl. Physiol. Nutr. Metab. 2012, 37, 773–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, P. The physical activity levels of preschool-aged children: A systematic review. Early Child. Res. Q. 2008, 23, 547–558. [Google Scholar] [CrossRef]
- Carson, V.; Lee, E.-Y.; Hewitt, L.; Jennings, C.; Hunter, S.; Kuzik, N.; Stearns, J.A.; Unrau, S.P.; Poitras, V.J.; Gray, C.; et al. Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years). BMC Public Health 2017, 17, 33–63. [Google Scholar] [CrossRef] [Green Version]
- Timmons, B.W.; Naylor, P.-J.; Pfeiffer, K.A. Physical activity for preschool children—how much and how? This article is part of a supplement entitled Advancing physical activity measurement and guidelines in Canada: A scientific review and evidence-based foundation for the future of Canadian physical activity guidelines co-published by Applied Physiology, Nutrition, and Metabolism and the Canadian Journal of Public Health. It may be cited as Appl. Physiol. Nutr. Metab. 32(Suppl. 2E) or as Can. J. Public Health 98(Suppl. 2). Appl. Physiol. Nutr. Metab. 2007, 32, S122–S134. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Carson, V.; Choquette, L.; Gorber, S.C.; Dillman, C.; Duggan, M.; Gordon, M.J.; Hicks, A.; Janssen, I.; et al. Canadian Physical Activity Guidelines for the Early Years (aged 0–4 years). Appl. Physiol. Nutr. Metab. 2012, 37, 345–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.; Ritz, P. Physical activity at 9–12 months and fatness at 2 years of age. Am. J. Hum. Biol. 2001, 13, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.L.; Nguyen, U.-S.D.T.; Rothman, K.J.; Cupples, L.A.; Ellison, R.C. Preschool Physical Activity Level and Change in Body Fatness in Young Children: The Framingham Children’s Study. Am. J. Epidemiol. 1995, 142, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Ku, L.C.; Shapiro, L.R.; Crawford, P.B.; Huenemann, R.L. Body composition and physical activity in 8-year-old children. Am. J. Clin. Nutr. 1981, 34, 2770–2775. [Google Scholar] [CrossRef] [PubMed]
- Specker, B.; Binkley, T. Randomized Trial of Physical Activity and Calcium Supplementation on Bone Mineral Content in 3- to 5-Year-Old Children. J. Bone Miner. Res. 2003, 18, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, L.S. The Impact of physical-physicological activity on infants’ growth and development. Nurs. Res. 1972, 21, 210–219. [Google Scholar] [CrossRef]
- Reilly, J.; Jackson, D.; Montgomery, C.; Kelly, L.; Slater, C.; Grant, S.; Paton, J. Total energy expenditure and physical activity in young Scottish children: Mixed longitudinal study. Lancet 2004, 363, 211–212. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A. How can a traditional Greek dances programme affect the motor proficiency of pre-school children? Res. Dance Educ. 2004, 5, 127–138. [Google Scholar] [CrossRef]
- Sääkslahti, A.; Numminen, P.; Varstala, V.; Helenius, H.; Tammi, A.; Viikari, J.; Välimäki, I. Physical activity as a preventive measure for coronary heart disease risk factors in early childhood. Scand. J. Med. Sci. Sports 2004, 14, 143–149. [Google Scholar] [CrossRef]
- Metcalf, B.S.; Jeffery, A.N.; Hosking, J.; Voss, L.D.; Sattar, N.; Wilkin, T.J. Objectively Measured Physical Activity and Its Association With Adiponectin and Other Novel Metabolic Markers. Diabetes Care 2009, 32, 468–473. [Google Scholar] [CrossRef]
- Ruiz-Ariza, A.; Casuso, R.A.; Suarez-Manzano, S.; Martínez-López, E.J. Effect of augmented reality game Pokémon GO on cognitive performance and emotional intelligence in adolescent young. Comput. Educ. 2018, 116, 49–63. [Google Scholar] [CrossRef]
- Kharofa, R.Y.; Kalkwarf, H.J.; Khoury, J.C.; Copeland, K.A. Are Mealtime Best Practice Guidelines for Child Care Centers Associated with Energy, Vegetable, and Fruit Intake? Child. Obes. 2016, 12, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013, 7, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Raine, L.B.; Donovan, S.M.; Hillman, C.H., IV. The Cognitive Implications of Obesity and Nutrition in Childhood. Monogr. Soc. Res. Child Dev. 2014, 79, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Rosales, F.J.; Reznick, J.S.; Zeisel, S.H. Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: Identifying and addressing methodological barriers. Nutr. Neurosci. 2009, 12, 190–202. [Google Scholar] [CrossRef] [Green Version]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasir, M.T.M.; Norimah, A.K.; Hazizi, A.S.; Nurliyana, A.R.; Loh, S.H.; Suraya, I. Child feeding practices, food habits, anthropometric indicators and cognitive performance among preschoolers in Peninsular Malaysia. Appetite 2012, 58, 525–530. [Google Scholar] [CrossRef]
- Farr, S.A.; Banks, W.A.; Morley, J.E. Effects of leptin on memory processing. Peptides 2006, 27, 1420–1425. [Google Scholar] [CrossRef]
- Mond, J.M.; Stich, H.; Hay, P.; Kraemer, A.; Baune, B.T. Associations between obesity and developmental functioning in pre-school children: A population-based study. Int. J. Obes. 2007, 31, 1068–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; O’Connell, A.A. Obesity, High-Calorie Food Intake, and Academic Achievement Trends Among U.S. School Children. J. Educ. Res. 2012, 105, 391–403. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Q.; Jackson, J.C.; Zhang, J. Overweight Is Associated with Decreased Cognitive Functioning among School-age Children and Adolescents. Obesity 2008, 16, 1809–1815. [Google Scholar] [CrossRef]
- Werthmann, J.; Jansen, A.; Vreugdenhil, A.C.E.; Nederkoorn, C.; Schyns, G.; Roefs, A. Food through the child’s eye: An eye-tracking study on attentional bias for food in healthy-weight children and children with obesity. Health Psychol. 2015, 34, 1123–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, S.; Edward, B.S.; Kurpad, A.V. Micronutrient deficiency and cognitive and physical performance in Indian children. Eur. J. Clin. Nutr. 2013, 67, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, K.; Agarwal, A. Vitamin B12 supplementation and cognitive scores in geriatric patients having Mild Cognitive Impairment. Funct. Foods Health Dis. 2016, 6, 578. [Google Scholar] [CrossRef] [Green Version]
- Kalita, J.; Misra, U.K. Vitamin B12 deficiency neurological syndromes: Correlation of clinical, MRI and cognitive evoked potential. J. Neurol. 2008, 255, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Genuis, S.J.; Schwalfenberg, G.K.; Hiltz, M.N.; Vaselenak, S.A. Vitamin D Status of Clinical Practice Populations at Higher Latitudes: Analysis and Applications. Int. J. Environ. Res. Public Health 2009, 6, 151–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, I.; Griebler, U.; Kien, C.; Auer, S.; Klerings, I.; Hammer, R.; Holzer, P.; Gartlehner, G. Vitamin D deficiency as a risk factor for dementia: A systematic review and meta-analysis. BMC Geriatr. 2017, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latimer, C.S.; Brewer, L.D.; Searcy, J.L.; Chen, K.-C.; Popović, J.; Kraner, S.D.; Thibault, O.; Blalock, E.M.; Landfield, P.W.; Porter, N.M. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc. Natl. Acad. Sci. USA 2014, 111, E4359–E4366. [Google Scholar] [CrossRef] [Green Version]
- Hansen, S.N.; Tveden-Nyborg, P.; Lykkesfeldt, J. Does Vitamin C Deficiency Affect Cognitive Development and Function? Nutrients 2014, 6, 3818–3846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaiova, I.; Muchova, J.; Nagyova, Z.; Wang, D.; Li, J.; Orszaghova, Z.; Michael, D.R.; Plummer, S.F.; Ďuračková, Z. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: A randomised controlled pilot study. Eur. J. Clin. Nutr. 2014, 69, 373–379. [Google Scholar] [CrossRef]
- Hörnell, A.; Lagström, H.; Lande, B.; Thorsdottir, I. Protein intake from 0 to 18 years of age and its relation to health: A systematic literature review for the 5th Nordic Nutrition Recommendations. Food Nutr. Res. 2013, 57. [Google Scholar] [CrossRef] [Green Version]
- Leidy, H.J.; Todd, C.B.; Zino, A.Z.; Immel, J.E.; Mukherjea, R.; Shafer, R.S.; Ortinau, L.C.; Braun, M. Consuming High-Protein Soy Snacks Affects Appetite Control, Satiety, and Diet Quality in Young People and Influences Select Aspects of Mood and Cognition. J. Nutr. 2015, 145, 1614–1622. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.K.; Sunram-Lea, S.; Wesnes, K. Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biol. Psychol. 2012, 89, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, L.; Lluch, A.; Blundell, J.E. Macronutrients and mental performance. Nutrition 2000, 16, 1021–1034. [Google Scholar] [CrossRef]
- Stephen, A.; Alles, M.; De Graaf, C.; Fleith, M.; Hadjilucas, E.; Isaacs, E.; Maffeis, C.; Zeinstra, G.; Matthys, C.; Gil, A. The role and requirements of digestible dietary carbohydrates in infants and toddlers. Eur. J. Clin. Nutr. 2012, 66, 765–779. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, J.; Guardia-Laguarta, C.; Area-Gomez, E. The fat brain. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.K.; Valentine, C.J.; Keim, S.A. DHA supplementation: Current implications in pregnancy and childhood. Pharmacol. Res. 2012, 70, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, K.W.; Boone, K.M.; Gracious, B.; Klebanoff, M.A.; Rogers, L.K.; Rausch, J.; Bartlett, C.; Coury, D.L.; Keim, S.A. Effect of Omega-3 and -6 Supplementation on Language in Preterm Toddlers Exhibiting Autism Spectrum Disorder Symptoms. J. Autism Dev. Disord. 2017, 47, 3358–3369. [Google Scholar] [CrossRef]
- Bhatia, H.S.; Agrawal, R.; Sharma, S.; Huo, Y.-X.; Ying, Z.; Gomez-Pinilla, F. Omega-3 Fatty Acid Deficiency during Brain Maturation Reduces Neuronal and Behavioral Plasticity in Adulthood. PLoS ONE 2011, 6, e28451. [Google Scholar] [CrossRef] [Green Version]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical Activity for Cognitive and Mental Health in Youth: A Systematic Review of Mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef]
- Zeng, N.; Ayyub, M.; Sun, H.; Wen, X.; Xiang, P.; Gao, Z. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review. BioMed Res. Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, V.; Hunter, S.; Kuzik, N.; Wiebe, S.A.; Spence, J.C.; Friedman, A.; Tremblay, M.S.; Slater, L.; Hinkley, T. Systematic review of physical activity and cognitive development in early childhood. J. Sci. Med. Sport 2015, 19, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Sibley, B.A.; Etnier, J.L. The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Biddle, S.J.H.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Booth, J.; Tomporowski, P.; Boyle, J.; Ness, A.; Joinson, C.; Leary, S.; Reilly, J. Associations between executive attention and objectively measured physical activity in adolescence: Findings from ALSPAC, a UK cohort. Ment. Health Phys. Act. 2013, 6, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Rasberry, C.N.; Lee, S.M.; Robin, L.; Laris, B.A.; Russell, L.A.; Coyle, K.K.; Nihiser, A.J. The association between school-based physical activity, including physical education, and academic performance: A systematic review of the literature. Prev. Med. 2011, 52 (Suppl. 1), S10–S20. [Google Scholar] [CrossRef]
- Singh, A.S.; Saliasi, E.; Van Den Berg, V.; Uijtdewilligen, L.; De Groot, R.H.M.; Jolles, J.; Andersen, L.B.; Bailey, R.; Chang, Y.-K.; Diamond, A.; et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019, 53, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.-A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Tandon, P.S.; Tovar, A.; Jayasuriya, A.T.; Welker, E.; Schober, D.J.; Copeland, K.; Dev, D.A.; Murriel, A.L.; Amso, D.; Ward, D.S. The relationship between physical activity and diet and young children’s cognitive development: A systematic review. Prev. Med. Rep. 2016, 3, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Zhang, H.; Zhang, J.; Zhou, T.; Zhang, J.; Zhao, G.; Fang, H.; Sun, S.; Wang, R.; Chen, P. Preschoolers’ Technology-Assessed Physical Activity and Cognitive Function: A Cross-Sectional Study. J. Clin. Med. 2018, 7, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavilidi, M.-F.; Okely, A.D.; Chandler, P.; Paas, F. Effects of Integrating Physical Activities into a Science Lesson on Preschool Children’s Learning and Enjoyment. Appl. Cogn. Psychol. 2017, 31, 281–290. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Fisher, A.; E Boyle, J.M.; Paton, J.Y.; Tomporowski, P.; Watson, C.; McColl, J.H.; Reilly, J.J. Effects of a physical education intervention on cognitive function in young children: Randomized controlled pilot study. BMC Pediatr. 2011, 11, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellemberg, D.; St-Louis-Deschênes, M. The effect of acute physical exercise on cognitive function during development. Psychol. Sport Exerc. 2010, 11, 122–126. [Google Scholar] [CrossRef]
- Reed, J.A.; Einstein, G.; Hahn, E.; Hooker, S.P.; Gross, V.P.; Kravitz, J. Examining the Impact of Integrating Physical Activity on Fluid Intelligence and Academic Performance in an Elementary School Setting: A Preliminary Investigation. J. Phys. Act. Health 2010, 7, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Martínez-Hortelano, J.A.; Martínez-Vizcaíno, V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef]
- De Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Garrido-Miguel, M.; Martínez-Vizcaíno, V. Academic Achievement and Physical Activity: A Meta-analysis. Pediatrics 2017, 140, e20171498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustamante, E.E.; Williams, C.F.; Davis, C.L. Physical Activity Interventions for Neurocognitive and Academic Performance in Overweight and Obese Youth. Pediatr. Clin. 2016, 63, 459–480. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Cornejo, I.; Tejero-Gonzalez, C.M.; Sallis, J.F.; Veiga, O.L. Physical activity and cognition in adolescents: A systematic review. J. Sci. Med. Sport 2015, 18, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Spruit, A.; Assink, M.; van Vugt, E.; van der Put, C.; Stams, G.J. The effects of physical activity interventions on psychosocial outcomes in adolescents: A meta-analytic review. Clin. Psychol. Rev. 2016, 45, 56–71. [Google Scholar] [CrossRef] [PubMed]
- van der Fels, I.M.J.; Te Wierike, S.C.M.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: A systematic review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Adamo, K.; Wilson, S.; Harvey, A.L.J.; Grattan, K.P.; Naylor, P.-J.; Temple, V.; Goldfield, G.S. Does Intervening in Childcare Settings Impact Fundamental Movement Skill Development? Med. Sci. Sports Exerc. 2016, 48, 926–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laukkanen, A.; Pesola, A.J.; Heikkinen, R.; Sääkslahti, A.K.; Finni, T. Family-Based Cluster Randomized Controlled Trial Enhancing Physical Activity and Motor Competence in 4–7-Year-Old Children. PLoS ONE 2015, 10, e0141124. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Edwards, N.M.; Clark, J.F.; Best, T.M.; Sallis, R.E. Sixty minutes of what? A developing brain perspective for activating children with an integrative exercise approach. Br. J. Sports Med. 2015, 49, 1510–1516. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef] [Green Version]
- Robinson, L.R.; Bitsko, R.H.; Thompson, R.A.; Dworkin, P.H.; McCabe, M.A.; Peacock, G.; Thorpe, P.G. CDC Grand Rounds: Addressing Health Disparities in Early Childhood. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 769–772. [Google Scholar] [CrossRef]
- Bryan, P.D.J.; Osendarp, P.D.S.; Hughes, M.D.; Calvaresi, M.E.; Baghurst, P.D.K.; Van Klinken, P.D.J.-W. Nutrients for Cognitive Development in School-aged Children. Nutr. Rev. 2004, 62, 295–306. [Google Scholar] [CrossRef]
- Benton, D. The influence of dietary status on the cognitive performance of children. Mol. Nutr. Food Res. 2010, 54, 457–470. [Google Scholar] [CrossRef]
- Isaacs, E.; Oates, J. Nutrition and cognition: Assessing cognitive abilities in children and young people. Eur. J. Nutr. 2008, 47, 4–24. [Google Scholar] [CrossRef]
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Sachdev, P.S.; Butterworth, P. Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Med. 2015, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Refsum, H.; Yajnik, C.S.; Gadkari, M.; Schneede, J.; Vollset, S.E.; Örning, L.; Guttormsen, A.B.; Joglekar, A.; Sayyad, M.G.; Ulvik, A.; et al. Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin deficiency in Asian Indians. Am. J. Clin. Nutr. 2001, 74, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Florence, M.D.; Asbridge, M.; Veugelers, P.J. Diet Quality and Academic Performance. J. Sch. Health 2008, 78, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gispert-Llaurado, M.; Perez-Garcia, M.; Escribano, J.; Closa-Monasterolo, R.; Luque, V.; Grote, V.; Weber, M.; Torres-Espínola, F.; Czech-Kowalska, J.; Verduci, E.; et al. Fish consumption in mid-childhood and its relationship to neuropsychological outcomes measured in 7–9 year old children using a NUTRIMENTHE neuropsychological battery. Clin. Nutr. 2016, 35, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Cuberos, R.; Zurita-Ortega, F.; Martínez-Martínez, A.; Olmedo-Moreno, E.M.; Castro-Sánchez, M. Adherence to the Mediterranean Diet Is Related to Healthy Habits, Learning Processes, and Academic Achievement in Adolescents: A Cross-Sectional Study. Nutrients 2018, 10, 1566. [Google Scholar] [CrossRef] [Green Version]
- Haapala, E.A.; Eloranta, A.-M.; Venäläinen, T.; Jalkanen, H.; Poikkeus, A.-M.; Ahonen, T.; Lindi, V.; Lakka, T.A. Diet quality and academic achievement: A prospective study among primary school children. Eur. J. Nutr. 2016, 56, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Von Stumm, S. You are what you eat? Meal type, socio-economic status and cognitive ability in childhood. Intelligence 2012, 40, 576–583. [Google Scholar] [CrossRef]
- Adolphus, K.; Lawton, C.L.; Champ, C.L.; Dye, L. The Effects of Breakfast and Breakfast Composition on Cognition in Children and Adolescents: A Systematic Review. Adv. Nutr. Int. Rev. J. 2016, 7, 590S–612S. [Google Scholar] [CrossRef]
- Burrows, T.; Goldman, S.; Pursey, K.; Lim, R. Is there an association between dietary intake and academic achievement: A systematic review. J. Hum. Nutr. Diet. 2016, 30, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Bleiweiss-Sande, R.; Chui, K.; Wright, C.; Amin, S.; Anzman-Frasca, S.; Sacheck, J.M. Associations between Food Group Intake, Cognition, and Academic Achievement in Elementary Schoolchildren. Nutrients 2019, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante-Sanchez, A.; Villegas-Mora, B.E.; Martínez-Guardado, I.; Tornero-Aguilera, J.F.; Ardigò, L.P.; Nobari, H.; Clemente-Suárez, V.J. Physical Activity and Nutritional Pattern Related to Maturation and Development. Sustainability 2022, 14, 16958. https://doi.org/10.3390/su142416958
Bustamante-Sanchez A, Villegas-Mora BE, Martínez-Guardado I, Tornero-Aguilera JF, Ardigò LP, Nobari H, Clemente-Suárez VJ. Physical Activity and Nutritional Pattern Related to Maturation and Development. Sustainability. 2022; 14(24):16958. https://doi.org/10.3390/su142416958
Chicago/Turabian StyleBustamante-Sanchez, Alvaro, Bella Esperanza Villegas-Mora, Ismael Martínez-Guardado, Jose Francisco Tornero-Aguilera, Luca Paolo Ardigò, Hadi Nobari, and Vicente Javier Clemente-Suárez. 2022. "Physical Activity and Nutritional Pattern Related to Maturation and Development" Sustainability 14, no. 24: 16958. https://doi.org/10.3390/su142416958
APA StyleBustamante-Sanchez, A., Villegas-Mora, B. E., Martínez-Guardado, I., Tornero-Aguilera, J. F., Ardigò, L. P., Nobari, H., & Clemente-Suárez, V. J. (2022). Physical Activity and Nutritional Pattern Related to Maturation and Development. Sustainability, 14(24), 16958. https://doi.org/10.3390/su142416958