How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Image Classification
2.3.1. Preprocessing
2.3.2. Object-Oriented Algorithm
2.4. LSA and LST Calculation Using the SEBAL Algorithm
3. Results
3.1. LULC Map of the Study Area
3.2. LSA and LST across the Study Area
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houghton, R. Aboveground forest biomass and the global carbon balance. Glob. Change Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Zhang, K.; Ali, A.; Antonarakis, A.; Moghaddam, M.; Saatchi, S.; Tabatabaeenejad, A.; Chen, R.; Jaruwatanadilok, S.; Cuenca, R.; Crow, W.T. The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: An analysis using radar-derived estimates of root-zone soil moisture. J. Geophys. Res. Biogeosci. 2019, 124, 3208–3231. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; Sun, L.; Wang, H.; He, R.; Huang, Y.; Chang, X. Climate warming over 1961–2019 and impacts on permafrost zonation in Northeast China. J. For. Res. 2022, 33, 767–788. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Bakhtiari, H.R.; Tien Bui, D. Multi-hazards vulnerability assessment of southern coasts of Iran. J. Environ. Manag. 2019, 252, 109628. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Yin, L.; Zheng, W. Statistical analysis of regional air temperature characteristics before and after dam construction. Urban Clim. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, B.; Lan, R.; Liu, D.; Wu, B.; Li, Y.; Li, Q.; Zhou, H.; Liu, M.; Liu, W. Experimental study on failure model of tailing dam overtopping under heavy rainfall. Lithosphere 2022, 2022, 5922501. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting urban land use change based on cellular automata and the PLUS model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Zheng, W.; Ge, L.; Tian, J.; Liu, Y.; Yang, B.; Liu, S. Evaluation of empirical atmospheric models using Swarm-C satellite data. Atmosphere 2022, 13, 294. [Google Scholar] [CrossRef]
- Adnan, R.M.I.; Dai, H.-L.; Ewees, A.A.; Shiri, J.; Kisi, O.; Zounemat-Kermani, M. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Rep. 2022, 8, 12063–12080. [Google Scholar]
- Kim, Y.; Kimball, J.S.; Zhang, K.; Didan, K.; Velicogna, I.; McDonald, K.C. Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. Int. J. Remote Sens. 2014, 35, 3700–3721. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Shuai, Y.; Duan, J.; Xie, D.; Zhang, Q.; Zhao, R. Impact of BRDF spatiotemporal smoothing on land surface albedo estimation. Remote Sens. 2022, 14, 2001. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Li, Z.; Liu, Z.; Wang, J.; Huang, P. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J. Hydrol. 2020, 590, 125440. [Google Scholar] [CrossRef]
- Klein, R.J.; Midglev, G.; Preston, B.; Alam, M.; Berkhout, F.; Dow, K.; Shaw, M. Climate Change 2014: Impacts, Adaptation, and Vulnerability; IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Lenton, T.M.; Vaughan, N.E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 2009, 9, 5539–5561. [Google Scholar] [CrossRef] [Green Version]
- Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 2009, 36, L19703. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Ten Hoeve, J.E. Effects of urban surfaces and white roofs on global and regional climate. J. Clim. 2012, 25, 1028–1044. [Google Scholar] [CrossRef]
- Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 2000, 408, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Carrer, D.; Pique, G.; Ferlicoq, M.; Ceamanos, X.; Ceschia, E. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 2018, 13, 044030. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [Google Scholar] [CrossRef]
- Zhang, Y.; Sharma, S.; Bista, M.; Li, M. Characterizing changes in land cover and forest fragmentation from multitemporal Landsat observations (1993–2018) in the Dhorpatan Hunting Reserve, Nepal. J. For. Res. 2022, 33, 159–170. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Entekhabi, D.; Jackson, T.J.; Hu, L.; Peng, Z.; Yao, P.; Li, S.; Kang, C.S. Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sens. Environ. 2021, 257, 112321. [Google Scholar] [CrossRef]
- Kumari, P.; Kapur, S.; Garg, V.; Kumar, K. Effect of surface temperature on energy consumption in a calibrated building: A case study of Delhi. Climate 2020, 8, 71. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Yang, F.; Xiao, J. Study on pixel entanglement theory for imagery classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5409518. [Google Scholar] [CrossRef]
- Zhou, G.; Deng, R.; Zhou, X.; Long, S.; Li, W.; Lin, G.; Li, X. Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geosci. Remote Sens. Lett. 2021, 19, 6502705. [Google Scholar] [CrossRef]
- Dash, P.; Göttsche, F.-M.; Olesen, F.-S.; Fischer, H. Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods. J. Indian Soc. Remote Sens. 2001, 29, 23–30. [Google Scholar] [CrossRef]
- Ghent, D.; Veal, K.; Trent, T.; Dodd, E.; Sembhi, H.; Remedios, J. A new approach to defining uncertainties for MODIS land surface temperature. Remote Sens. 2019, 11, 1021. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Song, L.; Peng, Z.; Yang, J.; Luan, G.; Chu, C.; Ding, J.; Feng, S.; Jing, Y.; Xie, Z. Night-time light remote sensing mapping: Construction and analysis of ethnic minority development index. Remote Sens. 2021, 13, 2129. [Google Scholar] [CrossRef]
- Tian, H.; Huang, N.; Niu, Z.; Qin, Y.; Pei, J.; Wang, J. Mapping winter crops in China with multi-source satellite imagery and phenology-based algorithm. Remote Sens. 2019, 11, 820. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Song, D.; Yuan, C.; Nie, W. An image recognition method for the deformation area of open-pit rock slopes under variable rainfall. Measurement 2022, 188, 110544. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Asadi, M.; Kamran, K.V. Comparison of SEBAL, METRIC, and ALARM algorithms for estimating actual evapotranspiration of wheat crop. Theor. Appl. Climatol. 2022, 149, 327–337. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Ghaleb, F.; Mario, M.; Sandra, A.N. Regional landsat-based drought monitoring from 1982 to 2014. Climate 2015, 3, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Aitkenhead, M.; Aalders, I. Classification of landsat thematic mapper imagery for land cover using neural networks. Int. J. Remote Sens. 2008, 29, 2075–2084. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, B.; Wu, B.; Zhang, C.; Liu, W. Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases. Int. J. Min. Sci. Technol. 2022, in press. [Google Scholar] [CrossRef]
- Adnan, R.M.I.; Ewees, A.A.; Parmar, K.S.; Yaseen, Z.M.; Shahid, S.; Kisi, O. The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction. Appl. Soft Comput. 2022, 131, 109739. [Google Scholar]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Münch, Z.; Gibson, L.; Palmer, A. Monitoring effects of land cover change on biophysical drivers in rangelands using albedo. Land 2019, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Azizah, S.N.N.; June, T.; Salmayenti, R.; Ma’rufah, U.; Koesmaryono, Y. Land use change impact on normalized difference vegetation index, surface albedo, and heat fluxes in Jambi province: Implications to rainfall. Agromet 2022, 36, 51–59. [Google Scholar] [CrossRef]
- Popkin, G. How much can forests fight climate change? Nature 2019, 565, 280–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Wang, S.; Dai, J.; Wang, J.; Chen, J.; Shugart, H.H. Forest greening increases land surface albedo during the main growing period between 2002 and 2019 in China. J. Geophys. Res. Atmos. 2021, 126, e2020JD033582. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Gandomkar, A.; Almodarresi, A.; Ramesht, M.H. Estimation of land surface temperature and vegetation effects on surface temperature by using bands of MODIS images (case study: Toysercan basin). Geogr. Reg. Plan. 2016, 6, 23–32. [Google Scholar]
- Nadizadeh, S.S.; Hamzeh, S.; Kiavarz, M. Investigating spatial and temporal land use changes and urban development and its effect on the increase of land surface temperature using Landsat multi-temporal images (case study: Gorgan city). Geogr. Urban Plan. Res. GUPR 2018, 6, 545–568. [Google Scholar]
- Feizizadeh, B.; Blaschke, T. Thermal remote sensing for land surface temperature monitoring: Maraqeh County, Iran. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2217–2220. [Google Scholar]
- Merga, B.B.; Moisa, M.B.; Negash, D.A.; Ahmed, Z.; Gemeda, D.O. Land surface temperature variation in response to land-use and land-cover dynamics: A case of Didessa River sub-basin in Western Ethiopia. Earth Syst. Environ. 2022, 6, 803–815. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate 2019, 7, 99. [Google Scholar] [CrossRef]
County | Area (km2) | Climate | Minimum Height (m) | Maximum Height (m) | Average Minimum Monthly Temperature (°C) | Average Maximum Monthly Temperature (°C) | Average Annual Rainfall (mm) |
---|---|---|---|---|---|---|---|
Ardabil | 2017 | Cold semidry | 1157 | 4409 | −8 (January) | 24.6 (August) | 307 |
Namin | 945 | Mediterranean | 1204 | 2391 | −6.6 (February) | 25.1 (August) | 378 |
Astara | 322 | Mild and humid | −9 | 1910 | 2.7 (February) | 29.7 (June) | 1328 |
LULC | Description | Area | |
---|---|---|---|
ha | % | ||
Fallow | Agricultural land that was not planted during imaging. | 153,809 | 45.57 |
Rangeland | Uncultivated shrub lands, grasslands, and woodlands suitable for grazing and wild animals. | 69,940.4 | 20.72 |
Farmland | Lands with crops at the time of imaging. | 64,247.4 | 19.03 |
Forest | Naturally dominated by different trees species. | 28,981.9 | 8.59 |
Urban | Humanmade infrastructure, such as houses, factories, and asphalt roads, that have caused the impenetrability of the land surface. | 11,832.6 | 3.5 |
Orchard | Land devoted to the cultivation of fruit and nut trees or shrubs that is maintained for food production. | 4352.25 | 1.29 |
Barren land | Land where no traces of human manipulation can be found, and its vegetation/pasture is very weak, so the land is not in a productive or active state. | 2156 | 0.64 |
Snow cover | A layer of snow that covers ground surface. | 989.875 | 0.29 |
Water body | Areas completely covered by water, such as lakes, reservoirs, rivers, streams, and ponds. | 563.875 | 0.17 |
Urban forest | Urban forests include trees and shrubs in yards, along streets and utility corridors, in protected areas, and in watersheds. These include individual trees, street trees, and green spaces with trees, along with the vegetation and soil beneath them. | 535.688 | 0.16 |
Afforestation lands | Areas with newly established forests through planting or seedlings. | 127.688 | 0.04 |
Total | All land uses/covers across the study area. | 337,536.7 | 100 |
LULC | Summer | Winter | ||
---|---|---|---|---|
LST | LSA | LST | LSA | |
Farmland | 33 | 0.2 | −4.14 | 0.84 |
Fallow | 37 | 0.25 | −3.09 | 0.78 |
Barren land | 36 | 0.33 | −0.69 | 0.75 |
Forest | 26 | 0.16 | 4.14 | 0.21 |
Orchard | 35 | 0.19 | −4.45 | 0.72 |
Rangeland | 37 | 0.2 | −5.74 | 0.70 |
Urban | 32 | 0.32 | −4.4 | 0.56 |
Urban forest | 30 | 0.24 | −1.86 | 0.59 |
Water body | 24 | 0.11 | −3.55 | 0.46 |
Afforestation | 28 | 0.16 | −0.22 | 0.69 |
Snow cover | 33 | 0.18 | −21.36 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varamesh, S.; Mohtaram Anbaran, S.; Shirmohammadi, B.; Al-Ansari, N.; Shabani, S.; Jaafari, A. How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo? Sustainability 2022, 14, 16963. https://doi.org/10.3390/su142416963
Varamesh S, Mohtaram Anbaran S, Shirmohammadi B, Al-Ansari N, Shabani S, Jaafari A. How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo? Sustainability. 2022; 14(24):16963. https://doi.org/10.3390/su142416963
Chicago/Turabian StyleVaramesh, Saeid, Sohrab Mohtaram Anbaran, Bagher Shirmohammadi, Nadir Al-Ansari, Saeid Shabani, and Abolfazl Jaafari. 2022. "How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo?" Sustainability 14, no. 24: 16963. https://doi.org/10.3390/su142416963
APA StyleVaramesh, S., Mohtaram Anbaran, S., Shirmohammadi, B., Al-Ansari, N., Shabani, S., & Jaafari, A. (2022). How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo? Sustainability, 14(24), 16963. https://doi.org/10.3390/su142416963