Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Climatic Conditions
2.3. Experimental Design, Treatments and Measurements
2.4. Statistical Analysis
3. Results
3.1. Productivity of Monoculture and Multi-Species Swards
3.2. Botanical Composition of the Swards
3.3. The Yield of Cuts in Experimental Years
3.4. Crude Protein in Herbage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Dai, Z.; Jager, H.I.; Wullschleger, S.D.; Xu, J.; Schadt, C.W. Influences of nitrogen fertilization and climate regime on the above-ground biomass yields of miscanthus and switchgrass: A meta-analysis. Renew. Sustain. Energy Rev. 2019, 108, 303–311. [Google Scholar] [CrossRef]
- Perkins, L.B.; Ahlering, M.; Larson, D.L. Looking to the future: Key points for sustainable management of northern Great Plains grasslands. Restor. Ecol. 2019, 27, 1212–1219. [Google Scholar] [CrossRef] [Green Version]
- Hetzer, J.; Huth, A.; Taubert, F. The importance of plant trait variability in grasslands: A modelling study. Ecol. Model. 2021, 453, 109606. [Google Scholar] [CrossRef]
- Roeder, A.; Schweingruber, F.H.; Ebeling, A.; Eisenhauer, N.; Fischer, M.; Roscher, C. Plant diversity effects on plant longevity and their relationships to population stability in experimental grasslands. J. Ecol. 2021, 109, 2566–2579. [Google Scholar] [CrossRef]
- Grace, J.; Anderson, T.; Seabloom, E. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 2016, 529, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.S.; Huth, A.; Taubert, F. Influences of traits and processes on productivity and functional composition in grasslands: A modeling study. Ecol. Model. 2021, 440, 109395. [Google Scholar] [CrossRef]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Goslee, S.C.; Veith, T.L.; Skinner, H.; Comas, L.H. Optimizing ecosystem function by manipulating pasture community composition. Basic Appl. Ecol. 2013, 14, 630–641. [Google Scholar] [CrossRef]
- Bogdziewicz, M.; Kelly, D.; Thomas, P.A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat. Plants 2020, 6, 88–94. [Google Scholar] [CrossRef]
- Duarte, R.D.C.; Santos, C.S.; Vasconcelos, M.W. Legume Responses and Adaptations to Nutrient Deficiencies. In The Plant Family Fabaceae; Springer: Singapore, 2020; pp. 373–392. [Google Scholar] [CrossRef]
- Mitran, T.; Meena, R.S.; Lal, R.; Layek, J.; Kumar, S.; Datta, R. Role of Soil Phosphorus on Legume Production. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 487–510. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Leiber, F. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 2020, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Raduła, M.W.; Szymura, T.H.; Szymura, M.; Swacha, G.; Kącki, Z. Effect of environmental gradients, habitat continuity and spatial structure on vascular plant species richness in semi-natural grasslands. Agric. Ecosyst. Environ. 2020, 300, 106974. [Google Scholar] [CrossRef]
- Van Oijen, M.; Bellocchi, G.; Höglind, M. Effects of Climate Change on Grassland Biodiversity and Productivity: The Need for a Diversity of Models. Agronomy 2018, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Dikšaitytė, A.; Viršilė, A.; Žaltauskaitė, J.; Januškaitienė, I.; Praspaliauskas, M.; Pedišius, N. Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions? Plant Sci. 2020, 291, 110333. [Google Scholar] [CrossRef]
- Gogoi, N.; Baruah, K.K.; Meena, R.S. Grain Legumes: Impact on Soil Health and Agroecosystem. Legumes Soil Health Sustain. Manag. 2018, 58, 511–539. [Google Scholar] [CrossRef]
- Clúa, J.; Roda, C.; Zanetti, M.E.; Blanco, F.A. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes 2018, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, G.; Bommarco, R.; Wanger, C.T.; Kremen, C.; Heijden, M.G.A.; Liebman, M.; Sara, H. Agricultural diversification promotes multiple ecosystem services without compromising yield. Ecology 2020, 6, 1715. [Google Scholar] [CrossRef] [PubMed]
- Calanca, P.; Deléglise, C.; Martin, R.; Carrère, P.; Mosimann, E. Testing the ability of a simple grassland model to simulate the seasonal effects of drought on herbage growth. Field Crops Res. 2016, 187, 12–23. [Google Scholar] [CrossRef]
- Moulin, T.; Perasso, A.; Calanca, P.; Gillet, F. DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands. Ecol. Model. 2021, 439, 109345. [Google Scholar] [CrossRef]
- Moloney, T.; Sheridan, H.; Grant, J.; O’Riordan, E.G.; O’Kiely, P. Yield of binary and multi-species swards relative to single-species swards in intensive silage systems. Ir. J. Agric. Food Res. 2020, 59, 12–26. [Google Scholar] [CrossRef]
- Frew, A.; Weston, L.A.; Gurr, G.M. Silicon reduces herbivore performance via different mechanisms, depending on host–plant species. Aust. Ecol. 2019, 44, 1092–1097. [Google Scholar] [CrossRef]
- Grange, G.; Finn, J.A.; Brophy, C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 2021, 58, 1864–1875. [Google Scholar] [CrossRef]
- Melts, I.; Lanno, K.; Sammul, M. Fertilising semi-natural grasslands may cause long-term negative effects on both biodiversity and ecosystem stability. J. Appl. Ecol. 2018, 55, 1951–1955. [Google Scholar] [CrossRef]
- Cummins, S.; Finn, J.A.; Richards, K.G.; Lanigan, G.J.; Grange, G.; Brophy, C.; Cardenas, L.M.; Misselbrook, T.H.; Reynolds, C.K.; Krol, D.J. Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Sci. Total Environ. 2021, 792, 148163. [Google Scholar] [CrossRef] [PubMed]
- Abalos, D.; De Deyn, G.B.; Kuyper, T.W.; Groenigen, J.W. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Glob. Chang. Biol. 2014, 20, 265–275. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources; World Soil Resources Reports; FAO: Rome, Italy, 2014; Volume 106, pp. 187–189. [Google Scholar]
- Brophy, C.; Finn, J.A.; Lüscher, A.; Suter, M.; Kirwan, L.; Sebastià, M.-T.; Helgadóttir, Á.; Baadshaug, O.H.; Bélanger, G.; Black, A.; et al. Major shifts in species’ relative abundance in grassland mixtures alongside positive effects of species diversity in yield: A continental-scale experiment. J. Ecol. 2017, 105, 1210–1222. [Google Scholar] [CrossRef]
- Schaub, S.; Buchmann, N.; Lüscher, A.; Finger, R. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 2020, 168, 106488. [Google Scholar] [CrossRef]
- Ball, K.R.; Power, S.A.; Brien, C.; Woodin, S.; Jewell, N.; Berger, B. High-throughput, image-based phenotyping reveals nutrient-dependent growth facilitation in a grass-legume mixture. PLoS ONE 2020, 15, e0239673. [Google Scholar] [CrossRef]
- Weggler, K.; Thumm, U.; Elsaesser, M. Development of Legumes After Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications. Agriculture 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Ergon, Å.; Seddaiu, G.; Korhonen, P.; Virkajärvi, P.; Bellocchi, G.; Jørgensen, M.; Østrem, L.; Reheul, D.; Volaire, F. How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change? Eur. J. Agron. 2018, 92, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Komainda, M.; Küchenmeister, F.; Küchenmeister, K.; Kayser, M.; Wrage-Mönnig, N.; Isselstein, J. Drought tolerance is determined by species identity and functional group diversity rather than by species diversity within multi-species swards. Eur. J. Agron. 2020, 119, 126116. [Google Scholar] [CrossRef]
- Finn, J.A.; Suter, M.; Haughey, E.; Hofer, D.; Lüscher, A. Greater gains in annual yields from increased plant diversity than losses from experimental drought in two temperate grasslands. Agric. Ecosyst. Environ. 2018, 258, 149–153. [Google Scholar] [CrossRef]
- Dhakal, D.; Islam, M.A. Grass-Legume Mixtures for Improved Soil Health in Cultivated Agroecosystem. Sustainability 2018, 10, 2718. [Google Scholar] [CrossRef] [Green Version]
Soil Depth cm | pHKCl Suspension | Phosphorus (P) Concentration mg kg−1 | Potassium (K) Concentration mg kg−1 | Corg % | Total Nitrogen (N) % |
---|---|---|---|---|---|
0–10 | 6.9 | 101 | 179 | 1.87 | 0.245 |
10–25 | 6.8 | 94 | 109 | 1.64 | 0.248 |
Treatments | FG | Sp-r | FG of Grasses | FG of Legumes | Grasses | Legumes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | L1 | L2 | L3 | L4 | |||||
(1) G1 | 1 | 1 | 1 | 1 | ||||||||
(2) G2 | 1 | 1 | 1 | 1 | ||||||||
(3) L1 + L2/G1 | 2 | 3 | 0.6 | 0.4 | 0.6 | 0.2 | 0.2 | |||||
(4) L1 + L2/G2 | 2 | 3 | 0.6 | 0.4 | 0.6 | 0.2 | 0.2 | |||||
(5) L1 + L2/G1 + G2 | 2 | 4 | 0.6 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | ||||
(6) L1 + L2/G1 + G2 + G3 + G4 | 2 | 6 | 0.6 | 0.4 | 0.15 | 0.15 | 0.15 | 0.15 | 0.2 | 0.2 | ||
(7) L3 + L1/G1 + G2 | 2 | 4 | 0.6 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | ||||
(8) L3 + L1/G1 + G2 + G3 + G4 | 2 | 6 | 0.6 | 0.4 | 0.15 | 0.15 | 0.15 | 0.15 | 0.2 | 0.2 | ||
(9) L4 + L1/G1 + G2 | 2 | 4 | 0.6 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | ||||
(10) L4 + L1/G1 + G2 + G3 + G4 | 2 | 6 | 0.6 | 0.4 | 0.15 | 0.15 | 0.15 | 0.15 | 0.2 | 0.2 | ||
(11) L1 + L2 + L3 + L4/G1 + G2 | 2 | 6 | 0.6 | 0.4 | 0.3 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | ||
(12) L1 + L2 + L3 + L4/G1 + G2 + G3 + G4 | 2 | 8 | 0.6 | 0.4 | 0.15 | 0.15 | 0.15 | 0.15 | 0.1 | 0.1 | 0.1 | 0.1 |
Crude Protein in Dry Matter, % 1st Year of Sward Use | ||||||
---|---|---|---|---|---|---|
N0 | N150 | |||||
Treatments | 1st Cut | 3rd Cut | Mean | 1st Cut | 3rd Cut | Mean |
1. G1 | 7.7 ab | 13.9 ab | 10.8 ab | 9.5 abcd | 16.0 ab | 12.7 ab |
2. G2 | 7.3 a | 12.8 a | 10.1 a | 8.7 a | 14.9 a | 11.8 a |
3. L1 + L2/G1 | 10.6 de | 19.1 cde | 14.8 def | 9.5 abcd | 16.1 ab | 12.8 abc |
4. L1 + L2/G2 | 9.6 bcde | 18.9 cde | 14.2 cd | 10.4 bcd | 16.4 abcd | 13.4 bcde |
5. L1 + L2/G1 + G2 | 9.8 bcde | 18.9 cde | 14.3 cd | 9.4 ab | 18.3 bcd | 13.8 bcde |
6. L1 + L2/G1 + G2 + G3 + G4 | 9.8 bcde | 18.8 cde | 14.3 cd | 11.1 d | 18.3 bcd | 14.7 e |
7. L3 + L1/G1 + G2 | 11.1 e | 21.1 efg | 16.1 def | 8.9 ab | 17.9 bcd | 13.4 bcde |
8. L3 + L1/G1 + G2 + G3 + G4 | 10.5 cde | 22.7 g | 16.6 f | 9.6 abcd | 19.6 d | 14.6 cde |
9. L4 + L1/G1 + G2 | 7.9 ab | 16.2 bc | 12.0 b | 9.6 abcd | 16.2 abcd | 12.9 abc |
10. L4 + L1/G1 + G2 + G3 + G4 | 8.1 abc | 16.7 cd | 12.4 bc | 9.1 ab | 16.6 abcd | 12.9abc |
11. L1 + L2 + L3 + L4/G1 + G2 | 10.8 de | 21.1 efg | 16.0 def | 9.2 ab | 16.9 abcd | 13.1 bc |
12. L1 + L2 + L3 + L4/G1 + G2 + G3 + G4 | 10.3 cde | 19.4 de | 14.9 def | 9.6 abcd | 16.8 abcd | 13.2 bc |
p-value between treatments in cuts | p < 0.05 | p < 0.05 | p < 0.05 | n.s. | p < 0.05 | p < 0.05 |
2nd year of sward use | ||||||
N0 | N150 | |||||
Treatments | 1st cut | 3rd cut | mean | 1st cut | 3rd cut | mean |
1. G1 | 9.0 a | 12.5 a | 10.8 a | 9.2 ab | 15.4 a | 12.3 a |
2. G2 | 9.0 a | 12.8 a | 10.9 a | 8.7 a | 15.8 abc | 12.2 a |
3. L1 + L2/G1 | 13.8 defg | 21.1 de | 17.4 cd | 10.6 cde | 17.3 bcd | 14.0 bc |
4. L1 + L2/G2 | 13.9 defg | 20.5 de | 17.2 cd | 11.1 cde | 17.5 cd | 14.3 bcd |
5. L1 + L2/G1 + G2 | 13.7 de | 19.7 bcde | 16.7 cd | 10.4 bcd | 17.5 cd | 13.9 bc |
6. L1 + L2/G1 + G2 + G3 + G4 | 13.9 defg | 20.8 de | 17.3 cd | 12.7 g | 17.6 cd | 15.1 cdef |
7. L3 + L1/G1 + G2 | 14.4 efg | 21.9 e | 18.2 cd | 11.5 defg | 19.8 ef | 15.7 ef |
8. L3 + L1/G1 + G2 + G3 + G4 | 15.8 g | 21.5 de | 18.7 d | 11.9 efg | 19.8 f | 15.9 f |
9. L4 + L1/G1 + G2 | 11.9 cd | 16.8 b | 14.4 b | 9.3 ab | 15.4 ab | 12.3 a |
10. L4 + L1/G1 + G2 + G3 + G4 | 11.0 bc | 17.3 bc | 14.2 b | 10.2 bc | 16.4 abc | 13.3 ab |
11. L1 + L2 + L3 + L4/G1 + G2 | 15.0 efg | 20.5 de | 17.8 cd | 11.0 cde | 19.8 ef | 15.4 def |
12. L1 + L2 + L3 + L4/G1 + G2 + G3 + G4 | 14.3 efg | 20.0 cde | 17.2 cd | 11.4 defg | 18.8 def | 15.1 cdef |
p-value between treatments in cuts | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šidlauskaitė, G.; Kemešytė, V.; Toleikienė, M.; Kadžiulienė, Ž. Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality. Sustainability 2022, 14, 1182. https://doi.org/10.3390/su14031182
Šidlauskaitė G, Kemešytė V, Toleikienė M, Kadžiulienė Ž. Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality. Sustainability. 2022; 14(3):1182. https://doi.org/10.3390/su14031182
Chicago/Turabian StyleŠidlauskaitė, Gintarė, Vilma Kemešytė, Monika Toleikienė, and Žydrė Kadžiulienė. 2022. "Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality" Sustainability 14, no. 3: 1182. https://doi.org/10.3390/su14031182
APA StyleŠidlauskaitė, G., Kemešytė, V., Toleikienė, M., & Kadžiulienė, Ž. (2022). Plant Diversity, Functional Group Composition and Legumes Effects versus Fertilisation on the Yield and Forage Quality. Sustainability, 14(3), 1182. https://doi.org/10.3390/su14031182