The Assessment of Morphological Diversity of Colchicum luteum L., an Economically Important Threatened Medicinal Plant of Kashmir Himalaya
Abstract
:1. Introduction
2. Material and Methods
3. Statistical Analysis
- P = number of characters studied, and
- Yij and Yik = are two transformed variables of the ith character for two genotypes.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinwari, Z.K.; Malik, S.; Karim, A.M.; Faisal, R.; Qaiser, M. Biological activities of commonly used medicinal plants from Ghazi Brotha, Attock district. Pak. J. Bot. 2015, 47, 113–120. [Google Scholar]
- Wani, M.Y.; Ganie, N.A.; Rather, R.A.; Rani, S.; Bhat, Z.A. Seri biodiversity: An important approach for improving quality of life. J. Ent. Zool. Stud. 2018, 6, 100–105. [Google Scholar]
- Yeshiwas, Y.; Tadele, E.; Tiruneh, W. The dynamics of medicinal plants utilization practice nexus its health and economic role in Ethiopia: A review paper. Int. J. Biodiv. Conserv. 2019, 11, 31–47. [Google Scholar]
- Howland, O. Fakes and chemicals: Indigenous medicine in contemporary Kenya and implications for health equity. Int. J. Equity Health 2020, 19, 1–2. [Google Scholar] [CrossRef]
- Kurnaz, M.L.; Kurnaz, I.A. Commercialization of medicinal bioeconomy resources and sustainability. Sust. Chem. Pharm. 2021, 22, 100484. [Google Scholar] [CrossRef]
- Hamilton, A.C. Medicinal plants, conservation and livelihoods. Biodiv. Conserv. 2004, 13, 1477–1517. [Google Scholar] [CrossRef]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Aftab, T.; Hakeem, K.R. Medicinal and Aromatic Plants: Healthcare and Industrial Applications; Springer Nature: Basingstoke, UK, 2021. [Google Scholar]
- Rather, R.A.; Wani, A.W.; Mumtaz, S.; Padder, S.A.; Khan, A.H.; Almohana, A.I.; Almojil, S.F.; Alam, S.S.; Baba, T.R. Bioenergy Bioenergy: A foundation to environmental sustainability in a changing global climate scenario. J King Saud Univ. Sci. 2021, 34, 101734. [Google Scholar] [CrossRef]
- Ross, I.A. Medicinal Plants of the World (Volume 3): Chemical Constituents, Traditional and Modern Medicinal Uses; Humana Press Inc.: Totowa, NJ, USA, 2005; pp. 110–132. [Google Scholar]
- Malik, S.; Bano, H.; Rather, R.A.; Ahmad, S. Cloud seeding; Its prospects and concerns in the modern world–A review. Int. J. Pure Appl. Biosci. 2018, 6, 791–796. [Google Scholar] [CrossRef]
- Edison, L.K.; Kumar, S.P.; Pradeep, N.S. Educating biodiversity. In Bioresources and Bioprocess in Biotechnology; Springer: Singapore, 2017; pp. 143–165. [Google Scholar]
- Heywood, V.H.; Iriondo, J.M. Plant conservation: Old problems, new perspectives. Biol. Conserv. 2003, 113, 321–335. [Google Scholar] [CrossRef]
- Zerabruk, S.; Yirga, G. Traditional knowledge of medicinal plants in Gindeberet district, Western Ethiopia. S. Afr. J. Bot. 2012, 78, 165–169. [Google Scholar] [CrossRef]
- Ripple, W.J.; Abernethy, K.; Betts, M.G.; Chapron, G.; Dirzo, R.; Galetti, M.; Levi, T.; Lindsey, P.A.; Macdonald, D.W.; Machovina, B.; et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 2016, 3, 160498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Khayatnezhad, M.; Minaeifar, A.A. Genetic diversity and relationships among Hypericum L. species by ISSR Markers: A high value medicinal plant from Northern of Iran. Caryologia 2021, 20, 97–107. [Google Scholar] [CrossRef]
- Rasool, R.; Fayaz, A.; Ul Shafiq, M.; Singh, H.; Ahmed, P. Land use land cover change in Kashmir Himalaya: Linking remote sensing with an indicator based DPSIR approach. Ecol. Indic. 2021, 125, 07447. [Google Scholar] [CrossRef]
- Shinwari, Z.K.; Gilani, S.S. Sustainable harvest of medicinal plants at Bulashbar Nullah, Astore (northern Pakistan). J. Ethnopharmacol. 2003, 84, 289–298. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Ahmad, M.; Shinwari, Z.K.; Shinwari, S. Taxonomic, pharmacognostic and physicochemical authentication of Colchicum luteum Baker (Suranjantalkh) from its commercial adulterant. Pak. J. Bot. 2016, 48, 2039. [Google Scholar]
- Bhattachar, S.K. Hand Book of Medicinal Plants; Pointer Publishers: Jaipur, India, 1998; p. 110. [Google Scholar]
- Dulloo, M.E.; Estrada Carmona, N.; Rana, J.C.; Yadav, R.; Grazioli, F. Varietal Threat Index for Monitoring Crop Diversity on Farms in Five Agro-Ecological Regions in India. Diversity 2021, 11, 514. [Google Scholar] [CrossRef]
- Bano, H.; Lone, F.A.; Bhat, J.I.; Rather, R.A.; Malik, S.; Bhat, M.A. Hokersar wet land of Kashmir: Its utility and factors responsible for its degradation. Plant Arch. 2018, 18, 1905–1910. [Google Scholar]
- Goded, S.; Ekroos, J.; Azcárate, J.G.; Guitian, J.A.; Smith, H.G. Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes. Agric. Ecosyst. Environ. 2019, 284, 106600. [Google Scholar] [CrossRef]
- Franklin, C.M.; Harper, K.A.; Clarke, M.J. Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can. J. For. Res. 2021, 51, 274–282. [Google Scholar] [CrossRef]
- Capraro, H.G. In the Alkaloids; Brossi, A., Ed.; Academic Press: Cambridge, MA, USA, 1984; Volume 23, pp. 1–70. [Google Scholar]
- Ondra, P.; Valka, I.; Vicar, J.; Sütlüpinar, N.; Simasnek, V. Chromatographic determination of constituents of the genus Colchicum (Liliaceae). J. Chromatogr. 1995, 704, 351–356. [Google Scholar] [CrossRef]
- Karlik, E.; Deger, M.; Erdal, U.Z.; Gozukirmizi, N. Pioneering in vitro studies for callus formation of colchicum chalcedonicum azn. Trakya Univ. J. Nat. Sci. 2020, 21, 131–137. [Google Scholar]
- Massarotti, A.; Coluccia, A.; Silvestri, R.; Sorba, G.; Brancale, A. The tubulin colchicine domain: A molecular modeling perspective. ChemMedChem 2012, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem. 2019, 1, 310–331. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, A.F.; Avery, A.G. Methods of inducing doubling of chromosomes in plants: By treatment with colchicine. J. Hered. 1937, 28, 393–411. [Google Scholar] [CrossRef]
- Manzoor, A.; Ahmad, T.; Bashir, M.A.; Hafiz, I.A.; Silvestri, C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 2019, 8, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, B.; Usman, M.; Khan, M.S.; Khan, I.A.; Khan, M.M. Identification of citrus polyploids using chromosome counts, morphological and SSR markers. Pak. J. Agric. Sci. 2015, 52, 1. [Google Scholar]
- Mehta, I.; Chaudhary, H.K.; Sharma, P.; Manoj, N.V.; Singh, K.; Sran, R.S. In vivo colchicine manipulation for enhancing DH production efficiency in Triticum durum using Imperata cylindrica-mediated chromosome elimination approach. Cereal Res. Commun. 2020, 48, 217–224. [Google Scholar] [CrossRef]
- Wechsler, B. Colchicine and Behcet’s disease: An efficacious treatment finally recognized! La Rev. De Med. Interne 2002, 23, 3. [Google Scholar]
- Anzengruber, F.; Graf, V.; Hafner, J.; Meienberger, N.; Guenova, E.; Dummer, R. Efficacy and safety of colchicine in inflammatory skin diseases: A retrospective, monocentric study in a large tertiary center. J. Dermatol. Treat. 2021, 2, 104–109. [Google Scholar] [CrossRef]
- Aisen, P.S.; Marin, D.B.; Brickman, A.M.; Santoro, J.; Fusco, M. Pilot tolerability studies of hydroxychloroquine and colchicine in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2001, 15, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Khan, H.; Bashir, S.; Ali, M. Antimicrobial bioassay of Colchicum luteum Baker. J. Enzym. Inhib. Med. Chem. 2006, 21, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Yakoubi, R.; Megateli, S.; Sadok, T.H.; Gali, L. Photoprotective, antioxidant, anticholinesterase activities and phenolic contents of different Algerian Mentha pulegium extracts. Biocatal. Agric. Biotechnol. 2021, 34, 102038. [Google Scholar] [CrossRef]
- Leonard, B.J.; Wilkinson, J.F. Desacetylmethylcolchicine in treatment of myeloid leukaemia. Br. Med. J. 1955, 1, 874. [Google Scholar] [CrossRef] [Green Version]
- Yue, Q.X.; Liu, X.; Guo, D.A. Microtubule-binding natural products for cancer therapy. Planta Medica 2010, 76, 1037–1043. [Google Scholar] [CrossRef] [Green Version]
- Toplan, G.G.; Gürer, C.; Afife, M. Importance of Colchicum species in modern therapy and its significance in Turkey. J. Pharm. Istanb. 2016, 46, 129–144. [Google Scholar]
- Rao, C.R. Advanced Statistical Methods in Biometrical Research, 1st ed.; John Wiley and Sons: New York, NY, USA, 1952. [Google Scholar]
- Rao, T.P.; Gomathinayagam, P. Genetic diversity in semi dry rice bunder different environments. Madras Agric. J. 1997, 84, 314–317. [Google Scholar]
- Ahmad, T.; Borah, P. Genetic diversity in glutinous rice germplasm of Assam. Oryza 1999, 36, 74–75. [Google Scholar]
- Hukumchand, P.S. Genetic diversity analysis for quantitative traits in advanced breeding lines of sesame (Sesamum indicum L.). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2970–2979. [Google Scholar]
- Haralayya, D.; Salimath, P.M.; Aghora, T.S.; Adivappar, N.; Ganga, P.S. Genetic diversity analysis by D2 clustering of yield and yield attributing traits in French bean (Phaseolus vulgaris L.). J. Pharmacogn. Phytochem. 2017, 6, 1331–1335. [Google Scholar]
- Arunachalam, V. Genetic distance in plant. Ind. J. Genet. Plant Breed. 1981, 41, 226–236. [Google Scholar]
- Bano, H.; Rather, R.A.; Bhat, J.I.A.; Bhat, T.T.; Azad, H.; Bhat, S.A.; Hamid, F.; Bhat, M.A. Effect of pre-sowing treatments using phytohormones and other dormancy breaking chemicals on seed germination of Dioscorea deltoidea Wall. Ex Griseb.: An Endangered Medicinal Plant Species of North Western Himalaya. Ecol. Environ. Conserv. 2021, 27, 253–260. [Google Scholar]
- Wani, M.Y.; Rather, R.A.; Bashir, M.; Shafi, S.; Rani, S. Effect of zinc on the larval growth and quality cocoon parameters of silkworm (Bombyx mori L.): A review. Int. J. Fauna Biol. Stud. 2018, 5, 31–36. [Google Scholar]
- Wani, M.Y.; Mir, M.R.; Mehraj, S.; Rather, R.A.; Ganie, N.A.; Baqual, M.F.; Sahaf, K.A.; Hussain, A. Effect of different types of mulches on the germination and seedling growth of mulberry (Morus SP.). Int. J. Chem. Stud. 2018, 6, 1364. [Google Scholar]
- Lakshman, S.S.; Chakraborty, N.R.; Debnath, S.; Kant, A. Genetic variability, character association and divergence studies in sunflower (Helianthus annuus L.) for improvement in oil yield. Afr. J. Biol. Sci. 2021, 3, 129–145. [Google Scholar] [CrossRef]
- Shyam, C.; Chandrakar, P.K.; Rastogi, N.K.; Banjare, U. Evaluation of Genetic Divergence Analysis in Wheat for Yield and its Component Characters. Int. J. Agric. Environ. Biotechnol. 2018, 11, 829–834. [Google Scholar] [CrossRef]
- Hazra, P.; Sahu, P.K.; Roy, U.; Dutta, R.; Roy, T.; Chattopadhyay, A. Heterosis in relation to multivariate genetic divergence in brinjal (Solanum melongena). Ind. J. Agric. Sci. 2010, 80, 119–124. [Google Scholar]
- Kumar, S.; Rattan, P.; Sharma, J.P.; Gupta, R.K. D2 analysis for fruit yield and quality components in tomato (Lycopersicon esculentum Mill.). Ind. J. Plant Gen. Res. 2010, 23, 318–320. [Google Scholar]
- Padder, S.A.; Mansoor, S.; Bhat, S.A.; Baba, T.R.; Rather, R.A.; Wani, S.M.; Popescu, S.M.; Sofi, S.; Aziz, M.A.; Hefft, D.I.; et al. Bacterial endophyte community dynamics in apple (Malus domestica Borkh.) germplasm and their evaluation for scab management strategies. J. Fungi 2021, 7, 923. [Google Scholar] [CrossRef]
- Rahevar, P.M.; Patel, J.N.; Axatjoshi, S.; Gediya, L.N. Genetic diversity study in chilli (Capsicum annuum L.) using multivariate approaches. Electr. J. Plant Breed. 2021, 12, 314–324. [Google Scholar]
- Singh, A.K.; Singh, S.B.; Singh, S.M. Genetic divergence in scented and fine genotypes of rice (Oryza sativa L.). Ann. Agric. Res. 1996, 17, 163–166. [Google Scholar]
- Wani, M.Y.; Mehraj, S.; Rather, R.A.; Rani, S.; Hajam, O.A.; Ganie, N.A.; Mir, M.R.; Baqual, M.F.; Kamili, A.S. Systemic acquired resistance (SAR): A novel strategy for plant protection with reference to mulberry. Int. J. Chem. Stud. 2018, 2, 1184–1192. [Google Scholar]
- Qian, Y.W.; He, K.M. Utilization of exotic rice germlasm resources in Guang-dong province. Crop. Genet. Resour. 1991, 2, 36–37. [Google Scholar]
- Ibrahim, A.U.; Yadav, B.; Anusha, R.; Magashi, A.I. Heterosis studies in durum wheat (Triticum durum L.). J. Genet. Genom. Plant Breed. 2020, 4, 2–8. [Google Scholar]
- Rather, R.A.; Bano, H.; Padder, S.A.; Perveen, K.; Al Masoudi LM Alam, S.S.; Hong, S.H. Anthropogenic Impacts on Phytosociological Features and Soil Microbial Health of Colchicum luteum L. An Endangered Medicinal Plant of North Western Himalaya. Saudi J. Biol. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Sardana, S.; Borthakur, D.N.; Lakhanpal, T.N. Genetic divergence in rice germplasm of Tripura. Oryza 1997, 34, 201–208. [Google Scholar]
Cluster No. | Number of Populations/Landraces | Name of the Population/Landrace |
---|---|---|
Cluster-1 | 17 | P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P12, P13, P14, P15, P17, P19, P20 |
Cluster-2 | 1 | P16 |
Cluster-3 | 2 | P11, P18 |
Cluster-4 | 3 | P22, P23, P29 |
Cluster-5 | 7 | P21, P24, P25, P26, P27, P28, P30 |
Cluster No. | Plant Height Plant−1 (cm) | Leaf Area Plant−1 (Sq.cm) | Leaf Length Plant−1 (cm) | Leaf Width (cm) Plant−1 | No. of Seeds Plant−1 | Corm Length Plant−1 (cm) | Corm Width Plant−1 (cm) | Fresh Weight of Corm Plant−1 (g) | Dry Weight of Corm Plant−1 (g) |
---|---|---|---|---|---|---|---|---|---|
1 | 14.32 d | 28.79 e1 | 11.66 e2 | 0.97 e3 | 11.41 e4 | 3.08 e5 | 2.05 e6 | 2.27 e7 | 1.58 ed |
2 | 19.20 c | 35.52 d1 | 15.31 D2 | 1.16 d3 | 12.02 d4 | 3.06 d5 | 2.07 d6 | 3.82 c7 | 2.21 c8 |
3 | 13.01 e | 36.03 c1 | 12.18 c2 | 1.15 c3 | 24.03 c4 | 3.50 c5 | 2.40 c6 | 2.55 d7 | 1.62 d8 |
4 | 27.71 b | 44.50 b1 | 15.54 b2 | 1.20 b3 | 24.05 b4 | 4.30 b5 | 2.63 b6 | 5.37 b7 | 2.94 b8 |
5 | 28.46 a | 47.01 a1 | 19.51 a2 | 1.32 a3 | 26.85 a4 | 5.15 a5 | 3.17 a6 | 6.87 a7 | 4.81 a8 |
Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|
Plant height | 10.21 | 35.30 | 19.8771 | 7.99874 |
Leaf area | 22.50 | 54.50 | 34.7786 | 9.08518 |
Leaf length | 8.44 | 20.10 | 13.9062 | 3.46952 |
Leaf width | 0.68 | 5.25 | 1.2232 | 0.80632 |
No. of seeds | 7.00 | 28.00 | 15.6786 | 6.63355 |
Corm length | 1.50 | 5.17 | 3.6034 | 0.95686 |
Corm width | 1.10 | 3.24 | 2.3239 | 0.59166 |
Fresh weight of corm | 1.10 | 8.45 | 3.7155 | 1.95302 |
Dry weight of corm | 0.67 | 6.32 | 2.3348 | 1.38865 |
Populations Characters /Codes | Plant Height | Leaf Area | Leaf Length | Leaf Width | No. of Seeds | Corm Length | Corm Width | Fresh Weight of Corm | Dry Weight of Corm |
---|---|---|---|---|---|---|---|---|---|
P(1) | 11.35 jkl | 24.25 op | 9.15 n | 0.71 b | 8.00 ef | 2.62 m | 1.43 bc | 1.08 f | 0.79 lm |
P(2) | 10.70 kl | 23.00 pq | 8.35 o | 0.70 b | 8.00 ef | 1.77 o | 1.11 c | 1.72 ef | 1.16 kl |
P(3) | 14.00 hi | 28.50 jk | 11.60 ij | 0.97 b | 11.00 def | 3.21 ghij | 2.05 abc | 2.43 def | 1.43 hijk |
P(4) | 12.40 ijk | 26.50 lmn | 10.70 k | 0.89 b | 10.00 def | 3.20 hijk | 1.93 abc | 2.16 def | 1.09 klm |
P(5) | 16.40 efg | 29.05 j | 11.95 i | 1.10 b | 14.00 d | 3.42 fg | 2.01 abc | 3.36 cde | 2.04 fg |
P(6) | 12.35 ijkl | 24.50 op | 9.83 m | 0.81 b | 12.00 def | 2.46 m | 3.03 ab | 1.10 f | 0.67 m |
P(7) | 13.30 ij | 27.50 kl | 10.75 k | 5.25 a | 10.00 def | 3.01 jk | 1.26 c | 3.03 de | 1.57 ghij |
P(8) | 12.25 ijkl | 25.50mno | 10.14 lm | 0.88 b | 10.00 def | 2.72 lm | 1.79 abc | 2.91 de | 1.63 ghij |
P(9) | 10.21i | 22.50 q | 8.45 o | 0.69 b | 7.00 f | 1.50 o | 1.11 c | 1.59 ef | 0.77 lm |
P(10) | 16.80 efg | 29.75 ij | 11.70 i | 0.96 b | 14.00 d | 3.38 fg | 2.06 abc | 3.33 cde | 2.15 f |
P(11) | 12.50 ijk | 27.00 klm | 12.00 i | 1.06 b | 20.00 b | 3.06 jk | 1.51 abc | 2.17 def | 1.27 jk |
P(12) | 11.30 jkl | 25.00 no | 10.42 kl | 0.89 b | 8.00 ef | 2.20 n | 1.89 abc | 1.22 f | 0.72 lm |
P(13) | 16.00 fgh | 33.00 g | 12.80 g | 1.01b | 12.00 def | 3.14 hijk | 2.26 abc | 1.95 def | 1.30 jk |
P(14) | 12.05 ijkl | 26.50 lmn | 11.20 j | 0.89 b | 7.00 f | 2.94 kl | 1.91 abc | 2.33 def | 1.40 hijk |
P(15) | 15.40 gh | 31.00 hi | 12.20 h | 1.09 b | 12.00 de | 3.21 ghij | 2.31abc | 3.47 cd | 1.78 fghi |
P(16) | 18.55 e | 34.50 f | 14.80 de | 1.15 b | 20.00 b | 3.30 ghi | 2.30 abc | 3.52 cd | 2.21fg |
P(17) | 16.70 efg | 32.50 gh | 13.75 f | 1.04 b | 12.00 def | 3.37 gh | 2.36 abc | 3.11 de | 1.87 fghi |
P(18) | 12.90 ijk | 27.00 klm | 11.80 i | 1.13 b | 24.00 ab | 3.06 jk | 1.95 abc | 1.95 def | 1.53hijk |
P(19) | 15.85 fgh | 32.00 gh | 12.90 g | 1.38 b | 10.00 def | 3.11ijk | 2.01 abc | 1.84 def | 1.45 ijk |
P(20) | 18.25 ef | 33.00 g | 13.90 f | 1.26 b | 12.00 def | 3.63 f | 2.67 abc | 3.28 cde | 1.98 fgh |
P(21) | 29.20 bc | 44.00 cd | 18.80 b | 1.17 b | 28.00 a | 5.12 ab | 3.16 ab | 6.16 b | 4.10 cd |
P(22) | 26.70 d | 41.00 e | 14.75 e | 1.06 b | 12.00 def | 4.25 e | 2.26 abc | 4.78 bc | 2.14 fg |
P(23) | 28.40 cd | 44.50 cd | 15.15 d | 1.10 b | 14.00 de | 4.11 e | 2.42 abc | 4.71 bc | 3.05 e |
P(24) | 28.85 bc | 45.00 c | 19.95 a | 1.11 b | 28.00 a | 4.59 d | 3.05 ab | 5.31 b | 3.58 d |
P(25) | 35.30 a | 48.00 b | 17.25 c | 1.26 b | 18.00 bc | 5.05 abc | 3.06 ab | 5.77 b | 3.99 c |
P(26) | 30.95 b | 48.00 b | 19.20 b | 1.37 b | 20.00 b | 4.86 bc | 3.21 a | 8.12 a | 5.18 b |
P(27) | 30.60 bc | 54.50 a | 19.00 b | 1.20 b | 26.00 a | 5.17 a | 3.25 a | 8.45 a | 6.32 a |
P(28) | 31.35 b | 43.00 d | 19.30 b | 1.22 b | 28.00 a | 5.01 abc | 3.14 ab | 5.90 b | 3.52 d |
P(29) | 28.90 bcd | 45.00 c | 15.00 de | 1.11 b | 18.00 cd | 4.10 e | 2.47 abc | 4.74 bc | 3.00 e |
P(30) | 29.10 bc | 45.00 c | 20.10 a | 1.45 b | 28.00 ab | 4.78 cd | 2.90 abc | 5.72 b | 4.24 cd |
Critical Value | 1.726 | 1.434 | 0.345 | 1.295 | 4.152 | 0.19 | 0.187 | 0.282 | 0.346 |
SE(m) | 0.608 | 0.505 | 0.122 | 0.456 | 1.463 | 0.067 | 0.066 | 0.099 | 0.122 |
Cluster No. | Cluster-1 | Cluster-2 | Cluster-3 | Cluster-4 | Cluster-5 |
---|---|---|---|---|---|
Cluster 1 | 6.97640 | 32.83606 | 38.77118 | 23.74613 | 30.81826 |
Cluster 2 | - | 0.00000 | 41.61871 | 34.44198 | 37.65239 |
Cluster 3 | - | - | 0.582752 | 38.35003 | 46.55588 |
Cluster 4 | - | - | - | 3.32208 | 31.43609 |
Cluster 5 | - | - | - | - | 5.10289 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rather, R.A.; Bano, H.; Firoz, A.; Mohammed Ali, H.; Bhat, M.A.; Padder, S.A.; Nafees, H.; Hakeem, K.R. The Assessment of Morphological Diversity of Colchicum luteum L., an Economically Important Threatened Medicinal Plant of Kashmir Himalaya. Sustainability 2022, 14, 1327. https://doi.org/10.3390/su14031327
Rather RA, Bano H, Firoz A, Mohammed Ali H, Bhat MA, Padder SA, Nafees H, Hakeem KR. The Assessment of Morphological Diversity of Colchicum luteum L., an Economically Important Threatened Medicinal Plant of Kashmir Himalaya. Sustainability. 2022; 14(3):1327. https://doi.org/10.3390/su14031327
Chicago/Turabian StyleRather, Rauoof Ahmad, Haleema Bano, Ahmad Firoz, Hani Mohammed Ali, M. Ashraf Bhat, Shahid Ahmad Padder, Huda Nafees, and Khalid Rehman Hakeem. 2022. "The Assessment of Morphological Diversity of Colchicum luteum L., an Economically Important Threatened Medicinal Plant of Kashmir Himalaya" Sustainability 14, no. 3: 1327. https://doi.org/10.3390/su14031327
APA StyleRather, R. A., Bano, H., Firoz, A., Mohammed Ali, H., Bhat, M. A., Padder, S. A., Nafees, H., & Hakeem, K. R. (2022). The Assessment of Morphological Diversity of Colchicum luteum L., an Economically Important Threatened Medicinal Plant of Kashmir Himalaya. Sustainability, 14(3), 1327. https://doi.org/10.3390/su14031327