Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies
Abstract
:1. Introduction
2. Literature Review
2.1. Mono-Pillar Sustainability Methods and Hybridization
2.2. PVI Models and Road Maintenance Sustainability
2.3. Article’s Scientific Contributions
3. Method Overview
3.1. Identifying Road Maintenance Stakeholders and a Comprehensive Classification of Impacts
3.2. Overview of the Method’s Architecture
3.3. Practical Use of the Method
4. Specific Physical Models
4.1. Capturing the Evolution of Road Surface Condition
4.1.1. IRI Evolution between Two Resurfacing Operations
4.1.2. Effect of Resurfacing Operations on the IRI
4.2. Consumptions and Emissions over the Pavement Surface’s Lifetime
4.2.1. Resurfacing Works Demand
4.2.2. Excess Vehicle Consumptions
- Excess fuel consumption
- Excess tire wear
- Excess suspension wear
4.2.3. Noise Emission
- Unitary noise linear power level over time
- Total linear power level per vehicle
- Total linear power level per road lane
- Additivity of the line sources’ noises and temporal weighting
- Calculation of the sound power
5. Three Pillar Indicators’ Algorithm
5.1. Environmental Metrics
5.1.1. LCA: Characterization Methods and Indicators
5.1.2. Selection of Endpoint Indicators
5.1.3. Calculation of the Metrics
5.2. Social Metrics
5.2.1. Road Noise Health Impact Indicator
5.2.2. Users’ Time Saving Indicator
5.3. Economic Metrics
5.3.1. Users’ Costs
5.3.2. Road Operator’s Costs
5.3.3. Domestic Production and Employment
5.3.4. Tax Revenues
5.3.5. Integrated National Economic Indicator
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Form |
BAU | business-as-usual |
DALY | disability-adjusted life years |
DR | department road |
EFC | excess fuel consumption |
ER | express road |
ETW | excess tire wear |
FTE | full-time equivalent |
GHG | greenhouse gas |
HR | highway road |
HV | heavy vehicle |
I/O | input–output |
IOA | input–output analysis |
IRI | international roughness index |
LCA | life cycle assessment |
LCCA | life cycle cost analysis |
LCV | light commercial vehicle |
LHV | large heavy vehicle |
LV | light vehicle |
MIT | Massachusetts Institute of Technology |
NPV | net present value |
NR | national road |
PC | passenger car |
potentially disappeared fraction | |
PVI | pavement–vehicle interactions |
SAL | shock absorber lifespan |
SHV | small heavy vehicle |
References
- Union Routière de France. Faits & Chiffres 2018-Statistiques des Transports en France et en Europe. 2018. Available online: https://fr.calameo.com/read/0039965789c6b488b8029 (accessed on 5 October 2021).
- Visse, P.-E. Évolution du Budget Automobile des Ménages Français Depuis 1990. DGCCRF. 14 April 2013. Available online: http://www.economie.gouv.fr/files/directions_services/dgccrf/documentation/dgccrf_eco/dgccrf_eco14.pdf (accessed on 8 December 2021).
- Enquête Nationale Transport et Déplacements 2008. MEDDE. 2008. Available online: http://www.statistiques.developpement-durable.gouv.fr/transports/trv/deplacement-mobilite/mobilite-reguliere-locale.html (accessed on 28 October 2021).
- CGDD. Chiffres Clés de L’énergie-Édition 2018. Commissariat Général au Développement Durable. 2018. Available online: https://www.statistiques.developpement-durable.gouv.fr/sites/default/files/2018-10/datalab-43-chiffres-cles-de-l-energie-edition-_2018-septembre2018.pdf (accessed on 7 November 2021).
- CITEPA. Données D’émissions de Gaz à Effet de Serre Dans L’air en France Métropolitaine, Avril 2018, Format SECTEN. 2019. Available online: https://www.citepa.org/images/III-1_Rapports_Inventaires/SECTEN/CITEPA-chiffres-cles-2018-d.zip (accessed on 25 February 2019).
- Bedeau, L.; Piquandet, J.; Duhautois, S.; Jonsson, E. Les Français et Les Nuisances Sonores. TNS Sofres-MEEDM. 2010. Available online: https://www.tns-sofres.com/sites/default/files/2010.06.29-nuisances-sonores.pdf (accessed on 18 November 2021).
- Chatti, K.; Zaabar, I. Estimating the Effects of Pavement Condition on Vehicle Operating Costs; Transportation Research Board: Washington, DC, USA, 2012; Available online: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_720.pdf (accessed on 7 November 2021).
- Wang, T.; Lee, I.-S.; Kendall, A.; Harvey, J.; Lee, E.-B.; Kim, C. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. J. Clean. Prod. 2012, 33, 86–96. [Google Scholar] [CrossRef]
- Ulubeyli, S.; Kazanci, O. Holistic sustainability assessment of green building industry in Turkey. J. Clean. Prod. 2018, 202, 197–212. [Google Scholar] [CrossRef]
- Chen, D.; Thiede, S.; Schudeleit, T.; Herrmann, C. A holistic and rapid sustainability assessment tool for manufacturing SMEs. CIRP Ann. 2014, 63, 437–440. [Google Scholar] [CrossRef]
- Landert, J.; Schader, C.; Moschitz, H.; Stolze, M. A Holistic Sustainability Assessment Method for Urban Food System Governance. Sustainability 2017, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Hüging, H.; Glensor, K.; Lah, O. Need for a Holistic Assessment of Urban Mobility Measures–Review of Existing Methods and Design of a Simplified Approach. Transp. Res. Procedia 2014, 4, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Santero, N.J.; Masanet, E.; Horvath, A. Life-cycle assessment of pavements. Part I: Critical review. Resour. Conserv. Recycl. 2011, 55, 801–809. [Google Scholar] [CrossRef]
- Mladenovič, A.; Turk, J.; Kovač, J.; Mauko, A.; Cotič, Z. Environmental evaluation of two scenarios for the selection of materials for asphalt wearing courses. J. Clean. Prod. 2015, 87, 683–691. [Google Scholar] [CrossRef]
- Kucukvar, M.; Noori, M.; Egilmez, G.; Tatari, O. Stochastic decision modeling for sustainable pavement designs. Int. J. Life Cycle Assess. 2014, 19, 1185–1199. [Google Scholar] [CrossRef]
- Vidal, R.; Moliner, E.; Martínez, G.; Rubio, M.C. Life cycle assessment of hot mix asphalt and zeolite-based warm mix asphalt with reclaimed asphalt pavement. Resour. Conserv. Recycl. 2013, 74, 101–114. [Google Scholar] [CrossRef]
- Tatari, O.; Nazzal, M.; Kucukvar, M. Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis. Resour. Conserv. Recycl. 2012, 58, 18–24. [Google Scholar] [CrossRef]
- Yu, B.; Lu, Q. Life cycle assessment of pavement: Methodology and case study. Transp. Res. Part D Transp. Environ. 2012, 17, 380–388. [Google Scholar] [CrossRef]
- Cuenoud, J.L. Valorcol: Asphalt Mix Complying with Environment and Sustainable Development; RGRA: Paris, France, 2011. [Google Scholar]
- Huang, Y.; Bird, R.; Heidrich, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. J. Clean. Prod. 2009, 17, 283–296. [Google Scholar] [CrossRef]
- Chiu, C.-T.; Hsu, T.-H.; Yang, W.-F. Life cycle assessment on using recycled materials for rehabilitating asphalt pavements. Resour. Conserv. Recycl. 2008, 52, 545–556. [Google Scholar] [CrossRef]
- Babashamsi, P.; Yusoff, N.I.M.; Ceylan, H.; Nor, N.G.M.; Jenatabadi, H.S. Evaluation of pavement life cycle cost analysis: Review and analysis. Int. J. Pavement Res. Technol. 2016, 9, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Santos, J. A Comprehensive Life Cycle Approach for Managing Pavement Systems. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2015. Available online: https://estudogeral.sib.uc.pt/bitstream/10316/30093/1/A%20Comprehensive%20Life%20Cycle%20Approach%20for%20Managing%20Pavement%20Systems.pdf (accessed on 22 November 2021).
- Ferreira, A.; Santos, J. LCCA System for Pavement Management: Sensitivity Analysis to the Discount Rate. Procedia-Soc. Behav. Sci. 2012, 53, 1172–1181. [Google Scholar] [CrossRef] [Green Version]
- FHWA. Life-Cycle Cost Analysis in Pavement Design—In Search of Better Investment Decisions. US Department of Transportation-Federal Highway Administration, Pavement Division Interim Technical Bulletin Publication No. FHWA-SA-98-079. 1998. Available online: https://www.fhwa.dot.gov/infrastructure/asstmgmt/013017.pdf (accessed on 22 November 2021).
- Leontief, W.W. Quantitative Input and Output Relations in the Economic Systems of the United States. Rev. Econ. Stat. 1936, 18, 105. [Google Scholar] [CrossRef] [Green Version]
- Quirion, P. L’effet net sur L’emploi de la Transition Énergétique en France: Une Analyse Input-Output du Scénario Négawatt. CIRED, Document de Travail No 46-2013. 2013. Available online: http://www2.centre-cired.fr/IMG/pdf/CIREDWP-201346.pdf (accessed on 2 October 2021).
- Wubneh, M. US Highway 17 and Its Impact on the Economy of Eastern North Carolina; Urban & Regional Planning Program Department of Geography East Carolina University: Greenville, NC, USA, 2008. [Google Scholar]
- Quinet, E. L’Évaluation Socioéconomique des Investissements Publics. Rapport Final. Tome 1, 2013. Report. Commissariat général à la stratégie et à la Prospective. Available online: https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/atoms/files/cgsp_evaluation_socioeconomique_29072014.pdf (accessed on 2 October 2021).
- Leurent, F.; Windisch, E. Electric vs. Gasoline-Powered Vehicles: The Effects on a Nation’s Economic Production and Public Finances. Routes/Roads, N° 357. 2013. Available online: https://routesroadsmag.piarc.org/en/Routes-Roads-Magazine-Issue-357-Climate-Change/1685,Routes-Roads-Magazine-Electric-Vs-Gasoline-Effects-Economy-Finances#c3e63u7JL70 (accessed on 12 October 2021).
- Fouqueray, E. Evaluation de L’impact Économique de Court Terme et de Moyen Terme des Chantiers de Grandes Infrastructures de Transport-Le cas de la LGV SEA Tours-Bordeaux. Ph.D. Thesis, Université de Poitiers-Faculté de Sciences Économiques, Poitiers, France, 2016. [Google Scholar]
- de Bortoli, A. Consequential environmental Life Cycle Assessment and socio-economic analysis-hybridization test on a Parisian project of Bus Rapid Transit. In Proceedings of the AVNIR International Conference, Lille, France, 8–9 November 2016. [Google Scholar] [CrossRef]
- Santos, J.; Flintsch, G.; Ferreira, A. Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resour. Conserv. Recycl. 2017, 116, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Moavenzadeh, F.; Berger, F.; Brademeyer, B.; Wyatt, R. The Highway Cost Model: General Framework; Massachusetts Institute of Technology Department of Civil Engineering Research Report No 75-4; Massachusetts Institute of Technology: Cambridge, MA, USA, 1975. [Google Scholar]
- Abaynayaka, S.W.; Hide, H.; Robinson, R.; Rolt, J. Prediction of road construction and vehicle operating costs in developing countries. Proc. Inst. Civ. Eng. 1977, 62, 419–446. [Google Scholar]
- Kerali, R.; Parsley, L.; Robinson, R.; Snaith, M. Development of a Microcomputer based Model for Road Investment in Developing Countries. In Proceedings of the Second International Conference on Civil and Structural Engineering Computing, London, UK, 3–5 December 1985; pp. 83–86. [Google Scholar] [CrossRef]
- Parsley, L.L.; Robinson, R. The TRRL, Road Investment Model for Developing Countries (RTIM2); TRLRL Laboratory Report 1057; Transport and Road Research Laboratory: Crowthorne, UK, 1982. [Google Scholar]
- Bennett, C.R.; Greenwood, I.D. Volume 7: Modeling Road User and Environmental Effects in HDM-4, Version 3.0, International Study of Highway Development and Management Tools (ISOHDM), World Road Association (PIARC). 2003. Available online: http://www.lpcb.org/index.php/documents/papers-and-reports/reports-and-books/194-2003-modelling-road-user-and-environmental-effects-in-hdm-4/file (accessed on 17 October 2021).
- Chong, D.; Wang, Y. Impacts of flexible pavement design and management decisions on life cycle energy consumption and carbon footprint. Int. J. Life Cycle Assess. 2016, 22, 952–971. [Google Scholar] [CrossRef]
- Wang, T.; Harvey, J.T.; Kendall, A. Reducing greenhouse gas emissions through strategic management of highway pavement roughness. Environ. Res. Lett. 2014, 9, 034007. [Google Scholar] [CrossRef] [Green Version]
- Bryce, J.; Katicha, S.; Flintsch, G.; Sivaneswaran, N.; Santos, J. Probabilistic Life-Cycle Assessment as Network-Level Evaluation Tool for Use and Maintenance Phases of Pavements. Transp. Res. Rec. J. Transp. Res. Board 2014, 2455, 44–53. [Google Scholar] [CrossRef]
- Yu, B.; Gu, X.; Ni, F.; Guo, R. Multi-objective optimization for asphalt pavement maintenance plans at project level: Integrating performance, cost and environment. Transp. Res. Part D Transp. Environ. 2015, 41, 64–74. [Google Scholar] [CrossRef]
- Yang, R.; Kang, S.; Ozer, H.; Al-Qadi, I.L. Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance. Resour. Conserv. Recycl. 2015, 104, 141–151. [Google Scholar] [CrossRef]
- Santos, J.; Bryce, J.; Flintsch, G.; Ferreira, A.; Diefenderfer, B. A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices. Struct. Infrastruct. Eng. 2014, 11, 1199–1217. [Google Scholar] [CrossRef]
- Pellecuer, L.; Assaf, G.J.; St-Jacques, M. Influence of Pavement Condition on Environmental Costs. J. Transp. Eng. 2014, 140, 04014050. [Google Scholar] [CrossRef]
- Guevara, C.A. Mode-valued differences of in-vehicle travel time Savings. Transportation 2016, 44, 977–997. [Google Scholar] [CrossRef]
- Arnsperger, C.; van Parijs, P. Éthique Économique et Sociale; La Découverte: Paris, France, 2007. [Google Scholar]
- Pigou, A. The Economics of Welfare, Macmillan and Co. London. 1932. Available online: http://www.econlib.org/library/NPDBooks/Pigou/pgEW.html (accessed on 2 October 2021).
- White, A. A Global Projection of Subjective Well-being: A Challenge to Positive Psychology? Psychtalk 2007, 56, 17–20. [Google Scholar]
- Charte de L’environnement de 2004. 2005. Available online: https://www.legifrance.gouv.fr/Droit-francais/Constitution/Charte-de-l-environnement-de-2004 (accessed on 17 October 2021).
- Déclaration des Droits de l’Homme et du Citoyen de 1789. Available online: https://www.legifrance.gouv.fr/Droit-francais/Constitution/Declaration-des-Droits-de-l-Homme-et-du-Citoyen-de-1789 (accessed on 2 December 2021).
- Préambule de la Constitution du 27 Octobre 1946. Available online: https://www.legifrance.gouv.fr/Droit-francais/Constitution/Preambule-de-la-Constitution-du-27-octobre-1946 (accessed on 17 October 2021).
- de Bortoli, A. Pour un Entretien Routier Durable: Prise en Compte des Conséquences de L’interaction Chaussée-Véhicule Dans L’aide à la Décision des Politiques de Resurfaçage-Illustration par un cas Autoroutier Français [Toward Sustainable Road Maintenance: Taking into Account Vehicle-Pavement Interactions into the Decision-Making Process-Illustration by a French Highway Case Study]. Université Paris Est-Ecole des Ponts ParisTech. 2018. Available online: https://www.researchgate.net/publication/333965224_Pour_un_entretien_routier_durable_prise_en_compte_des_consequences_de_l’interaction_chaussee-vehicule_dans_l’aide_a_la_decision_des_politiques_de_resurfacage_-_illustration_par_un_cas_autoroutier_fran (accessed on 28 November 2021).
- Sapir, J. Théorie de la régulation, conventions, institutions et approches hétérodoxes de l’interdépendance des niveaux de decision. In Décisions Économiques; Economica: Paris, France, 1998; pp. 169–215. [Google Scholar]
- Cerezo, V.; Gothié, M. Pavement Prediction Performance Models and Relation with Traffic Fatalities and Injuries. France. October 2008. Available online: https://www.researchgate.net/profile/Veronique_Cerezo/publication/281328742_Pavement_prediction_performance_models_and_relation_with_traffic_fatalities_and_injuries/links/55faa08a08ae07629e0427d3/Pavement-prediction-performance-models-and-relation-with-traffic-fatalities-and-injuries.pdf (accessed on 22 October 2021).
- Bryce, J.; Santos, J.; Flintsch, G.; Katicha, S.; McGhee, K.; Ferreira, A. Analysis of rolling resistance models to analyse vehicle fuel consumption as a function of pavement properties. In Asphalt Pavements; CRC Press: Boca Raton, FL, USA, 2014; pp. 263–273. [Google Scholar] [CrossRef]
- Yang, R. Development of a Pavement Life Cycle Assessment Tool Utilizing Regional Data and Introducing an Asphalt Binder Model; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2014; Available online: https://www.ideals.illinois.edu/bitstream/handle/2142/50651/Rebekah_Yang.pdf?sequence=1 (accessed on 2 December 2021).
- Wang, T.; Harvey, J.; Kendall, A. Network-Level Life-Cycle Energy Consumption and Greenhouse Gas from CAPM Treatments; University of California Pavement Research Center Research Report UCPRC-RR-2014-05; UC Davis: Davis, CA, USA, 2013. [Google Scholar]
- Tseng, E. Construction of Pavement Performance Models for Flexible Pavement Wheelpath Cracking and IRI for the California Department of Transportation New Pavement Management System. Master’s Thesis, University of California Davis, Davis, CA, USA, 2012. Available online: https://search.proquest.com/openview/c0d1baa8afc851c4962b1399cc5d5b3b/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 24 November 2021).
- McGhee, K.; Gillespie, J. Impact of a Smoothness Incentive/Disincentive on Hot-Mix Asphalt Maintenance Resurfacing Costs. FHWA/VTRC 06-R28, VTRC 06-R28. 2006. Available online: https://ntl.bts.gov/lib/37000/37300/37317/06-r28.pdf (accessed on 2 September 2021).
- Zaabar, I.; Chatti, K. Calibration of HDM-4 Models for Estimating the Effect of Pavement Roughness on Fuel Consumption for U.S. Conditions. Transp. Res. Rec. J. Transp. Res. Board 2010, 2155, 105–116. [Google Scholar] [CrossRef]
- Sétra. Road noise prediction—1-Calculating sound emissions from road traffic. Report Q-SETRA--11-ED13--FR+ENG, 120p, Reference SKU1916164304, Paris, France. 2009. Available online: https://www.cerema.fr/fr/centre-ressources/boutique/road-noise-prediction (accessed on 2 September 2021).
- Sétra. Prévision du Bruit Routier 1-Calcul des Émissions Sonores Dues au Trafic Routier. Sétra. 2009. Available online: https://www.cerema.fr/fr/centre-ressources/boutique/prevision-du-bruit-routier-calcul-emissions-sonores-dues-au (accessed on 2 October 2021).
- International Organization for Standardization. ISO 14040:2006-Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006-Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef] [Green Version]
- Curran, M.A. Life Cycle Assessment Student Handbook; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Leontief, W. Environmental Repercussions and the Economic Structure: An Input-Output Approach. Rev. Econ. Stat. 1970, 52, 262–271. [Google Scholar] [CrossRef]
- FHWA. State of the Practice on Sustainability Rating Systems; Federal Highway Administration, Federal Highway Administration: Washington, DC, USA, 2019. [Google Scholar]
- Norris, G. Handprint-Based NetPositive Assessment; Center for Health and the Global Environment, Harvard T.H. Chan School of Public Health: Cambridge, MA, USA, 2015; Available online: https://hwpi.harvard.edu/files/chge/files/handprint-based_netpositive_assessment.pdf (accessed on 10 October 2021).
Lead Author and Year | Indicators | Consumption of Goods | ||||||
---|---|---|---|---|---|---|---|---|
Costs | GHG | Energy | Others | Roadworks | Fuel | Tires | Suspension Parts | |
Wang 2012b | X | X | X | X | ||||
Chong 2017 | X | X | X | X | ||||
Wang 2014 | X | X | X | X | ||||
Bryce 2014 | X | X | X | |||||
Yu 2015 | X | X | X (LCA) | X | X | |||
Yang 2015 | X | X | X | X | X | |||
Santos 2015 | X | X | X (LCA) | X | X | |||
Santos 2017 | X | X | X | X (LCA) | X | X | ||
Pellecuer 2014 | X | X | X (LCA) | X | X | |||
Guevara 2017 | X | Time | X | X | X | X |
EFC = f (IRI) | R2 | ||
---|---|---|---|
Highways (118/88) | PC | EFC = 0.0233 IRI + 0.975 | 0.9927 |
LCV | EFC = 0.00710 IRI + 0.996 | 0.9317 | |
Small HV | EFC = 0.00870 IRI + 0.992 | 0.9939 | |
Large HV | EFC = 0.0170 IRI + 0.981 | 0.9799 | |
Express ways (101/84) | PC | EFC = 0.0239 IRI + 0.975 | 0.9966 |
LCV | EFC = 0.0079 IRI + 0.994 | 0.9694 | |
Small HV | EFC = 0.0092 IRI + 0.991 | 0.9975 | |
Large HV | EFC = 0.0177 IRI + 0.980 | 0.9823 | |
National/rural roads (82/79) | PC | EFC = 0.0245 IRI + 0.976 | 0.9983 |
LCV | EFC = 0.0088 IRI + 0.993 | 0.9914 | |
Small HV | EFC = 0.0097 IRI + 0.991 | 0.9996 | |
Large HV | EFC = 0.0185 IRI + 0.980 | 0.9848 |
Vehicle | ETW = f (IRI) | R2 | |
---|---|---|---|
Highways (118/88) | PC | ETW = 0.0168 IRI + 0.9812 | 0.9854 |
LCV | ETW = 0.0102 IRI + 0.9927 | 0.9687 | |
Small HV | ETW = 0.0122 IRI + 0.9866 | 0.9907 | |
Large HV | ETW = 0.0089 IRI + 0.9917 | 0.9983 | |
Express ways (101/84) | PC | ETW = 0.0136 IRI + 0.9856 | 0.9884 |
LCV | ETW = 0.0088 IRI + 0.9929 | 0.9776 | |
Small HV | ETW = 0.0012 IRI + 0.987 | 0.9921 | |
Large HV | ETW = 0.0085 IRI + 0.9923 | 0.9972 | |
National/rural roads (82/79) | PC | ETW = 0.0100 IRI + 0.9905 | 0.9865 |
LCV | ETW = 0.0073 IRI + 0.9931 | 0.9839 | |
Small HV | ETW = 0.0117 IRI + 0.9874 | 0.9938 | |
Large HV | ETW = 0.008 IRI + 0.9931 | 0.9949 |
SAL = f (IRI) | R2 | ||
---|---|---|---|
Highways (118/88) | PC | SAL = 139 643.exp(−0.183 * IRI) | 0.9750 |
LCV | SAL = 139 643.exp(−0.183 * IRI) | 0.975 | |
Small HV | SAL = 218 765.exp(−0.271 * IRI) | 0.9874 | |
Large HV | SAL = 181 842.exp(−0.207 * IRI) | 0.9651 | |
Express ways (101/84) | PC | SAL = 155 221.exp(−0.183 * IRI) | 0.9750 |
LCV | SAL = 155 221.exp(−0.183 * IRI) | 0.975 | |
Small HV | SAL = 226 487.exp(−0.271 * IRI) | 0.9874 | |
Large HV | SAL = 188 260.exp(−0.207 *IRI) | 0.9651 | |
National/rural roads (82/79) | PC | SAL = 177 331.exp(−0.183 * IRI) | 0.9750 |
LCV | SAL = 177 331.exp(−0.183 * IRI) | 0.975 | |
Small HV | SAL = 236 940.exp(−0.271 * IRI) | 0.9874 | |
Large HV | SAL = 196 949.exp(−0.207 * IRI) | 0.9651 |
Rx | Light Vehicles | Heavy Vehicles |
---|---|---|
R1 | 2.2ln(t − 1) + Lw/m (t = 2 years) | 1.3ln(t − 1) + Lw/m (t = 2 years) |
R2 | 2.7ln(t − 1) + Lw/m (t = 2 year) | 1.6ln(t − 1) + Lw/m (t = 2 years) |
R3 |
Lw/m—Motor Component (dB(A)) | Lw/m—Tire–Road Component (dB(A)) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | ||||||||||
DR/NR | ER | HR | DR/NR | ER | HR | DR/NR | ER | HR | DR/NR | ER | HR | |
1 LV | 42 | 43 | 43 | 49 | 50 | 52 | 53 | 54 | 56 | 55 | 57 | 58 |
1 HV | 50 | 50 | 51 | 59 | 60 | 60 | 62 | 63 | 63 | 63 | 64 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Bortoli, A.; Féraille, A.; Leurent, F. Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies. Sustainability 2022, 14, 1513. https://doi.org/10.3390/su14031513
de Bortoli A, Féraille A, Leurent F. Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies. Sustainability. 2022; 14(3):1513. https://doi.org/10.3390/su14031513
Chicago/Turabian Stylede Bortoli, Anne, Adélaïde Féraille, and Fabien Leurent. 2022. "Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies" Sustainability 14, no. 3: 1513. https://doi.org/10.3390/su14031513
APA Stylede Bortoli, A., Féraille, A., & Leurent, F. (2022). Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies. Sustainability, 14(3), 1513. https://doi.org/10.3390/su14031513