Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Framework and Hypothesis Development
3.1. Technological Context
3.2. Organizational Context
3.3. Environmental Context
4. Methodology
5. Data Analysis
6. Results and Interpretation
6.1. Assessment of Measurement Model
6.2. Assessment of the Structural Model
7. Discussion and Conclusions
8. Contributions
9. Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and Challenges of Big Data Research. Big Data Res. 2015, 2, 59–64. [Google Scholar] [CrossRef]
- Staegemann, D.; Volk, M.; Lautenschlager, E.; Pohl, M.; Abdallah, M.; Turowski, K. Applying Test Driven Development in the Big Data Domain—Lessons from the Literature. In Proceedings of the 2021 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan, 14–15 July 2021; pp. 511–516. [Google Scholar] [CrossRef]
- Gonzales, R.; Wareham, J.; Serida, J. Measuring the impact of data warehouse and business intelligence on en-terprise performance in Peru: A developing country. J. Glob. Inf. Technol. Manag. 2015, 18, 162–187. [Google Scholar]
- Wahab, S.N.; Hamzah, M.I.; Sayuti, N.M.; Lee, W.C.; Tan, S.Y. Big data analytics adoption: An empirical study in the Malaysian warehousing sector. Int. J. Logist. Syst. Manag. 2021, 40, 121. [Google Scholar] [CrossRef]
- Baig, M.I.; Shuib, L.; Yadegaridehkordi, E. A Model for Decision-Makers’ Adoption of Big Data in the Educa-tion Sector. Sustainability 2021, 13, 13995. [Google Scholar] [CrossRef]
- Shirdastian, H.; Laroche, M.; Richard, M.-O. Using big data analytics to study brand authenticity sentiments: The case of Starbucks on Twitter. Int. J. Inf. Manag. 2019, 48, 291–307. [Google Scholar] [CrossRef]
- Volk, M.; Staegemann, D.; Trifonova, I.; Bosse, S.; Turowski, K. Identifying Similarities of Big Data Projects—A Use Case Driven Approach. IEEE Access 2020, 8, 186599–186619. [Google Scholar] [CrossRef]
- International Data Corporation (IDC) (2020). Worldwide Big Data and Analytics Software Forecast, 2021–2026. Available online: https://www.reportlinker.com/p06166758/Big-Data-Business-Analytics-Market-Research-Report-by-Analytics-Tools-by-Component-by-Deployment-Mode-by-Application-by-End-User (accessed on 1 December 2021).
- Verhoef, P.; Kooge, E.; Walk, N. Creating Value with Big Data Analytics: Making Smarter Marketing Decisions; Routledge: London, UK, 2016. [Google Scholar]
- Choi, H.S.; Hung, S.-Y.; Peng, C.-Y.; Chen, C. Different Perspectives on BDA Usage by Management Levels. J. Comput. Inf. Syst. 2021, 1–13. [Google Scholar] [CrossRef]
- Nam, D.; Lee, J.; Lee, H. Business analytics adoption process: An innovation diffusion perspective. Int. J. Inf. Manag. 2019, 49, 411–423. [Google Scholar] [CrossRef]
- Al-Sai, Z.A.; Abdullah, R.; Husin, M.H. Critical Success Factors for Big Data: A Systematic Literature Review. IEEE Access 2020, 8, 118940–118956. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Nasereddin, Y. Factors influencing the adoption of e-government services among Jordanian citizens. Electron. Gov. Int. J. 2020, 16, 236–259. [Google Scholar]
- Coleman, S.; Goeb, R.; Manco, G.; Pievatolo, A.; Tort-Martorell, X.; Reis, M.S. How Can SMEs Benefit from Big Data? Challenges and a Path Forward. Qual. Reliab. Eng. Int. 2016, 32, 2151–2164. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Bryde, D.J.; Giannakis, M.; Foropon, C.; Hazen, B.T. Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environ-mental dynamism: A study of manufacturing organisations. Int. J. Prod. Econ. 2020, 226, 107599. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A.; Khawatreh, S. Mobile Government Adoption Model Based on Combining GAM and UTAUT to Explain Factors According to Adoption of Mobile Government Services. Int. J. Interact. Mob. Technol. (iJIM) 2020, 14, 199–225. [Google Scholar] [CrossRef] [Green Version]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Raguseo, E.; Vitari, C. Investments in big data analytics and firm performance: An empirical investigation of direct and mediating effects. Int. J. Prod. Res. 2018, 56, 5206–5221. [Google Scholar] [CrossRef]
- Akter, S.; Fosso Wamba, S.; Dewan, S. Why PLS-SEM is suitable for complex modelling? An empirical illustra-tion in big data analytics quality. Prod. Plan. Control. 2017, 28, 1011–1021. [Google Scholar] [CrossRef]
- Ghasemaghaei, M. Does data analytics use improve firm decision making quality? The role of knowledge sharing and data analytics competency. Decis. Support Syst. 2019, 120, 14–24. [Google Scholar] [CrossRef]
- O’Connor, C.; Kelly, S. Facilitating knowledge management through filtered big data: SME competitiveness in an agri-food sector. J. Knowl. Manag. 2017, 21, 156–179. [Google Scholar] [CrossRef] [Green Version]
- Nam, D.-W.; Kang, D.-W.; Kim, S. Process of big data analysis adoption: Defining big data as a new IS innova-tion and examining factors affecting the process. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 4792–4801. [Google Scholar]
- Munawar, H.S.; Qayyum, S.; Ullah, F.; Sepasgozar, S. Big Data and Its Applications in Smart Real Estate and the Disaster Management Life Cycle: A Systematic Analysis. Big Data Cogn. Comput. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Kumar, K.N. Exploring factors influencing organizational adoption of augmented reality in e-commerce: Empirical analysis using technology-organization-environment model. J. Electron. Commer. Res. 2018, 19, 237–265. [Google Scholar]
- Maroufkhani, P.; Wagner, R.; Wan Ismail, W.K.; Baroto, M.B.; Nourani, M. Big data analytics and firm per-formance: A systematic review. Information 2019, 10, 226. [Google Scholar] [CrossRef] [Green Version]
- Althunibat, A.; Binsawad, M.; Almaiah, M.A.; Almomani, O.; Alsaaidah, A.; Al-Rahmi, W.; Seliaman, M.E. Sustainable Applica-tions of Smart-Government Services: A Model to Understand Smart-Government Adoption. Sustainability 2021, 13, 3028. [Google Scholar] [CrossRef]
- Lutfi, A.; Al-Okaily, M.; Alsyouf, A.; Alsaad, A.; Taamneh, A. The Impact of AIS Usage on AIS Effectiveness Among Jordanian SMEs: A Multi-group Analysis of the Role of Firm Size. Glob. Bus. Rev. 2020, 21, 1–19. [Google Scholar] [CrossRef]
- Alharbi, F.; Atkins, A.; Stanier, C. Understanding the determinants of Cloud Computing adoption in Saudi healthcare organisations. Complex Intell. Syst. 2016, 2, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Hall, D.J.; Cegielski, C.G. Organizational intention to adopt big data in the B2B context: An integrat-ed view. Ind. Mark. Manag. 2020, 86, 109–121. [Google Scholar] [CrossRef]
- Gangwar, H.; Date, H.; Raoot, A. Review on IT adoption: Insights from recent technologies. J. Enterp. Inf. Manag. 2014, 27, 488–502. [Google Scholar] [CrossRef]
- Lutfi, A.A.; Idris, K.M.; Mohamad, R. AIS usage factors and impact among Jordanian SMEs: The moderating effect of environmental uncertainty. J. Adv. Res. Bus. Manag. Stud. 2017, 6, 24–38. [Google Scholar]
- Yoon, T.E.; George, J.F. Why aren’t organizations adopting virtual worlds? Comput. Hum. Behav. 2013, 29, 772–790. [Google Scholar] [CrossRef]
- Arias-Aranda, D.; Bustinza, O.F.; Barrales-Molina, V. Operations flexibility and outsourcing benefits: An em-pirical study in service firms. Serv. Ind. J. 2011, 31, 1849–1870. [Google Scholar] [CrossRef]
- Frizzo-Barker, J.; Chow-White, P.A.; Charters, A.; Ha, D. Genomic big data and privacy: Challenges and op-portunities for precision medicine. Comput. Supported Coop. Work. 2016, 25, 115–136. [Google Scholar] [CrossRef]
- Al-Hujran, O.; Wadi, R.; Dahbour, R.; Al-Doughmi, M.; Al-Debei, M.M. Big Data: Opportunities and Chal-lenges. In Proceedings of the Fifth International Conference on Business Intelligence and Technology, Nice, France, 22–27 March 2015; pp. 73–79. [Google Scholar]
- Hashem IA, T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Kadadi, A.; Dai, X.; Andres, F. Challenges and opportunities with big data visualization. In Proceedings of the 7th International Conference on Management of Computational and Collective intelligence in Digital EcoSystems, Caraguatatuba, Brazil, 25 October 2015; pp. 169–173. [Google Scholar]
- Sun, S.; Cegielski, C.G.; Jia, L.; Hall, D.J. Understanding the Factors Affecting the Organizational Adoption of Big Data. J. Comput. Inf. Syst. 2016, 58, 193–203. [Google Scholar] [CrossRef]
- Surbakti, F.P.S.; Wang, W.; Indulska, M.; Sadiq, S. Factors influencing effective use of big data: A research framework. Inf. Manag. 2019, 57, 103146. [Google Scholar] [CrossRef]
- Russom, P. Big data analytics. TDWI best practices report, fourth quarter. Int. J. Sustain. Dev. Comput. Sci. 2011, 19, 1–34. [Google Scholar]
- Shukla, A.K.; Yadav, M.; Kumar, S.; Muhuri, P.K. Veracity handling and instance reduction in big data using interval type-2 fuzzy sets. Eng. Appl. Artif. Intell. 2019, 88, 103315. [Google Scholar] [CrossRef]
- Ajimoko, O.J. Considerations for the Adoption of Cloud-based Big Data Analytics in Small Business Enterprises. Electron. J. Inf. Syst. Eval. 2018, 21, 63–79. [Google Scholar]
- Mangla, S.K.; Raut, R.; Narwane, V.S.; Zhang, Z.; Priyadarshinee, P. Mediating effect of big data analytics on project performance of small and medium enterprises. J. Enterp. Inf. Manag. 2020, 34, 168–198. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Ramezani, J.; Sadraei, M. The Impact of Big Data Adoption on SMEs’ Performance. Big Data Cogn. Comput. 2021, 5, 68. [Google Scholar] [CrossRef]
- Maroufkhani, P.; Tseng, M.L.; Iranmanesh, M.; Ismail, W.K.; Khalid, H. Big data analytics adoption: Determinants and per-formances among small to medium-sized enterprises. Int. J. Inf. Manag. 2020, 54, 102190. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, M.-K.; Paik, J.-H. The Factors of Technology, Organization and Environment Influencing the Adoption and Usage of Big Data in Korean Firms. In Proceedings of the 26th European Regional Conference of the International Telecommunications Society (ITS): “What Next for European Telecommunications?”, Madrid, Spain, 24–27 June 2015. [Google Scholar]
- Skafi, M.; Yunis, M.M.; Zekri, A. Factors Influencing SMEs’ Adoption of Cloud Computing Services in Lebanon: An Empirical Analysis Using TOE and Contextual Theory. IEEE Access 2020, 8, 79169–79181. [Google Scholar] [CrossRef]
- Loh, C.-H.; Teoh, A.-P. The Adoption of Big Data Analytics Among Manufacturing Small and Medium Enterprises During Covid-19 Crisis in Malaysia. In Proceedings of the Ninth International Conference on Entrepreneurship and Business Management; Atlantis Press: Paris, France, 2021; pp. 95–100. [Google Scholar] [CrossRef]
- Parson, G.K. Factors Affecting Information Technology Professionals’ Decisions to Adopt Big Data Analytics Among Small-and Medium-Sized Enterprises: A Quantitative Study. Ph.D. Thesis, Capella University, Minneapolis, MN, USA, 2021. [Google Scholar]
- Mikalef, P.; Krogstie, J.; Pappas, I.O.; Pavlou, P. Exploring the relationship between big data analytics capability and competi-tive performance: The mediating roles of dynamic and operational capabilities. Inf. Manag. 2020, 57, 103169. [Google Scholar] [CrossRef]
- Oliveira, T.; Martins, R.; Sarker, S.; Thomas, M.; Popovič, A. Understanding SaaS adoption: The moderating impact of the environment context. Int. J. Inf. Manag. 2019, 49, 1–12. [Google Scholar] [CrossRef]
- Hameed, M.A.; Counsell, S.; Swift, S. A conceptual model for the process of IT innovation adoption in organ-izations. J. Eng. Technol. Manag. 2012, 29, 358–390. [Google Scholar] [CrossRef]
- Kapoor, K.K.; Dwivedi, Y.K.; Williams, M.D. Examining the role of three sets of innovation attributes for de-termining adoption of the interbank mobile payment service. Inf. Syst. Front. 2015, 17, 1039–1056. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Lutfi, A. Understanding Cloud Based Enterprise Resource Planning Adoption among SMEs in Jordan. J. Theor. Appl. Inf. Technol. 2021, 99, 5944–5953. [Google Scholar]
- Lutfi, A.; Al-Okaily, M.; Alshirah, M.H.; Alshira’h, A.F.; Abutaber, T.A.; Almarashdah, M.A. Digital Finan-cial Inclusion Sustainability in Jordanian Context. Sustainability 2021, 13, 6312. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Espadanal, M. Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Inf. Manag. 2014, 51, 497–510. [Google Scholar] [CrossRef]
- Lutfi, A.A.; Idris, K.M.; Mohamad, R. The influence of technological, organizational and environmental fac-tors on accounting information system usage among Jordanian small and medium-sized enterprises. Int. J. Econ. Financ. Issues 2016, 6, 240–248. [Google Scholar]
- Kandil, A.M.N.A.; Ragheb, M.A.; Ragab, A.A.; Farouk, M. Examining the effect of TOE model on cloud computing adoption in Egypt. Bus. Manag. Rev. 2018, 9, 113–123. [Google Scholar]
- Asiaei, A.; Rahim, N.Z.A. A multifaceted framework for adoption of cloud computing in Malaysian SMEs. J. Sci. Technol. Policy Manag. 2019, 10, 708–750. [Google Scholar] [CrossRef]
- Kung, L.; Cegielski, C.G.; Kung, H.J. An integrated environmental perspective on software as a service adop-tion in manufacturing and retail firms. J. Inf. Technol. 2015, 30, 352–363. [Google Scholar] [CrossRef]
- Al Amri, M.; Almaiah, M.A. Sustainability Model for Predicting Smart Education Technology Adoption Based on Student Perspectives. Int. J. Adv. Soft Comput. Its Appl. 2021, 13, 2. [Google Scholar]
- Gangwar, H. Understanding the determinants of big data adoption in India: An analysis of the manufacturing and services sectors. Inf. Resour. Manag. J. 2018, 31, 22. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, H.; Ren, J. Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management: An empirical investigation. Int. J. Logist. Manag. 2018, 29, 676–703. [Google Scholar] [CrossRef]
- Awa, H.O.; Ukoha, O.; Igwe, S.R. Revisiting technology-organization-environment (T-O-E) theory for enriched applicability. Bottom Line 2017, 30, 2–22. [Google Scholar] [CrossRef]
- Verma, S.; Bhattacharyya, S.S. Perceived strategic value-based adoption of Big Data Analytics in emerging economy: A qualitative approach for Indian firms. J. Enterp. Inf. Manag. 2017, 30, 354–382. [Google Scholar] [CrossRef]
- Alshamaila, Y.; Papagiannidis, S.; Li, F. Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. J. Enterp. Inf. Manag. 2013, 26, 250–275. [Google Scholar] [CrossRef] [Green Version]
- Ghasemaghaei, M. The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage. Int. J. Inf. Manag. 2018, 50, 395–404. [Google Scholar] [CrossRef]
- Raut, R.D.; Priyadarshinee, P.; Gardas, B.B.; Jha, M.K. Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach. Technol. Forecast. Soc. Chang. 2018, 134, 98–123. [Google Scholar] [CrossRef]
- Priyadarshinee, P.; Raut, R.D.; Jha, M.K.; Kamble, S.S. A cloud computing adoption in Indian SMEs: Scale development and validation approach. J. High Technol. Manag. Res. 2017, 28, 221–245. [Google Scholar] [CrossRef]
- Sanders, N.R. Pattern of information technology use: The impact on buyer–suppler coordination and perfor-mance. J. Oper. Manag. 2008, 26, 349–367. [Google Scholar] [CrossRef]
- Jahanshahi, A.A.; Brem, A. Sustainability in SMEs: Top Management Teams Behavioral Integration as Source of Innovativeness. Sustainability 2017, 9, 1899. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jesus, F.; Pinheiro, A.; Oliveira, T. Understanding CRM adoption stages: Empirical analysis building on the TOE framework. Comput. Ind. 2019, 109, 1–13. [Google Scholar] [CrossRef]
- Ramdani, B.; Kawalek, P. Exploring SMEs adoption of broadband in the northwest of England. In Handbook of Research on Global Diffusion of Broadband Data Transmission; IGI Global: Hershey, PA, USA, 2008; pp. 504–523. [Google Scholar]
- Xu, W.; Ou, P.; Fan, W. Antecedents of ERP assimilation and its impact on ERP value: A TOE-based model and empirical test. Inf. Syst. Front. 2015, 19, 13–30. [Google Scholar] [CrossRef]
- Grandon, E.; Pearson, J. Electronic commerce adoption: An empirical study of small and medium US businesses. Inf. Manag. 2004, 42, 197–216. [Google Scholar] [CrossRef]
- Chen, D.Q.; Preston, D.S.; Swink, M. How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. J. Manag. Inf. Syst. 2015, 32, 4–39. [Google Scholar] [CrossRef]
- Lautenbach, P.; Johnston, K.; Adeniran-Ogundipe, T. Factors influencing business intelligence and analytics usage extent in South African organisations. South Afr. J. Bus. Manag. 2017, 48, 23–33. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M.; Chakrabarti, A.K. Processes of Technological Innovation; Lexington Books: Lanham, MD, USA, 1990. [Google Scholar]
- Ifinedo, P. Factors influencing e-government maturity in transition economies and developing countries: A longi-tudinal perspective. ACM SIGMIS Database: Adv. Inf. Syst. 2012, 42, 98–116. [Google Scholar] [CrossRef]
- Hameed, M.A.; Counsell, S. Assessing the influence of Environmental and CEO Characteristics for Adoption of Information Technology in Organizations. J. Technol. Manag. Innov. 2012, 7, 64–84. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, M.; Laddha, N.C.; Arora, P.; Marfatia, Y.S.; Begum, R. Decreased regulatory T-cells and CD 4+/CD 8+ ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment. Cell Melanoma Res. 2013, 26, 586–591. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Agrawal, K.P. Investigating the determinants of Big Data Analytics (BDA) adoption in emerging economies. Acad. Manag. Proc. 2015, 2015, 11290. [Google Scholar] [CrossRef]
- Salleh, K.A.; Janczewski, L. Adoption of Big Data Solutions: A study on its security determinants using Sec-TOE Framework. In Proceedings of the International Conference on Information Resources Management (CONFIRM), Cape Town, South Africa, 18–20 May 2016. [Google Scholar]
- Hsu, P.F.; Ray, S.; Li-Hsieh, Y.Y. Examining cloud computing adoption intention, pricing mechanism, and deployment model. Int. J. Inf. Manag. 2014, 34, 474–488. [Google Scholar] [CrossRef]
- Jordan Chamber of Industry [JCI]. 2020. Available online: http://www.aci.org.jo/development/en/ (accessed on 1 December 2021).
- King, W.R.; He, J. External validity in IS survey research. Commun. Assoc. Inf. Syst. 2005, 16, 45. [Google Scholar] [CrossRef]
- Alqudah, H.; Amran, N.; Hassan, H. Factors affecting the internal auditors’ effectiveness in the Jordanian pub-lic sector: The moderating effect of task complexity. EuroMed. J. Bus. 2019, 14, 251–273. [Google Scholar] [CrossRef]
- Al-Okaily, M.; Lutfi, A.; Alsaad, A.; Taamneh, A.; Alsyouf, A. The Determinants of Digital Payment Systems’ Acceptance under Cultural Orientation Differences: The Case of Uncertainty Avoidance. Technol. Soc. 2020, 63, 101367. [Google Scholar] [CrossRef]
- Alshira’H, A.; Alsqour, M.; Lutfi, A.; Alsyouf, A.; Alshirah, M. A Socio-Economic Model of Sales Tax Compliance. Economies 2020, 8, 88. [Google Scholar] [CrossRef]
- Alsyouf, A.; Masa’Deh, R.; Albugami, M.; Al-Bsheish, M.; Lutfi, A.; Alsubahi, N. Risk of Fear and Anxiety in Utilising Health App Surveillance Due to COVID-19: Gender Differences Analysis. Risks 2021, 9, 179. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Al-gebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Springer: Berlin, Germany, 2010; pp. 655–690. [Google Scholar]
- Garg, A.; Choeu, T. The Adoption of Electronic Commerce by SMEs in Pretoria East. Electron. J. Inf. Syst. Dev. Ctries 2015, 68, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Kim, Y.B. Factors Activating Big Data Adoption by Korean Firms. J. Comput. Inf. Syst. 2019, 61, 285–293. [Google Scholar] [CrossRef]
- Choudhury, V.; Sabherwal, R. Portfolios of Control in Outsourced Software Development Projects. Inf. Syst. Res. 2003, 14, 291–314. [Google Scholar] [CrossRef]
- Bush, A.A.; Tiwana, A.; Tsuji, H. An empirical investigation of the drivers of software outsourcing decisions in Japanese organizations. Inf. Softw. Technol. 2008, 50, 499–510. [Google Scholar] [CrossRef]
- Kim, A.J.; Ko, E. Impacts of luxury fashion brand’s social media marketing on customer relationship and pur-chase intention. J. Glob. Fash. Mark. 2010, 1, 164–171. [Google Scholar] [CrossRef]
- Scupola, A. SMEs’ e-commerce adoption: Perspectives from Denmark and Australia. J. Enterp. Inf. Manag. 2009, 22, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Salwani, M.I.; Marthandan, G.; Norzaidi, M.D.; Chong, S.C. E-commerce usage and business performance in the Malaysian tourism sector: Empirical analysis. Inf. Manag. Comput. Secur. 2009, 17, 166–185. [Google Scholar] [CrossRef]
- Zhu, K.; Kraemer, K.L. Post-Adoption Variations in Usage and Value of E-Business by Organizations: Cross-Country Evidence from the Retail Industry. Inf. Syst. Res. 2005, 16, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Chwelos, P.; Benbasat, I.; Dexter, A.S. Research Report: Empirical Test of an EDI Adoption Model. Inf. Syst. Res. 2001, 12, 304–321. [Google Scholar] [CrossRef] [Green Version]
- Alshirah, M.H.; Lutfi, A.; Alshira’H, A.F.; Saad, M.; Ibrahim, N.M.E.S.; Mohammed, F.M. Influences of the environmental factors on the intention to adopt cloud based accounting information system among SMEs in Jordan. Accounting 2021, 7, 645–654. [Google Scholar] [CrossRef]
- Lutfi, A. Investigating the moderating effect of Environment Uncertainty on the relationship between institution-al factors and ERP adoption among Jordanian SMEs. J. Open Innov.: Technol. Mark. Complex. 2020, 6, 91. [Google Scholar] [CrossRef]
Latent Construct | Cronbach Alpha > 0.700 | Composite Reliability >0.700 | AVE >0.500 |
---|---|---|---|
BD adoption | 0.814 | 0.848 | 0.653 |
RA | 0.826 | 0.865 | 0.562 |
COMX | 0.831 | 0.867 | 0.686 |
COMP | 0.843 | 0.872 | 0.629 |
SECU | 0.808 | 0.838 | 0.633 |
TMS | 0.899 | 0.929 | 0.765 |
OR | 0.868 | 0.900 | 0.692 |
CP | 0.845 | 0.878 | 0.708 |
GS | 0.865 | 0.897 | 0.636 |
RA | COMP | COMX | SECU | GS | BD adop | TMS | OR | CP | |
---|---|---|---|---|---|---|---|---|---|
RA | 0.749 | ||||||||
COMP | 0.381 | 0.885 | |||||||
COMX | −0.401 | −0.487 | 0.896 | ||||||
SECU | −0.266 | −0.333 | 0.378 | 0.795 | |||||
GS | 0.124 | 0.185 | 0.174 | 0.307 | 0.797 | ||||
BD adop | 0.700 | 0.711 | 0.840 | 0.641 | 0.492 | 0.808 | |||
TMS | 0.406 | 0.486 | −0.613 | −0.361 | 0.528 | 0.546 | 0.875 | ||
OR | 0.431 | 0.500 | −0.685 | −0.250 | 0.468 | 0.650 | 0.678 | 0.832 | |
CP | −0.099 | 0.063 | 0.078 | −0.050 | 0.133 | −0.015 | −0.058 | −0.118 | 0.839 |
Hypothesis No. | Relationship | Path Coefficient | St-D | T-Value | Decision |
---|---|---|---|---|---|
H1 | RA → BD adoption | 0.219 | 0.078 | 2.870 ** | Supported |
H2 | COMX → BD adoption | −0.170 | 0.053 | 3.101 *** | Supported |
H3 | COMP → BD adoption | 0.051 | 0.052 | 0.871 | Not Supported |
H4 | SECU → BD adoption | −0.122 | 0.044 | 2.738 ** | Supported |
H5 | TMS → BD adoption | 0.228 | 0.054 | 4.319 *** | Supported |
H6 | OR → BD adoption | 0.100 | 0.059 | 1.801 * | Supported |
H7 | CP → BD adoption | −0.011 | 0.043 | 0.182 | Not Supported |
H8 | GR → BD adoption | 0.309 | 0.066 | 4.646 *** | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutfi, A.; Alsyouf, A.; Almaiah, M.A.; Alrawad, M.; Abdo, A.A.K.; Al-Khasawneh, A.L.; Ibrahim, N.; Saad, M. Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability 2022, 14, 1802. https://doi.org/10.3390/su14031802
Lutfi A, Alsyouf A, Almaiah MA, Alrawad M, Abdo AAK, Al-Khasawneh AL, Ibrahim N, Saad M. Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability. 2022; 14(3):1802. https://doi.org/10.3390/su14031802
Chicago/Turabian StyleLutfi, Abdalwali, Adi Alsyouf, Mohammed Amin Almaiah, Mahmaod Alrawad, Ahmed Abdullah Khalil Abdo, Akif Lutfi Al-Khasawneh, Nahla Ibrahim, and Mohamed Saad. 2022. "Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs" Sustainability 14, no. 3: 1802. https://doi.org/10.3390/su14031802
APA StyleLutfi, A., Alsyouf, A., Almaiah, M. A., Alrawad, M., Abdo, A. A. K., Al-Khasawneh, A. L., Ibrahim, N., & Saad, M. (2022). Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability, 14(3), 1802. https://doi.org/10.3390/su14031802