Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research
Abstract
:1. Introduction
2. Methods
2.1. Data Selection, Matrix, and Scope
2.2. Analysis
3. Results and Discussion
3.1. The Characteristics of Research
3.2. The Subject Area Covered
3.3. Research Concept Analysis
3.3.1. Keyword Analysis
3.3.2. Period Analysis
3.4. Contribution
3.4.1. Country/Territory Performance
3.4.2. Collaboration Analysis
3.5. Analysis of Sources, Authors, and Institutional Contributions
3.6. Citation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The World Bank Solid Waste Management. Available online: https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management (accessed on 29 September 2021).
- CEWEP. Waste-to-Energy: Energising Your Waste. Available online: https://www.cewep.eu/wp-content/uploads/2018/07/Interactive-presentation-2018-New-slides.pdf (accessed on 29 September 2021).
- Gendebien, A.; Leavens, A.; Blackmore, K.; Godley, A.; Lewin, K.; Whiting, K.J.; Davis, R.; Giegrich, J.; Fehrenback, H.; Gromke, U.; et al. Refuse Derived Fuel, Current Practice and Perspectives. Available online: https://www.undrr.org/organization/european-commission-directorate-general-environment (accessed on 1 April 2020).
- Ribeiro, A.; Soares, M.; Castro, C.; Mota, A. Waste-to-Energy Technologies Applied for Refuse Derived Fuel (RDF) Valorisation. HELIX 2019, 641–647. [Google Scholar] [CrossRef]
- Yang, Y.; Liew, R.K.; Tamothran, A.M.; Foong, S.Y.; Yek, P.N.Y.; Chia, P.W.; Tran, T.V.; Peng, W.; Lam, S.S. Gasification of Refuse-Derived Fuel from Municipal Solid Waste for Energy Production a Review.Pdf. Environ. Chem. Lett. 2021, 19, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.D. Evaluating Uganda’s Waste Management System for the Production of Refuse-Derived Fuel (RDF) and Its Potential Implementation in the Country’s Growing Cement Industry. 2019. Available online: https://catalogplus.tuwien.at (accessed on 15 April 2021).
- Shukla, P. Utilization of Refuse–Derived Fuel (RDF) as an Alternative Energy Resource in India. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 7537–7542. [Google Scholar] [CrossRef]
- Brew, M. What’s on the Horizon for Refuse-Derived Fuel as Brexit Looms and Production Evolves. Available online: https://www.recyclingwasteworld.co.uk/in-depth-article/as-brexit-looms-and-production-evolves-whats-on-the-horizon-for-refuse-derived-fuel/172555/ (accessed on 13 November 2021).
- Langley, J. RDF Exports. Available online: https://www.letsrecycle.com/news/rdf-exports-fall-by-more-than-a-third-in-2020/ (accessed on 13 November 2021).
- Scopus Bibliometric Analysis. Available online: https://www.scopus.com/results/results.uri?cc=10&sort=plf-t&src=s&nlo=&nlr=&nls=&sid=da8e155b980334a7caff0569f81d04b4&sot=b&sdt=b&sl=38&s=TITLE-ABS-KEY%28%22Bibliometric+analysis%22%29&ss=plf-t&ps=r-f&editSaveSearch=&origin=resultslist&zone=resultslist (accessed on 19 November 2021).
- Moosa, V.; Shareefa, M. Science Mapping the Most-Cited Publications on Workplace Learning. J. Work. Learn. 2020, 32, 259–272. [Google Scholar] [CrossRef]
- Bezak, N.; Borrelli, P.; Alewell, C.; Alvarez, P.; Alexandre, J.; Anache, A.; Baartman, J.; Ballabio, C.; Chalise, D.; Chen, S.; et al. Soil Erosion Modelling: A Bibliometric Analysis z Miko. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A Bibliometric Analysis of Industrial Wastewater Treatments from 1998 to 2019. Environ. Pollut. 2020, 275, 115785. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, L.F.; Jim, L.; Norouzi, M.; Ch, M.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Ampese, L.C.; Mussatto, S.I.; Lyngby, K. A Bibliometric Analysis on Potential Uses of Brewer’s Spent Grains in a Biorefinery for the Circular Economy Transition of the Beer Industry. Biofuels Bioprod. Biorefining 2021, 15, 1965–1988. [Google Scholar] [CrossRef]
- Mao, G.; Zou, H.; Chen, G.; Du, H.; Zuo, J. Past, Current and Future of Biomass Energy Research: A Bibliometric Analysis. Renew. Sustain. Energy Rev. 2015, 52, 1823–1833. [Google Scholar] [CrossRef]
- Ferrari, G.; Pezzuolo, A.; Nizami, A.-S.; Marinello, F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020, 13, 3714. [Google Scholar] [CrossRef]
- Zhou, W.; Kou, A.; Chen, J.; Ding, B. A Retrospective Analysis with Bibliometric of Energy Security. Energy Rep. 2018, 4, 724–732. [Google Scholar] [CrossRef]
- Obregón, L.; Orozco, C.; Camargo, J.; Duarte, J.; Valencia, G. Research Trend on Nuclear Energy from 2008 to 2018: A Bibliometric Analysis. Int. J. Energy Econ. Policy 2019, 9, 542–551. [Google Scholar] [CrossRef]
- Adedayo, H.B.; Adio, S.A.; Oboirien, B.O. Energy Research in Nigeria: A Bibliometric Analysis Energy Research in Nigeria: A Bibliometric Analysis. Energy Strateg. Rev. 2021, 34, 100629. [Google Scholar] [CrossRef]
- Alemán-Nava, G.S.; Casiano-Flores, V.H.; Cárdenas-Chávez, D.L.; Díaz-Chavez, R.; Scarlat, N.; Mahlknecht, J.; Dallemand, J.-F.; Parra, R. Renewable Energy Research Progress in Mexico: A Review. Renew. Sustain. Energy Rev. 2014, 32, 140–153. [Google Scholar] [CrossRef]
- Montejo, C.; Costa, C.; Ramos, P.; Marquez, C.; Montejo, C.; Costa, C.; Ramos, P.; Marquez, C. Analysis and Comparison of Municipal Solid Waste and Reject Fraction as Fuels for Incineration Plants. Appl. Therm. Eng. 2012, 31, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.H.; Chen, W.C.; Chang, N. Bin Comparative Evaluation of RDF and MSW Incineration. J. Hazard. Mater. 1998, 58, 33–45. [Google Scholar] [CrossRef]
- The European Cement Association. Data and Assessments on Markets for SRF Production of SRF Based on Waste Volumes Current Use of SRF/RDF Potential Markets for SRF; CEMBUREAU: Brussels, Belgium, 2015. [Google Scholar]
- Batarseh, E.; Hararah, M.A.; Haddad, A. Analysis of Refuse Derived Fuel Utilization from Aqaba Municipal Solid Waste. Jordan J. Civ. Eng. 2018, 12, 245–253. [Google Scholar]
- Hemidat, S.; Saidan, M.; Al-zu, S.; Irshidat, M. Potential Utilization of RDF as an Alternative Fuel to Be Used in Cement Industry in Jordan. Sustainability 2019, 11, 5819. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, A.; Carlos, M.; Bovea, M.D.; Colomer, F.J.; Albarrán, F. Analysis of Refuse-Derived Fuel from the Municipal Solid Waste Reject Fraction and Its Compliance with Quality Standards. J. Clean. Prod. 2014, 83, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Aluri, S.; Syed, A.; Flick, D.W.; Muzzy, J.D.; Sievers, C. Pyrolysis and Gasification Studies of Model Refuse Derived Fuel (RDF) Using Thermogravimetric Analysis. Fuel Process. Technol. 2018, 179, 154–166. [Google Scholar] [CrossRef]
- Isaac, K.; Bada, S.O. The Co-Combustion Performance and Reaction Kinetics of Refuse Derived Fuels with South African High Ash Coal. Heliyon 2020, 6, e03309. [Google Scholar] [CrossRef] [PubMed]
- Sakri, A.; Aouabed, A.; Nassour, A.; Nelles, M. Refuse-Derived Fuel Potential Production for Co-Combustion in the Cement Industry in Algeria. Waste Manag. Res. 2021, 39, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhai, X.; Zhou, G. Life Cycle Assessment of RDF Production from Aged MSW and Its Utilization System. In Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India, 5–7 September 2007; pp. 406–414. [Google Scholar]
- Panahandeh, A.; Asadollahfardi, G. Life Cycle Assessment of Clinker Production Using Refuse-Derived Fuel: A Case Study Using Refuse-Derived Fuel from Tehran Municipal Solid Waste Reducing Emissions and Conserving Fossil Fuel in Cement Making and Making Beneficial Use of Solid Waste. Environ. Qual. Manag. 2017, 27, 57–66. [Google Scholar] [CrossRef]
- Adefeso, B.I. Techno-Economic Analysis of a Gasification System Using Refuse-Derived Fuel from Municipal Solid Waste. 2017. Available online: https://cput.ac.za/search#gsc.tab=0&gsc.q (accessed on 10 November 2021).
- Poskart, A.; Chrubasik, M.; Sajdak, M. Technological and Economic Aspect of Refuse Derived Fuel Pyrolysis. Renew. Energy 2020, 161, 482–494. [Google Scholar] [CrossRef]
- Rocco, V.; Costa, M.; Massarotti, N.; Mauro, A.; Arpino, F. CFD Modelling of a RDF Incineration Plant. Appl. Therm. Eng. 2016, 101, 710–719. [Google Scholar] [CrossRef]
- Chatziaras, N.; Psomopoulos, C.S.; Themelis, N.J. Use of Waste Derived Fuels in Cement Industry: A Review. Emerald Insight 2015, 27, 178–193. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Velis, C.A.; Williams, P.T.; Komilis, D. Characterisation and Composition Identification of Waste-Derived Fuels Obtained from Municipal Solid Waste Using Thermogravimetry: A Review. Waste Manag. Res. 2020, 38, 942–965. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lai, N.; Zuo, J.; Chen, G.; Du, H. Characteristics and Trends of Research on Waste-to-Energy Incineration: A Bibliometric Analysis, 1999–2015. Renew. Sustain. Energy Rev. 2016, 66, 95–104. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Marc, W. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Hirsch, J.E. An Index to Quantify an Individual’s Scientific Research Output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Arismel, R.; Boloy, M.; Reis, C.; Rios, E.M. Waste-to-Energy Technologies towards Circular Economy: A Systematic Literature Review and Bibliometric Analysis. Water Air Soil Pollut. 2021, 232, 306. [Google Scholar] [CrossRef]
- Biogreen Refuse Derived Fuel Densification. Available online: http://www.biogreen-energy.com/refuse-derived-fuel-densification/ (accessed on 5 February 2021).
- Nobre, C.P. Thermochemical Upgrading of Refuse Derived Fuel, Universidade Nova de Lisboa, 2019. Available online: https://run.unl.pt/bitstream/10362/77043/1/Nobre_2019.pdf (accessed on 29 September 2020).
- Chiemchaisri, C.; Charnnok, B.; Visvanathan, C. Recovery of Plastic Wastes from Dumpsite as Refuse-Derived Fuel and Its Utilization in Small Gasification System. Bioresour. Technol. 2010, 101, 1522–1527. [Google Scholar] [CrossRef]
- Vounatsos, P.; Atsonios, K.; Itskos, G. Classification of Refuse Derived Fuel (RDF) and Model Development of a Novel Thermal Utilization Concept through Air-Gasification. Waste Biomass Valorization 2016, 7, 1297–1308. [Google Scholar] [CrossRef]
- Násner, L.M.A.; Lora, E.E.S.; Palacio, C.J.E.; Rocha, H.M.; Restrepo, C.J.; Venturni, J.O.; Ratner, A. Refuse Derived Fuel (RDF) Production and Gasification in a Pilot Plant Integrated with an Otto Cycle ICE through Aspen plus TM Modelling: Thermodynamic and Economic Viability. Waste Manag. 2017, 69, 187–201. [Google Scholar] [CrossRef]
- Sciences, N.; Sciences, M. Substitution of Coal by Refuse Derived Fuels (Rdf) in the Precalciner of a Cement Kiln System. Energy Sustain. 2017, 224, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Paramita1, W.; Hartono, D.M.; Soesilo, T.E.B. Sustainability of Refuse Derived Fuel Potential from Municipal Solid Waste for Cement’s Alternative Fuel in Indonesia (A Case at Jeruklegi Landfill, in Cilacap). IOP Conf. Ser. Earth Environ. Sci. 2018, 159, 012027. [Google Scholar] [CrossRef]
- Hajinezhad, A.; Halimehjani, E.Z.; Tahani, M. Utilization of Refuse-Derived Fuel (RDF) from Urban Waste as an Alternative Fuel for Cement Factory: A Case Study. Int. J. Renew. Energy Res. 2016, 6, 702–714. [Google Scholar] [CrossRef]
- Yool, S.; Yong, S.; Hoon, Y.; Mo, Y.; Eon, C.; Min, G.; Jool, D. Application of Refuse Fuels in a Direct Carbon Fuel Cell System. Energy 2013, 51, 447–456. [Google Scholar] [CrossRef]
- Patra, J.M.; Panda, S.S.; Dhal, N.K. Biochar as a Low-Cost Adsorbent for Heavy Metal Removal: A Review. Int. J. Res. Biosci. 2017, 6, 1–7. [Google Scholar]
- Kumari, P. Activated Charcoal as a Low Cost Adsorbent. Int. Res. J. Eng. Technol. 2017, 4, 1410–1412. [Google Scholar]
- Porsnovs, D.; Ansane-Bertina, L.; Kviesis, J.; Arina, D.; Klavins, M. Biochar from Waste Derived Fuels as Low-Cost Adsorbent for Waste Hydrocarbons.Pdf. Environ. Clim. Technol. 2020, 24, 174–187. [Google Scholar] [CrossRef]
- Chappin, E.J.L.; Vries, L.J.D.; Richstein, J.C.; Bhagwat, P.; Iychettira, K.; Khan, S. Environmental Modelling & Software Simulating Climate and Energy Policy with Agent-Based Modelling: The Energy Modelling Laboratory (EMLab). Environ. Model. Softw. 2017, 96, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Howes, P. Waste to Energy: European Policy Strategies and Promising Value Chains; Ricardo Energy & Environment Ltd.: Detroit, MI, USA, 2017. [Google Scholar]
- Santo, E.; Lorena, G.D.; Chaves, D.; Ribeiro, R.; Chang, N. Policy Analysis for Sustainable Refuse-Derived Fuel Production. J. Clean. Prod. 2021, 294, 126344. [Google Scholar] [CrossRef]
- Ummatin, K.K.; Faria, N. Simulation of Tipping Fee Policy to Supportmunicipal Waste Management into Alternative Fuel in the Cement Industry a Case Study of Tuban Landfill Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 753, 012041. [Google Scholar] [CrossRef]
- Alberto, L.; Paes, B.; Stolte, B.; Mattos, R.; Jugend, D.; Aparecida, R.; Battistelle, G. Organic Solid Waste Management in a Circular Economy Perspective—A Systematic Review and SWOT Analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Kuo, P.; Illathukandy, B.; Kung, C.; Chang, J.; Wu, W. Process Simulation Development of a Clean Waste-to-Energy Conversion Power Plant: Thermodynamic and Environmental Assessment. J. Clean. Prod. 2021, 315, 128156. [Google Scholar] [CrossRef]
- Nwabue, F.I.; Unah, U.; Itumoh, E.J. Production and Characterisation of Smokeless Bio-Coal Briquettes Incorporating Plastic Waste Materials. Environ. Technol. Innov. 2017, 8, 233–245. [Google Scholar] [CrossRef]
- Ouigmane, A.; Boudouch, O.; Hasib, A.; Ouhsine, O.; Abba, E.H.; Isaifan, R.J.; Berkani, M. The Impact of RDF Valorization on the Leachate Quality and on Emissions from Cement Kiln (Case Study of a Region in Morocco). Pollution 2021, 7, 293–307. [Google Scholar]
- Hlaba, A. Process Simulation of Municipal Solid Waste Derived Pellet Gasification for Fuel Production. Assoc. Comput. Mach. 2018, 59–64. [Google Scholar] [CrossRef]
- Mutz, D.; Hengevoss, D.; Hugi, C.; Gross, T. Waste-to-Energy Options in Municipal Solid Waste Management-A Guide for Decision Makers in Developing and Emerging Countries. Dtsch. Ges. Für Int. Zs. GmbH 2017, 1–58. [Google Scholar] [CrossRef]
- IFC-World Bank Group. Increasing The Use of Alternative Fuels at Cement Plants: International Best Practice; International Finance Corporation: Washington, WA, USA, 2017. [Google Scholar]
- Zhang, M.; Gao, M.; Yue, S.; Zheng, T.; Gao, Z.; Ma, X.; Wang, Q. Global Trends and Future Prospects of Food Waste Research: A Bibliometric Analysis. Environ. Sci. Pollut. Res. 2018, 25, 24600–24610. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.L. Towards Universal Electricity Access in Sub-Saharan Africa A Quantitative Analysis of Technology. 2017. Available online: https://www.pbl.nl/sites/default/files/downloads/pbl-2017-towards-universal-electricity-access-in-sub-saharan-africa-1952_3.pdf (accessed on 5 February 2021).
- Barnes, R. Cement Production in Africa and Pricing and Trends. Available online: https://constructionreviewonline.com/concrete/cement-production-in-africa-and-pricing-and-trends/ (accessed on 29 December 2021).
- Alqattan, N.; Acheampong, M.; Jaward, F.M.; Cansu, F. Reviewing the Potential of Waste-to-Energy (WTE) Technologies for Sustainable Development Goal (SDG) Numbers Seven and Eleven. Reinf. Plast. 2018, 27, 97–110. [Google Scholar] [CrossRef]
- Dawson-Ahmoah, G. Local Cement Industry Is Suffering. Available online: https://www.modernghana.com/news/1070633/article-local-cement-industry-is-suffering.html (accessed on 20 April 2021).
- Ohorongo Cement Ohorongo Cemen Invest in Refuse Derived Fuel. Available online: https://www.ohorongo-cement.com/search/?search_field=refuse+derived+fuel&search=Submit (accessed on 21 April 2021).
- Scopus Analyse Author Output. Available online: https://www.scopus.com/hirsch/author.uri?accessor=authorProfile&auidList=7404956386&origin=AuthorProfile&display=hIndex (accessed on 28 November 2021).
Journal | TP a | TC a | CiteScore 1 | SJR 1 | SNIP 2020 1 |
---|---|---|---|---|---|
Waste Management | 87 | 751 | 11.5 | 1.81 | 2.23 |
Fuel | 45 | 634 | 9.8 | 1.56 | 2.01 |
Waste Management and Research | 32 | 205 | 4.6 | 0.71 | 1.07 |
Journal of Cleaner Production | 30 | 466 | 13.1 | 1.94 | 2.48 |
Energy and Fuels | 24 | 510 | 6.1 | 0.86 | 1.16 |
Fuel Processing Technology | 24 | 272 | 11.3 | 1.49 | 1.85 |
Energy | 21 | 340 | 11.5 | 0.86 | 2.01 |
Country | Institutions | TP |
---|---|---|
US | Iowa State University | 13 |
Western Kentucky University | 9 | |
Columbia University | 9 | |
Wrocław University of Environmental and Life Sciences | 9 | |
University of Florida | 5 | |
Italy | Università degli Studi di Roma Tor Vergata | 10 |
Sapienza Università di Roma | 10 | |
Università di Trento | 9 | |
Consiglio Nazionale delle Ricerche | 9 | |
Politecnico di Torino | 8 | |
Germany | Technische Universität Dresden | 10 |
Technical University of Berlin | 7 | |
Ruhr-Universitat Bochum | 6 | |
Vecoplan AG | 5 | |
Hamburg University of Technology | 5 | |
Japan | Nagoya University | 15 |
National Institute for Environmental Studies of Japan | 10 | |
Kyoto University | 8 | |
National Research Institute of Fire and Disaster | 8 | |
Toyota Motor Corporation | 7 | |
China | Zhejiang University | 18 |
State Key Laboratory of Clean Energy Utilization | 17 | |
Shenyang Aerospace University | 9 | |
Wuhan University of Technology | 7 | |
Ministry of Education China | 6 | |
UK | University of Leeds | 23 |
University College London | 8 | |
Advanced Plasma Power Limited | 5 | |
The University of Sheffield | 4 | |
The University of Manchester | 4 |
Author Name | TP (a) | TC (a) | h-Index (1) | Current Affiliation (1) |
---|---|---|---|---|
Williams Paul T | 21 | 912 | 80 | University of Leeds, Leeds, United Kingdom |
Chang Nibin | 13 | 237 | 47 | University of Central Florida, Orlando, United States |
Vilarinho, Cândida | 13 | 47 | 11 | Universidade do Minho, Braga, Portugal |
Mori, Shigeikatsu | 12 | 152 | 25 | Nagoya University, Nagoya, Japan |
Białowiec, Andrzej | 10 | 80 | 15 | Wrocław University of Environmental and Life Sciences, Wroclaw, Poland |
Chang, Ying Hsii | 10 | 207 | 10 | Industrial Technology Research Institute of Taiwan, Hsinchu, Taiwan |
Gonçalves, Maria Margarida | 10 | 42 | 18 | Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal |
Nobre, Catarina | 10 | 41 | 5 | Collaborative Laboratory for Biorefineries, Sao Mamede de Infesta, Portugal |
Year | Title | TC | TC/yr | Source | CA |
---|---|---|---|---|---|
2009 | Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration | 406 | 11.7 | Energy | Austria, Italy |
2015 | A review of technologies and performances of thermal treatment systems for energy recovery from waste | 274 | 12 | Waste Management | Italy |
2014 | Pyrolysis technologies for municipal solid waste: A review | 238 | 12.8 | Waste Management | China |
2016 | Waste-to-energy potential: A case study of Saudi Arabia | 205 | 10.4 | Renewable and Sustainable Energy Reviews | Saudi Arabia, Jordan |
2009 | Pyrolysis kinetics and combustion characteristics of waste recovered fuels | 185 | 5.3 | Fuel | Greece |
2010 | Fuzzy multicriteria disposal method and site selection for municipal solid waste | 176 | 7 | Waste Management | Turkey |
2004 | Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes | 169 | 3.7 | Waste Research | Japan and Thailand |
2005 | Alternative strategies for energy recovery from municipal solid waste: Part B: Emission and cost estimates | 167 | 7.1 | Waste Management | Italy |
2002 | The influence of biomass temperature on biostabilization-bio drying of municipal solid waste | 157 | 7.8 | Bioresource Technology | Italy |
2007 | Characterization of products from the pyrolysis of municipal solid waste | 153 | 6.5 | Process Safety and Environmental Protection | UK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarquah, K.; Narra, S.; Beck, G.; Awafo, E.A.; Antwi, E. Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research. Sustainability 2022, 14, 1994. https://doi.org/10.3390/su14041994
Sarquah K, Narra S, Beck G, Awafo EA, Antwi E. Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research. Sustainability. 2022; 14(4):1994. https://doi.org/10.3390/su14041994
Chicago/Turabian StyleSarquah, Khadija, Satyanarayana Narra, Gesa Beck, Edward A. Awafo, and Edward Antwi. 2022. "Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research" Sustainability 14, no. 4: 1994. https://doi.org/10.3390/su14041994
APA StyleSarquah, K., Narra, S., Beck, G., Awafo, E. A., & Antwi, E. (2022). Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research. Sustainability, 14(4), 1994. https://doi.org/10.3390/su14041994