Assessing Carbon Storage Potential of Forested Wetland Soils in Two Physiographic Provinces of Northern Virginia, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Soil Collection and Field Methods
2.3. Analysis of Soil Physicochemistry and Soil Carbon
2.4. Data Analysis
3. Results and Discussion
3.1. Soil Physicochemistry across Sites
3.2. Soil Carbon and Nitrogen
3.3. Soil Carbon Storage and Physicochemistry as Affected by Soil Depth and Physiographic Province
3.4. Correlations and Regressions between Soil Physicochemistry and Soil Carbon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley & Sons, Incorporated: Somerset, NJ, USA, 2015; ISBN 978-1-119-01979-4. [Google Scholar]
- Nahlik, A.M.; Fennessy, M.S. Carbon Storage in US Wetlands. Nat. Commun. 2016, 7, 13835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolka, R.; Trettin, C.; Tang, W.; Krauss, K.; Bansal, S.; Drexler, J.; Wickland, K.; Chimner, R.; Hogan, D.; Pindilli, E.J.; et al. Chapter 13: Terrestrial Wetlands. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 507–567. [Google Scholar]
- Villa, J.A.; Bernal, B. Carbon Sequestration in Wetlands, from Science to Practice: An Overview of the Biogeochemical Process, Measurement Methods, and Policy Framework. Ecol. Eng. 2018, 114, 115–128. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; El Khair, D.A.; Padoa-Schioppa, E.; Comolli, R. Soil Organic Carbon Stock in Different Urban Land Uses: High Stock Evidence in Urban Parks. Urban Ecosyst. 2020, 23, 159–171. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bispo, A.; Andersen, L.; Angers, D.A.; Bernoux, M.; Brossard, M.; Cécillon, L.; Comans, R.N.J.; Harmsen, J.; Jonassen, K.; Lamé, F.; et al. Accounting for Carbon Stocks in Soils and Measuring GHGs Emission Fluxes from Soils: Do We Have the Necessary Standards? Front. Environ. Sci. 2017, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.; Schmidt, S. Designing Wetlands as an Essential Infrastructural Element for Urban Development in the Era of Climate Change. Sustainability 2019, 11, 1920. [Google Scholar] [CrossRef] [Green Version]
- Ehrenfeld, J.G.; Cutway, H.B.; Hamilton, R.; Stander, E. Hydrologic Description of Forested Wetlands in Northeastern New Jersey, USA—An Urban/Suburban Region. Wetlands 2003, 23, 685–700. [Google Scholar] [CrossRef]
- Moser, K.; Ahn, C.; Noe, G. Characterization of Microtopography and Its Influence on Vegetation Patterns in Created Wetlands. Wetlands 2007, 27, 1081–1097. [Google Scholar] [CrossRef]
- Wahlroos, O.; Valkama, P.; Mäkinen, E.; Ojala, A.; Vasander, H.; Väänänen, V.-M.; Halonen, A.; Lindén, L.; Nummi, P.; Ahponen, H.; et al. Urban Wetland Parks in Finland: Improving Water Quality and Creating Endangered Habitats. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 46–60. [Google Scholar] [CrossRef]
- Yang, L.; Chang, H.-T.; Huang, M.-N. Nutrient Removal in Gravel- and Soil-Based Wetland Microcosms with and without Vegetation. Ecol. Eng. 2001, 18, 91–105. [Google Scholar] [CrossRef]
- Axt, J.R.; Walbridge, M.R. Phosphate Removal Capacity of Palustrine Forested Wetlands and Adjacent Uplands in Virginia. Soil Sci. Soc. Am. J. 1999, 63, 1019–1031. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon Storage by Urban Soils in the United States. J. Environ. Qual. 2006, 35, 1566–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Piazza, S.C.; Sharp, L.A.; Stagg, C.L.; Couvillion, B.R.; Steyer, G.D.; McGinnis, T.E. Determining the Spatial Variability of Wetland Soil Bulk Density, Organic Matter, and the Conversion Factor between Organic Matter and Organic Carbon across Coastal Louisiana, U.S.A. J. Coast. Res. 2017, 33, 507–517. [Google Scholar] [CrossRef]
- Heath, R.C. Ground-Water Regions of the United States; Geological Survey water-supply paper; U.S. Department of the Interior, Geological Survey: Washington, DC, USA, 1984.
- Fretwell, J.D.; Williams, J.S.; Redman, P.J. National Water Summary on Wetland Resources; USGS Water-Supply Paper 2425; USGS: Reston, VA, USA, 1996. [Google Scholar]
- Painter, A.A. Rise of a Region: A Development History of Northern Virginia; Walsh Colucci Lubeley & Walsh: Arlington, VA, USA, 2018. [Google Scholar]
- United States Environmental Protection Agency (US EPA) Watershed Index Online (WSIO) Indicator Data for EPA Region 3, Version 2.3 2021. Available online: https://www.epa.gov/system/files/other-files/2021-12/20211112-wsio-indicator-data-v2.3-epa-region03_0.xlsx (accessed on 19 January 2022).
- Ahn, C.; Jones, S. Assessing Organic Matter and Organic Carbon Contents in Soils of Created Mitigation Wetlands in Virginia. Environ. Eng. Res. 2013, 18, 151–156. [Google Scholar] [CrossRef]
- Collins, M.E.; Kuehl, R.O. Organic Matter Accumulation and Organic Soils. In Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; CRC Press: Boca Raton, FL, USA, 2000; pp. 137–162. [Google Scholar]
- Cui, J.; Li, C.; Trettin, C. Modeling Biogeochemistry and Forest Management Practices for Assessing GHGs Mitigation Strategies in Forested Wetlands. Environ. Model. Assess. 2005, 10, 43–53. [Google Scholar] [CrossRef]
- Dee, S.M.; Ahn, C. Soil Properties Predict Plant Community Development of Mitigation Wetlands Created in the Virginia Piedmont, USA. Environ. Manag. 2012, 49, 1022–1036. [Google Scholar] [CrossRef] [PubMed]
- Gustave, W.; Yuan, Z.-F.; Sekar, R.; Ren, Y.-X.; Liu, J.-Y.; Zhang, J.; Chen, Z. Soil Organic Matter Amount Determines the Behavior of Iron and Arsenic in Paddy Soil with Microbial Fuel Cells. Chemosphere Oxf. 2019, 237, 124459. [Google Scholar] [CrossRef] [PubMed]
- Gutknecht, J.L.M.; Goodman, R.M.; Balser, T.C. Linking Soil Process and Microbial Ecology in Freshwater Wetland Ecosystems. Plant Soil 2006, 289, 17–34. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J.; Vilgalys, R.; Bruland, G.L. Environmental and Anthropogenic Controls over Bacterial Communities in Wetland Soils. Proc. Natl. Acad. Sci. USA 2008, 105, 17842–17847. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.K.; Medvedeff, K.L. Soil Organic Matter. In Wetland Soils: Genesis, Hydrology, Landscapes, and Classification; CRC Press: Boca Raton, FL, USA, 2016; pp. 165–188. [Google Scholar]
- Bae, J.; Ryu, Y. Land Use and Land Cover Changes Explain Spatial and Temporal Variations of the Soil Organic Carbon Stocks in a Constructed Urban Park. Landsc. Urban Plan. 2015, 136, 57–67. [Google Scholar] [CrossRef]
- Markewich, H.W.; Pavich, M.J.; Buell, G.R. Contrasting Soils and Landscapes of the Piedmont and Coastal Plain, Eastern United States. Geomorphology 1990, 3, 417–447. [Google Scholar] [CrossRef]
- Northern Virginia Regional Park Authority, Algonkian Regional Park 2020. Available online: https://www.novaparks.com/parks/algonkian-regional-park (accessed on 9 April 2020).
- Friends of Banshee Reeks Nature Preserve, Banshee Reeks Nature Preserve 2020. Available online: https://bansheereeksnp.org (accessed on 9 April 2020).
- Paul, J. In Our Backyard: Banshee Reeks, a Virginia Treasure. Loudoun Now, 24 March 2017. Available online: https://loudounnow.com/2017/03/24/in-our-backyard-banshee-reeks-a-virginia-treasure/(accessed on 24 July 2017).
- United States Department of Agriculture—Natural Resource Conservation Service (USDA–NRCS) Soil Survey Staff Web Soil Survey. 2020. Available online: https://websoilsurvey.nrcs.usda.gov/ (accessed on 5 January 2021).
- Hiza, B. Groundwater and Tidal Controls on Wetland Hydrology, Julie J. Metz Wetland Mitigation Bank, Woodbridge, Virginia. Master’s Thesis, Old Dominion University, Norfolk, VA, USA, 2017. Available online: http://digitalcommons.odu.edu/oeas_etds/6 (accessed on 6 August 2017).
- Ahn, C.; Gillevet, P.M.; Sikaroodi, M.; Wolf, K.L. An Assessment of Soil Bacterial Community Structure and Physicochemistry in Two Microtopographic Locations of a Palustrine Forested Wetland. Wetl. Ecol. Manag. 2009, 17, 397–407. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service Elizabeth Hartwell Mason Neck and Featherstone National Wildlife Refuges: Draft Comprehensive Conservation Plan and the Environmental Assessment, 2010. Available online: https://www.fws.gov/northeast/planning/MasonNeck_Featherstone/draftccp/Entire_Document.pdf (accessed on 18 June 2020).
- Caldwell, P.V.; Adams, A.A.; Niewoehner, C.P.; Vepraskas, M.J.; Gregory, J.D. Sampling Device to Extract Intact Cores in Saturated Organic Soils. Soil Sci. Soc. Am. J. 2005, 69, 2071–2075. [Google Scholar] [CrossRef]
- Giannopoulos, G.; Lee, D.Y.; Neubauer, S.C.; Brown, B.L.; Franklin, R.B. A Simple and Effective Sampler to Collect Undisturbed Cores from Tidal Marshes. bioRxiv 2019, 515825. [Google Scholar] [CrossRef] [Green Version]
- Craft, C.; Broome, S.; Campbell, C. Fifteen Years of Vegetation and Soil Development after Brackish-Water Marsh Creation. Restor. Ecol. 2002, 10, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Osland, M.J.; Spivak, A.C.; Nestlerode, J.A.; Lessmann, J.M.; Almario, A.E.; Heitmuller, P.T.; Russell, M.J.; Krauss, K.W.; Alvarez, F.; Dantin, D.D.; et al. Ecosystem Development after Mangrove Wetland Creation: Plant–Soil Change across a 20-Year Chronosequence. Ecosystems 2012, 15, 848–866. [Google Scholar] [CrossRef]
- Bruland, G.L.; Richardson, C.J. Comparison of Soil Organic Matter in Created, Restored and Paired Natural Wetlands in North Carolina. Wetl. Ecol. Manag. 2006, 14, 245–251. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP®; SAS Institute Inc.: Cary, NC, USA, 1989. [Google Scholar]
- D’Angelo, E.M. Phosphorus Sorption Capacity and Exchange by Soils from Mitigated and Late Successional Bottomland Forest Wetlands. Wetlands 2005, 25, 297–305. [Google Scholar] [CrossRef]
- Craft, C.B.; Chiang, C. Forms and Amounts of Soil Nitrogen and Phosphorus across a Longleaf Pine–Depressional Wetland Landscape. Soil Sci. Soc. Am. J. 2002, 66, 1713–1721. [Google Scholar] [CrossRef]
- Peralta, R.M.; Ahn, C.; Gillevet, P.M. Characterization of Soil Bacterial Community Structure and Physicochemical Properties in Created and Natural Wetlands. Sci. Total Environ. 2013, 443, 725–732. [Google Scholar] [CrossRef]
- Heydari, M.; Prévosto, B.; Naji, H.R.; Mehrabi, A.A.; Pothier, D. Influence of Soil Properties and Burial Depth on Persian Oak (Quercus brantii Lindl.) Establishment in Different Microhabitats Resulting from Traditional Forest Practices. Eur. J. For. Res. 2017, 136, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Menne, M.J.; Durre, I.; Korzeniewski, B.; McNeill, S.; Thomas, K.; Yin, X.; Anthony, S.; Ray, R.; Vose, R.S.; Gleason, B.E.; et al. Global Historical Climatology Network—Daily (GHCN-Daily), Version 3 [Daily Summaries] 2012. Available online: https://doi.org/10.7289/V5D21VHZ (accessed on 28 April 2021). [CrossRef]
- Galatowitsch, S.; Valk, A.; Van Der Valk, A. Vegetation and Environmental Conditions in Recently Restored Wetlands in the Prairie Pothole Region of the USA. Vegetatio 1996, 126, 89–99. [Google Scholar] [CrossRef]
- Rodríguez-Murillo, J.C.; Almendros, G.; Knicker, H. Wetland Soil Organic Matter Composition in a Mediterranean Semiarid Wetland (Las Tablas de Daimiel, Central Spain): Insight into Different Carbon Sequestration Pathways. Org. Geochem. 2011, 42, 762–773. [Google Scholar] [CrossRef] [Green Version]
- Korol, A.R.; Noe, G.B. Patterns of Denitrification Potential in Tidal Freshwater Forested Wetlands. Estuaries Coasts 2020, 43, 329–346. [Google Scholar] [CrossRef]
- Nair, V.D.; Graetz, D.A.; Reddy, K.R.; Olila, O.G. Soil Development in Phosphate-Mined Created Wetlands of Florida, USA. Wetlands 2001, 21, 232–239. [Google Scholar] [CrossRef]
- Ausseil, A.-G.E.; Jamali, H.; Clarkson, B.R.; Golubiewski, N.E. Soil Carbon Stocks in Wetlands of New Zealand and Impact of Land Conversion since European Settlement. Wetl. Ecol. Manag. 2015, 23, 947–961. [Google Scholar] [CrossRef]
- Yoon, T.K.; Noh, N.J.; Han, S.; Kwak, H.; Lee, W.-K.; Son, Y. Small-Scale Spatial Variability of Soil Properties in a Korean Swamp. Landsc. Ecol. Eng. 2015, 11, 303–312. [Google Scholar] [CrossRef]
- Giese, L.A.; Aust, W.M.; Trettin, C.C.; Kolka, R.K. Spatial and Temporal Patterns of Carbon Storage and Species Richness in Three South Carolina Coastal Plain Riparian Forests. Ecol. Eng. 2020, 15, S157–S170. [Google Scholar] [CrossRef] [Green Version]
- Hansen, V.D.; Nestlerode, J.A. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region. Wetl. Ecol. Manag. 2014, 22, 289–303. [Google Scholar] [CrossRef]
- Johns, D.; Williams, H.; Farrish, K.; Wagner, S. Denitrification and Soil Characteristics of Wetlands Created on Two Mine Soils in East Texas, USA. Wetlands 2004, 24, 57–67. [Google Scholar] [CrossRef]
- Noe, G.B. Measurement of Net Nitrogen and Phosphorus Mineralization in Wetland Soils Using a Modification of the Resin-Core Technique. Soil Sci. Soc. Am. J. 2011, 75, 760–770. [Google Scholar] [CrossRef]
- Fajardo, G. Physical and Chemical Soil Properties of Ten Virginia Department of Transportation (VDOT) Mitigation Wetlands. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2006. [Google Scholar]
- Stolt, M.H.; Genthner, M.H.; Daniels, W.L.; Groover, V.A.; Nagle, S.; Haering, K.C. Comparison of Soil and Other Environmental Conditions in Constructed and Adjacent Palustrine Reference Wetlands. Wetlands 2000, 20, 671–683. [Google Scholar] [CrossRef]
- D’Angelo, E.; Karathanasis, A.; Sparks, E.; Ritchey, S.; Wehr-McChesney, S. Soil Carbon and Microbial Communities at Mitigated and Late Successional Bottomland Forest Wetlands. Wetlands 2005, 25, 162–175. [Google Scholar] [CrossRef]
- Liggett, C.; Knappenberger, T.; Shaw, J.N.; Brantley, E.; Gamble, A.V. Comparison of Constructed Wetlands to a Preservation Wetland in the Nashville Basin, Tennessee (USA). Wetl. Wilmington NC 2019, 40, 1635–1646. [Google Scholar] [CrossRef]
- Taylor, J.; Middleton, B.A. Comparison of Litter Decomposition in a Natural versus Coal-Slurry Pond Reclaimed as a Wetland. Land Degrad. Dev. 2004, 15, 439–446. [Google Scholar] [CrossRef]
- Bernal, B.; Mitsch, W.J. Comparing Carbon Sequestration in Temperate Freshwater Wetland Communities. Glob. Chang. Biol. 2012, 18, 1636–1647. [Google Scholar] [CrossRef]
- Wolf, K.L.; Ahn, C.; Noe, G.B. Microtopography Enhances Nitrogen Cycling and Removal in Created Mitigation Wetlands. Ecol. Eng. 2011, 37, 1398–1406. [Google Scholar] [CrossRef]
- Loudoun County Office of Mapping and Geographic Information Aerial Archive, 1957 Imagery. Available online: https://logis.loudoun.gov/archive/ (accessed on 5 December 2021).
- Schmidt, S.A.; Ahn, C. Characterization of Redoximorphic Features of Forested Wetland Soils by Simple Hydro-Physicochemical Attributes in Northern Virginia, USA. Wetl. Ecol Manag. 2022. Available online: https://doi.org/10.1007/s11273-021-09855-z (accessed on 19 January 2022). [CrossRef]
- Palta, M.M.; Grimm, N.B.; Groffman, P.M. “Accidental” Urban Wetlands: Ecosystem Functions in Unexpected Places. Front. Ecol. Environ. 2017, 15, 248–256. [Google Scholar] [CrossRef]
- Zedler, J.B.; Leach, M.K. Managing Urban Wetlands for Multiple Use: Research, Restoration, and Recreation. Urban Ecosyst. 1998, 2, 189–204. [Google Scholar] [CrossRef]
- Adame, M.F.; Reef, R.; Wong, V.N.L.; Balcombe, S.R.; Turschwell, M.P.; Kavehei, E.; Rodríguez, D.C.; Kelleway, J.J.; Masque, P.; Ronan, M. Carbon and Nitrogen Sequestration of Melaleuca Floodplain Wetlands in Tropical Australia. Ecosystems 2020, 23, 454–466. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global Carbon Sequestration in Tidal, Saline Wetland Soils. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Van Dam, D.; Veldkamp, E.; Van Breemen, N. Soil Organic Carbon Dynamics: Variability with Depth in Forested and Deforested Soils under Pasture in Costa Rica. Biogeochemistry 1997, 39, 343–375. [Google Scholar] [CrossRef]
- Bai, J.; Ouyang, H.; Deng, W.; Zhu, Y.; Zhang, X.; Wang, Q. Spatial Distribution Characteristics of Organic Matter and Total Nitrogen of Marsh Soils in River Marginal Wetlands. Geoderma 2005, 124, 181–192. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Updegraff, K.; Pastor, J. Carbon, Nitrogen, and Phosphorus Mineralization in Northern Wetlands. Ecology 1998, 79, 1545–1561. [Google Scholar] [CrossRef]
- Gathumbi, S.M.; Bohlen, P.J.; Graetz, D.A. Nutrient Enrichment of Wetland Vegetation and Sediments in Subtropical Pastures. Soil Sci. Soc. Am. J. 2005, 69, 539–548. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Tang, S.; Liu, J. Spatial Distribution of Soil Organic Carbon in the Zoige Alpine Wetland, Northeastern Qinghai–Tibet Plateau. CATENA 2016, 144, 102–108. [Google Scholar] [CrossRef]
- Sigua, G.C.; Griffin, J.; Kang, W.; Coleman, S.W. Wetland Conversion to Beef Cattle Pasture Changes in Soil Properties. J. Soils Sediments 2004, 4, 4–10. [Google Scholar] [CrossRef]
- Stephens, K.; Sencindiver, J.; Skousen, J. Characteristics of Wetland Soils Impacted by Acid Mine Drainage. Southeast. Nat. Steuben Me 2015, 14, 40–57. [Google Scholar] [CrossRef]
- Causarano, H.J.; Franzluebbers, A.J.; Shaw, J.N.; Reeves, D.W.; Raper, R.L.; Wood, C.W. Soil Organic Carbon Fractions and Aggregation in the Southern Piedmont and Coastal Plain. Soil Sci. Soc. Am. J. 2008, 72, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Craft, C.; Vymazal, J.; Kröpfelová, L. Carbon Sequestration and Nutrient Accumulation in Floodplain and Depressional Wetlands. Ecol. Eng. 2018, 114, 137–145. [Google Scholar] [CrossRef]
- Trammell, T.L.E.; Pataki, D.E.; Pouyat, R.V.; Groffman, P.M.; Rosier, C.; Bettez, N.; Cavender-Bares, J.; Grove, M.J.; Hall, S.J.; Heffernan, J.; et al. Urban Soil Carbon and Nitrogen Converge at a Continental Scale. Ecol. Monogr. 2020, 90, e01401. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.; Peralta, R.M. Soil Bacterial Community Structure and Physicochemical Properties in Mitigation Wetlands Created in the Piedmont Region of Virginia (USA). Ecol. Eng. 2009, 35, 1036–1042. [Google Scholar] [CrossRef]
- Verry, E.S.; Boelter, D.H.; Paivanen, J.; Nichols, D.S.; Malterer, T.; Gafni, A. Physical Properties of Organic Soils. Chapter 5. In Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest; Kolka, R.K., Sebestyen, S., Verry, E., Brooks, K.N., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 135–176. [Google Scholar]
- Ruehlmann, J.; Körschens, M. Calculating the Effect of Soil Organic Matter Concentration on Soil Bulk Density. Soil Sci. Soc. Am. J. 2009, 73, 876–885. [Google Scholar] [CrossRef]
- Goddard, M.A.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Galbraith, J.M. Continental United States Atmospheric Wet Calcium Deposition and Soil Inorganic Carbon Stocks. Soil Sci. Soc. Am. J. 2009, 73, 989–994. [Google Scholar] [CrossRef]
- Roper, W.R.; Robarge, W.P.; Osmond, D.L.; Heitman, J.L. Comparing Four Methods of Measuring Soil Organic Matter in North Carolina Soils. Soil Sci. Soc. Am. J. 2019, 83, 466–474. [Google Scholar] [CrossRef]
- Hossler, K.; Bouchard, V. Soil Development and Establishment of Carbon-Based Properties in Created Freshwater Marshes. Ecol. Appl. Publ. Ecol. Soc. Am. 2010, 20, 539–553. [Google Scholar] [CrossRef]
Algonkian Regional Park (ARP) | Banshee Reeks (BR) | Julie J. Metz—Neabsco Creek (JJM) | Mason Neck (MN) | |
---|---|---|---|---|
Watershed Name | Sugarland Run | Big Branch—Goose Creek | Neabsco Creek | Occoquan Bay— Potomac River |
% Impervious Surface Cover | ≥25% (high) | <5% (low) | ≥25% (high) | <5% (low) |
Physiographic Province | Piedmont (P) | Piedmont (P) | Coastal Plain (CP) | Coastal Plain (CP) |
Geomorphology | Drainageways, floodplains, terraces | Drainageways, floodplains | Terraces, floodplains | Fluvomarine terraces, interfluves, drainageways |
Nonhydric soil series | Linside silt loam Huntington silt loam | Leedsville cobbly silt loam Oatlands gravelly silt loam Manassas silt loam | Dumfries sandy loam Lunt loam | Gunston silt loam Matapeake silt loam Mattapex loam |
Hydric soil series | Kinkora–Delanco complex | Codorus, Albano, and Hatboro silt loams | Featherstone mucky silt loam Hatboro-Codorus silt loam | Elbert silt loam Elkton silt loam |
Major Habitats | Black walnut and oak forested floodplain; freshwater forested wetlands; freshwater emergent wetland | Hardwood forests; riparian zones and wetlands; Mountain-Piedmont basic seepage swamp | Forested, scrub, and emergent wetlands | Hardwood oak-hickory forest; palustrine forested wetlands |
Piedmont (P) | Coastal Plain (CP) | ||||
---|---|---|---|---|---|
Depth | ARP | BR | JJM | MN | |
GSM (%) * | 0–30 cm | 43.36 ± 1.72 a,b | 33.67 ± 2.06 b | 58.03 ± 5.01 a | 40.16 ± 3.44 b |
0–10 cm | 55.27 ± 2.52 a,b,c | 42.85 ± 3.02 b,c,d | 76.92 ± 10.30 a | 57.65 ± 8.12 a,b | |
10–20 cm | 38.06 ± 1.75 b,c,d | 32.46 ± 3.79 c,d | 44.09 ± 6.65 b,c,d | 32.12 ± 2.40 c,d | |
20–30 cm | 36.74 ± 1.52 b,c,d | 25.70 ± 2.46 d | 51.83 ± 4.76 b,c,d | 30.71 ± 2.65 d | |
Soil pH * | 0–30 cm | 6.09 ± 0.03 a | 6.11 ± 0.08 a | 5.96 ± 0.04 a | 4.67 ± 0.03 b |
0–10 cm | 5.96 ± 0.05 a | 6.14 ± 0.08 a | 5.79 ± 0.25 a | 4.68 ± 0.08 b | |
10–20 cm | 6.09 ± 0.04 a | 6.13 ± 0.15 a | 5.89 ± 0.22 a | 4.68 ± 0.05 b | |
20–30 cm | 6.21 ± 0.04 a | 6.06 ± 0.18 a | 6.28 ± 0.21 a | 4.65 ± 0.03 b | |
Db (g·cm−3) | 0–30 cm | 1.27 ± 0.03 a | 1.37 ± 0.06 a | 1.15 ± 0.08 a | 1.25 ± 0.05 a |
0–10 cm | 1.11 ± 0.04 b,c,d | 1.14 ± 0.07 b,c,d | 0.94 ± 0.12 d | 0.96 ± 0.07 c,d | |
10–20 cm | 1.38 ± 0.06 a,b | 1.32 ± 0.08 a,b,c | 1.26 ± 0.14 b,c,d | 1.36 ± 0.06 a,b | |
20–30 cm | 1.31 ± 0.04 a,b,c | 1.65 ± 0.12 a | 1.29 ± 0.14 a,b,c,d | 1.44 ± 0.06 a,b | |
TC (%) * | 0–30 cm | 1.25 ± 0.09 c | 2.09 ± 0.22 a,b | 2.76 ± 0.25 a | 2.03 ± 0.35 b |
0–10 cm | 1.93 ± 0.13 d,e | 3.21 ± 0.46 b,c | 4.21 ± 0.74 a,b | 4.43 ± 0.94 a | |
10–20 cm | 1.03 ± 0.13 d,e,f | 1.73 ± 0.37 d,e,f | 2.03 ± 0.29 c,d | 0.90 ± 0.10 d,e,f | |
20–30 cm | 0.80 ± 0.08 e,f | 1.34 ± 0.33 d,e,f | 1.88 ± 0.48 c,d | 0.66 ± 0.15 f | |
TN (%) * | 0–30 cm | 0.14 ± 0.01 b | 0.18 ± 0.02 ab | 0.21 ± 0.02 a | 0.16 ± 0.02 b |
0–10 cm | 0.20 ± 0.01 b,c | 0.27 ± 0.04 a,b | 0.31 ± 0.05 a | 0.30 ± 0.08 a | |
10–20 cm | 0.12 ± 0.01 c,d | 0.16 ± 0.03 c,d | 0.16 ± 0.02 c,d | 0.09 ± 0.02 d | |
20–30 cm | 0.10 ± 0.01 d | 0.12 ± 0.03 c,d | 0.15 ± 0.02 c,d | 0.07 ± 0.02 d | |
TC Stock (kg·m−2) | 0–10 cm | 2.12 ± 0.24 b | 3.49 ± 0.61 a | 3.50 ± 0.55 a | 3.67 ± 0.45 a |
Wetland Type | Soil pH | Db (g·cm−3) | TC (%) | TN (%) | n | Source |
---|---|---|---|---|---|---|
Freshwater marshes | ||||||
P * | 5.6 | 1.07 | - | - | 3 | Ahn and Jones 2013 [20] |
P * | 4.95 | 1.29 | - | 0.17 | 4 | Dee and Ahn 2012 [23] |
other | 8.76 | 0.98 | - | - | 20 | Galatowitsch and van der Valk 1996 [48] |
other | 7.33 | - | - | 0.84 | 1 | Rodríguez-Murillo et al., 2011 [49] |
Freshwater swamps | ||||||
CP | - | 0.71 | - | - | 2 | Korol and Noe 2020 [50] |
CP | 6.24 | 0.95 | - | 0.3 | 1 | Nair et al., 2001 [51] |
other | - | 0.43 | 1.73 | - | 42 | Ausseil et al., 2015 [52] |
other | 5.29 | - | 5.24 | 0.52 | 1 | Yoon et al., 2015 [53] |
Riparian systems | ||||||
CP | 4.2 | 1.05 | - | - | 3 | Axt and Walbridge 1999 [13] |
CP | - | 1.28 | - | 0.12 | 3 | Craft and Chiang 2002 [44] |
CP * | - | - | 2.2–2.9 | - | 3 | Giese et al., 2000 [54] |
CP | - | 0.78 | 8.48 | - | 13 | Hansen and Nestlerode 2014 [55] |
CP | 4.83 | - | - | 1.45 | 3 | Johns et al., 2004 [56] |
P | 4.97 | 1.26 | - | - | 3 | Axt and Walbridge 1999 [13] |
P | 5.62 | 0.88 | 2.89 | 0.17 | 1 | Noe 2011 [57] |
P | 4.9 | 1.25 | 2.5 | 0.32 | 2 | Peralta et al., 2013 [45] |
both * | - | - | 0.85–2.32 | - | 10 | Fajardo 2006 [58] |
both | 5.55 | - | 3.85 | 0.30 | 2 | Stolt et al., 2000 [59] |
both * | 6.40 | - | 1.20 | 0.13 | 2 | Stolt et al., 2000 [59] |
other | - | 1.01 | 2.17 | - | 8 | D’Angelo 2005 [43]; D’Angelo et al., 2005 [60] |
other | 6.85 | - | - | - | 1 | Liggett et al., 2019 [61] |
other | 5.3 | - | - | - | 1 | Taylor and Middleton 2004 [62] |
GSM | Db | pH | TC | TN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
F | Sig | F | Sig | F | Sig | F | Sig | F | Sig | |
Depth | 9.84 | ** | 9.26 | ** | 0.23 | - | 33.03 | ** | 27.74 | ** |
Physiography | 3.44 | - | 2.02 | - | 33.23 | ** | 8.06 | ** | 1.42 | - |
Depth X Physiography | 0.94 | - | 0.29 | - | 0.03 | - | 4.52 | * | 1.76 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledford, K.; Schmidt, S.A.; Ahn, C. Assessing Carbon Storage Potential of Forested Wetland Soils in Two Physiographic Provinces of Northern Virginia, USA. Sustainability 2022, 14, 2048. https://doi.org/10.3390/su14042048
Ledford K, Schmidt SA, Ahn C. Assessing Carbon Storage Potential of Forested Wetland Soils in Two Physiographic Provinces of Northern Virginia, USA. Sustainability. 2022; 14(4):2048. https://doi.org/10.3390/su14042048
Chicago/Turabian StyleLedford, Kathryn, Stephanie Ann Schmidt, and Changwoo Ahn. 2022. "Assessing Carbon Storage Potential of Forested Wetland Soils in Two Physiographic Provinces of Northern Virginia, USA" Sustainability 14, no. 4: 2048. https://doi.org/10.3390/su14042048
APA StyleLedford, K., Schmidt, S. A., & Ahn, C. (2022). Assessing Carbon Storage Potential of Forested Wetland Soils in Two Physiographic Provinces of Northern Virginia, USA. Sustainability, 14(4), 2048. https://doi.org/10.3390/su14042048