Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Case Study Region Characteristics
2.3. Numerical Modelling Implementation
2.4. Model Validation, Calibration and Analysis
2.5. Scenarios Analysed
3. Results and Discussion
3.1. General Resource Distribution
3.2. Selection of Sites
3.3. High-Resolution Analysis of Areas of Interest
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
North Boundary | West Boundary | South Boundary | ||||
---|---|---|---|---|---|---|
Amplitude (m) | Phase (°) | Amplitude (m) | Phase (°) | Amplitude (m) | Phase (°) | |
A0 | 1.800 | 1.800 | 1.800 | |||
M2 | 1.067 | 73.48 | 1.066 | 73.51 | 1.065 | 73.08 |
S2 | 0.372 | 103.3 | 0.371 | 103.2 | 0.372 | 102.8 |
N2 | 0.225 | 55.40 | 0.225 | 55.40 | 0.225 | 55.10 |
K2 | 0.099 | 99.70 | 0.099 | 99.64 | 0.099 | 99.20 |
K1 | 0.073 | 64.76 | 0.073 | 64.71 | 0.073 | 64.26 |
O1 | 0.059 | 319.9 | 0.059 | 319.9 | 0.059 | 319.7 |
P1 | 0.021 | 56.05 | 0.021 | 56.02 | 0.021 | 55.74 |
Q1 | 0.019 | 265.4 | 0.019 | 265.3 | 0.019 | 265.1 |
MF | 0.004 | 183.2 | 0.004 | 183.3 | 0.004 | 183.2 |
MM | 0.002 | 189.8 | 0.003 | 189.8 | 0.002 | 189.8 |
M4 | 0.007 | 217.2 | 0.007 | 216.8 | 0.007 | 215.4 |
MS4 | 0.003 | 322.9 | 0.003 | 321.9 | 0.003 | 319.8 |
MN4 | 0.001 | 122.8 | 0.002 | 123.3 | 0.001 | 123.0 |
Appendix B
References
- Giannini, G. Modelling and Feasibility Study on Using Tidal Power with an Energy Storage Utility for Residential Needs. Inventions 2019, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Burić, M.; Grgurić, S.; Mikulčić, H.; Wang, X. A numerical investigation of tidal current energy resource potential in a sea strait. Energy 2021, 234, 121241. [Google Scholar] [CrossRef]
- Campbell, R.; Martinez, A.; Letetrel, C.; Rio, A. Methodology for estimating the French tidal current energy resource. Int. J. Mar. Energy 2017, 19, 256–271. [Google Scholar] [CrossRef]
- Ramos, V.; Giannini, G.; Calheiros-Cabral, T.; Rosa-Santos, P.; Taveira-Pinto, F. Legal framework of marine renewable energy: A review for the Atlantic region of Europe. Renew. Sustain. Energy Rev. 2021, 137, 110608. [Google Scholar] [CrossRef]
- Iyer, A.S.; Couch, S.J.; Harrison, G.P.; Wallace, A.R. Variability and phasing of tidal current energy around the United Kingdom. Renew. Energy 2013, 51, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Calero Quesada, M.C.; García Lafuente, J.; Sánchez Garrido, J.C.; Sammartino, S.; Delgado, J. Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource. Renew. Sustain. Energy Rev. 2014, 34, 98–109. [Google Scholar] [CrossRef]
- Coiro, D.P.; Troise, G.; Ciuffardi, T.; Sannino, G. Tidal current energy resource assessment: The Strait of Messina test case. In Proceedings of the 2013 International Conference on Clean Electrical Power (ICCEP), Alghero, Italy, 11–13 June 2013. [Google Scholar]
- Balestrino, F.; Coiro, D.P.; Giannini, G.; Giudice, D.; Troise, G. Resource assessment for the GEMSTAR tidal current energy harvester deployment in the strait of Messina. In Proceedings of the 13th European Wave and Tidal Energy Conference, Naples, Italy, 1–6 September 2019. [Google Scholar]
- AQUARET European Resource Map. Available online: https://aquaret.com/indexcd1b.html?option=com_content&view=article&id=112&Itemid=255&lang=en (accessed on 27 October 2021).
- Robins, P.E.; Neill, S.P.; Lewis, M.J.; Ward, S.L. Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas. Appl. Energy 2015, 147, 510–522. [Google Scholar] [CrossRef] [Green Version]
- IEC. Marine Energy Wave, Tidal and Other Water Current Converters-Part 2: Design Requirements for Marine Energy Systems, 2nd ed.; International Electrotechnical Commission: Geneva, Switzerland, 2019. [Google Scholar]
- Ramos, V.; Ringwood, J.V. Implementation and evaluation of the International Electrotechnical Commission specification for tidal stream energy resource assessment: A case study. Energy Convers. Manag. 2016, 127, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, A.; Iglesias, G. A holistic method for selecting tidal stream energy hotspots under technical, economic and functional constraints. Energy Convers. Manag. 2016, 117, 420–430. [Google Scholar] [CrossRef]
- Iglesias, G.; Sánchez, M.; Carballo, R.; Fernández, H. The TSE index—A new tool for selecting tidal stream sites in depth-limited regions. Renew. Energy 2012, 48, 350–357. [Google Scholar] [CrossRef]
- Álvarez, M.; Ramos, V.; Carballo, R.; Arean, N.; Torres, M.; Iglesias, G. The influence of dredging for locating a tidal stream energy farm. Renew. Energy 2020, 146, 242–253. [Google Scholar] [CrossRef]
- Ramos, V.; Carballo, R.; Sanchez, M.; Veigas, M.; Iglesias, G. Tidal stream energy impacts on estuarine circulation. Energy Convers. Manag. 2014, 80, 137–149. [Google Scholar] [CrossRef]
- Janssen, R.; Arciniegas, G.; Alexander, K.A. Decision support tools for collaborative marine spatial planning: Identifying potential sites for tidal energy devices around the Mull of Kintyre, Scotland. J. Environ. Plan. Manag. 2015, 58, 719–737. [Google Scholar] [CrossRef]
- Blunden, L.S.; Bahaj, A.S. Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renew. Energy 2006, 31, 121–132. [Google Scholar] [CrossRef]
- Pugh, D.T. Tides, Surges and Mean Sea-Level (Reprinted with Corrections); John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; p. 486. [Google Scholar]
- Ramos, V.; Iglesias, G. Performance assessment of Tidal Stream Turbines: A parametric approach. Energy Convers. Manag. 2013, 69, 49–57. [Google Scholar] [CrossRef]
- Fouz, D.M.; Carballo, R.; Ramos, V.; Iglesias, G. Hydrokinetic energy exploitation under combined river and tidal flow. Renew. Energy 2019, 143, 558–568. [Google Scholar] [CrossRef]
- Iglesias, I.; Venâncio, S.; Pinho, J.L.; Avilez-Valente, P.; Vieira, J.M.P. Two Models Solutions for the Douro Estuary: Flood Risk Assessment and Breakwater Effects. Estuaries Coasts 2019, 42, 348–364. [Google Scholar] [CrossRef]
- Iglesias, I.; Bio, A.; Bastos, L.; Avilez-Valente, P. Estuarine hydrodynamic patterns and hydrokinetic energy production: The Douro estuary case study. Energy 2021, 222, 119972. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renew. Energy 2009, 34, 1517–1524. [Google Scholar] [CrossRef]
- Deltares. Deltares User Manual Delft3D-FLOW; Deltares Ed.: Delft, The Netherlands, 2010. [Google Scholar]
- Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys. 1966, 1, 119–143. [Google Scholar] [CrossRef]
- Stelling, G.; Leendertse, J.J. Approximation of convective processes by cyclic ADI methods. In Proceedings of the Estuarine and Coastal Modeling, Tampa, FL, USA, 13–15 November 1992. [Google Scholar]
- Wesseling, P. Principles of Computational Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Egbert, G.; Bennett, A.; Foreman, M. TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res. 1995, 99, 24821–24852. [Google Scholar] [CrossRef] [Green Version]
- Le Provost, C.; Bennett, A.F.; Cartwright, D.E. Ocean Tides for and from TOPEX/POSEIDON. Science 1995, 267, 639. [Google Scholar] [CrossRef]
- Decastro, M.; Gómez-Gesteira, M.; Lorenzo, N.; Alvarez, I.; Crespo, A. Influence of atmospheric modes on coastal upwelling along the western coast of the Iberian Peninsula, 1985 to 2005. Clim. Res. 2008, 36, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, I.C.; Duarte, P.M.; Bordalo, A.A. Pelagic metabolism of the Douro estuary (Portugal)—Factors controlling primary production. Estuar. Coast. Shelf Sci. 2006, 69, 133–146. [Google Scholar] [CrossRef]
- Iglesias, G.; Carballo, R. Can the Seasonality of a Small River Affect a Large Tide-Dominated Estuary? The Case of Ría de Viveiro, Spain. J. Coast. Res. 2011, 27, 1170–1182. [Google Scholar] [CrossRef]
- Souto, C.; Gilcoto, M.; Fariña-Busto, L.; Pérez, F.F. Modeling the residual circulation of a coastal embayment affected by wind-driven upwelling: Circulation of the Ría de Vigo (NW Spain). J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Torres López, S.; Varela, R.A.; Delhez, E. Residual circulation and thermohaline distribution of the Ría de Vigo: A 3-D hydrodynamical model. Sci. Mar. 2001, 65, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.M.; Lopes, J.F. Implementation and assessment of hydrodynamic, salt and heat transport models: The case of Ria de Aveiro Lagoon (Portugal). Environ. Model. Softw. 2006, 21, 1–15. [Google Scholar] [CrossRef]
- Smith, S.D. Wind Stress and Heat Flux over the Ocean in Gale Force Winds. J. Phys. Oceanogr. 1980, 10, 709–726. [Google Scholar] [CrossRef]
- Yelland, M.; Moat, B.; Taylor, P.K.; Pascal, R.; Hutchings, J.; Cornell, V.C. Wind Stress Measurements from the Open Ocean Corrected for Airflow Distortion by the Ship. J. Phys. Oceanogr. 1998, 28, 1511–1526. [Google Scholar] [CrossRef]
- IH Website Instituto Hidrográfico. Available online: https://www.hidrografico.pt/ (accessed on 10 November 2021).
- Fertahi, S.; Bouhal, T.; Rajad, O.; Kousksou, T.; Arid, A.; El Rhafiki, T.; Jamil, A.; Benbassou, A. CFD performance enhancement of a low cut-in speed current Vertical Tidal Turbine through the nested hybridization of Savonius and Darrieus. Energy Convers. Manag. 2018, 169, 266–278. [Google Scholar] [CrossRef]
Station | X-Coordinate (m) | Y-Coordinate (m) |
---|---|---|
WL1 | −40327.66 | 163549.96 |
WL2 | −48118.66 | 168627.78 |
WL3 | −44801.62 | 164280.92 |
Season | Mean Season Discharges (m3/s) |
---|---|
Spring | 284.13 |
Summer | 185.48 |
Autumn | 764.3 |
Winter | 833.1 |
Mean | 512.26 |
Time Period | River Discharges | Objective | ID |
---|---|---|---|
Complete mean spring-neap tidal cycle | Winter * | General resource distribution analysis | S1 |
Spring * | S2 | ||
Summer * | S3 | ||
Autumn * | S4 | ||
Annual scenario | Monthly mean | Mean power density, energy production and performance | S5 |
Tidal cycle (spring tide) | Mean | TSE index | S6 |
Complete mean spring-neap tidal cycle | Mean | High-resolution analysis | S7 |
Area | Indicative Total Surface (m2) | Feasible Surface (m2) | Seabed Classification | Mean Water Depth (m) | Maximum TSE |
---|---|---|---|---|---|
A | 21000 | 7404 | Gravel | 7 | 2.2 |
B | 8000 | 5163 | Gravel | 6.7 | 2.3 |
C | 18000 | 2011 | Gravel | 8.1 | 2.1 |
D | 22000 | 4797 | Gravel | 6.2 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannini, G.; Ramos, V.; Rosa-Santos, P.; Calheiros-Cabral, T.; Taveira-Pinto, F. Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region. Sustainability 2022, 14, 2606. https://doi.org/10.3390/su14052606
Giannini G, Ramos V, Rosa-Santos P, Calheiros-Cabral T, Taveira-Pinto F. Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region. Sustainability. 2022; 14(5):2606. https://doi.org/10.3390/su14052606
Chicago/Turabian StyleGiannini, Gianmaria, Victor Ramos, Paulo Rosa-Santos, Tomás Calheiros-Cabral, and Francisco Taveira-Pinto. 2022. "Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region" Sustainability 14, no. 5: 2606. https://doi.org/10.3390/su14052606
APA StyleGiannini, G., Ramos, V., Rosa-Santos, P., Calheiros-Cabral, T., & Taveira-Pinto, F. (2022). Hydrokinetic Power Resource Assessment in a Combined Estuarine and River Region. Sustainability, 14(5), 2606. https://doi.org/10.3390/su14052606