The Impact of Big Data Technical Skills on Novel Business Model Innovation Based on the Role of Resource Integration and Environmental Uncertainty
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Big Data Technical Skills and Novel Business Model Innovation
2.2. Mediating Effect of Resource Integration
2.3. The Moderating Role of Environmental Uncertainty
3. Research Method
3.1. Sample and Data Collection
3.2. Measure
3.2.1. Big Data Technical Skills
3.2.2. Resource Integration
3.2.3. Environmental Uncertainty
3.2.4. Novel Business Model Innovation
3.2.5. Control Variables
4. Empirical Results and Analysis
4.1. Common Method Bias Test
4.2. Validity Test
4.3. Descriptive Statistical Analysis
4.4. Hypothesis Test
4.4.1. Direct effect
4.4.2. Mediating Effect of Resource Integration
4.4.3. Moderating Effect
4.4.4. Moderating the Mediating Effect Test
5. Discussion and Conclusions
5.1. Discussion
5.2. Theory Implication
5.3. Practical Implications
5.4. Research Limitations and Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loebbecke, C.; Picot, A. Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. J. Strateg. Inf. Syst. 2015, 24, 149–157. [Google Scholar] [CrossRef]
- Chesbrough, H. Business model innovation: Opportunities and barriers. Long Range Plan. 2010, 43, 354–363. [Google Scholar] [CrossRef]
- Tomi, N.; Bojnec, T.; Simi, B. Corporate sustainability and economic performance in small and medium sized enterprises. J. Clean. Prod. 2015, 108, 603–612. [Google Scholar]
- Minatogawa, V.L.F.; Franco, M.M.V.; Rampasso, I.S.; Anholon, R.; Quadros, R.; Durán, O.; Batocchio, A. Operationalizing business model innovation through big data analytics for sustainable organizations. Sustainability 2020, 12, 277. [Google Scholar] [CrossRef] [Green Version]
- Amit, R.; Zott, C. Value Creation in E-business. Strateg. Manag. J. 2001, 22, 493–520. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R.; Massa, L. The business model: Recent developments and future research. J. Manag. 2011, 37, 1019–1042. [Google Scholar]
- Li, K.; Xia, B.; Chen, Y.; Ding, N.; Wang, J. Environmental uncertainty, financing constraints and corporate investment: Evidence from China. Pac.-Basin Financ. J. 2021, 70, 101665. [Google Scholar] [CrossRef]
- Wirtz, B.W.; Pistoia, A.; Ullrich, S. Business models: Origin, development and future research perspectives. Long Range Plan. 2016, 49, 36–54. [Google Scholar] [CrossRef]
- Doz, Y.L.; Kosonen, M. Embedding strategic agility: A leadership agenda for accelerating business model renewal. Long Range Plan. 2010, 43, 370–382. [Google Scholar] [CrossRef]
- Augier, M.; Teece, D.J. Dynamic capabilities and the role of managers in business strategy and economic performance. Organ. Sci. 2009, 20, 410–421. [Google Scholar] [CrossRef]
- Cuzzocrea, A. Supporting OLAP-Based Big Data Analytics over Data-Intensive Business Processes: Issues, Models, Proposals, and a Real-Life Framework. In Proceedings of the CIKM 2018 Workshops Co-Located with 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22 October 2018; Volume 2482. [Google Scholar]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Olabode, O.E.; Boso, N.; Hultman, M.; Leonidou, C.N. Big data analytics capability and market performance: The roles of disruptive business models and competitive intensity. J. Bus. Res. 2022, 139, 1218–1230. [Google Scholar] [CrossRef]
- Ciampi, F.; Demi, S.; Magrini, A.; Marzi, G.; Papa, A. Exploring the impact of big data analytics capabilities on business model innovation: The mediating role of entrepreneurial orientation. J. Bus. Res. 2021, 123, 1–13. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y. Business model designs, big data analytics capabilities and new product development performance: Evidence from China. Eur. J. Innov. Manag. 2020, 24, 1162–1183. [Google Scholar] [CrossRef]
- Ahmed, R.R.; Kyriakopoulos, G.L.; Streimikiene, D.; Streimikis, J. Drivers of Proactive Environmental Strategies: Evidence from the Pharmaceutical Industry of Asian Economies. Sustainability 2021, 13, 9479. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D. Managing firm resources in dynamic environments to create value: Looking inside the black box. Acad. Manag. Rev. 2007, 32, 273–292. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Hu, Z.; Cao, J.; Yang, L.; Guan, D. Environmental regulation and enterprise innovation: A review. Bus. Strategy Environ. 2020, 29, 1465–1478. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R. Business model design: An activity system perspective. Long Range Plan. 2010, 43, 216–226. [Google Scholar] [CrossRef]
- Maklan, S.; Knox, S. Dynamic capabilities: The missing link in CRM investments. Eur. J. Mark. 2009, 43, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, L.A.; Brown, S.W. Role stressors and customer-oriented boundary-spanning behaviors in service organizations. J. Acad. Mark. Sci. 2003, 31, 394–408. [Google Scholar] [CrossRef]
- Chen, Z.X.; Tsui, A.S.; Farh, J.L. Loyalty to supervisor vs. organizational commitment: Relationships to employee performance in China. J. Occup. Organ. Psychol. 2002, 75, 339–356. [Google Scholar] [CrossRef] [Green Version]
- Skordoulis, M.; Ntanos, S.; Kyriakopoulos, G.L.; Arabatzis, G.; Galatsidas, S.; Chalikias, M. Environmental innovation, open innovation dynamics and competitive advantage of medium and large-sized firms. J. Open Innov. Technol. Mark. Complex. 2020, 6, 195. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X. How environmental uncertainty moderates the effect of relative advantage and perceived credibility on the adoption of mobile health services by Chinese organizations in the big data era. Int. J. Telemed. Appl. 2016, 2016, 3618402. [Google Scholar] [CrossRef] [PubMed]
- Teece, D.J. Business models, business strategy and innovation. Long Range Plan. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Preston, D.S.; Swink, M.; Chen, D.Q. How the use of big data analytics affects value creation in supply chain management. J. Manag. Inf. Syst. 2015, 32, 4–39. [Google Scholar]
- Bharadwaj, A.; El Sawy, O.A.; Pavlou, P.A.; Venkatraman, N. Digital business strategy: Toward a next generation of insights. MIS Q. 2013, 37, 471–482. [Google Scholar] [CrossRef]
- Ransbotham, S.; Kiron, D. Analytics as a source of business innovation. MIT Sloan Manag. Rev. 2017, 58, 1–21. [Google Scholar]
- Pesqueira, A.; Sousa, M.J.; Rocha, Á. Big Data skills sustainable development in Healthcare and Pharmaceuticals. J. Med. Syst. 2020, 44, 197. [Google Scholar] [CrossRef] [PubMed]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Mikalef, P.; Krogstie, J. Big Data Governance and Dynamic Capabilities: The Moderating Effect of Environmental Uncertainty. In Proceedings of the 22nd Pacific Asia Conference on Information Systems (PACIS 2018), Yokohama, Japan, 26–30 June 2018. [Google Scholar]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 387–394. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Teece, D. Explicating dynamic capabilities: The nature and micro foundations of (sustainable) enterprise performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef] [Green Version]
- Penrose, E.T. The Theory of the Firm; Blackwell: London, UK, 1959. [Google Scholar]
- Ghasemaghaei, M. The role of positive and negative valence factors on the impact of bigness of data on big data analytics usage. Int. J. Inf. Manag. 2020, 50, 395–404. [Google Scholar] [CrossRef]
- Pati, R.K.; Nandakumar, M.K.; Ghobadian, A.; Ireland, R.D.; O’Regan, N. Business model design–performance relationship under external and internal contingencies: Evidence from SMEs in an emerging economy. Long Range Plan. 2018, 51, 750–769. [Google Scholar] [CrossRef] [Green Version]
- Agostini, L.; Galati, F.; Gastaldi, L. The digitalization of the innovation process: Challenges and opportunities from a management perspective. Eur. J. Innov. Manag. 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Teece, D.J. Business models and dynamic capabilities. Long Range Plan. 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Pierce, J.L.; Gardner, D.G.; Cummings, L.L.; Dunham, R.B. Organization-based self-esteem: Construct definition, measurement, and validation. Acad. Manag. J. 1989, 32, 622–648. [Google Scholar]
- Li, X.Y. Research on Management Uncertainty Solution Based on Environmental Change by big data Technology. J. Phys. Conf. Ser. 2019, 1345, 022063. [Google Scholar]
- Girod, S.J.G.; Whittington, R. Reconfiguration, restructuring and firm performance: Dynamic capabilities and environmental dynamism. Strateg. Manag. J. 2017, 38, 1121–1133. [Google Scholar] [CrossRef] [Green Version]
- Grönroos, C. Value co-creation in service logic: A critical analysis. Mark. Theory 2011, 11, 279–301. [Google Scholar] [CrossRef]
- Van Rijmenam, M.; Erekhinskaya, T.; Schweitzer, J.; Williams, M.-A. Avoid being the Turkey: How big data analytics changes the game of strategy in times of ambiguity and uncertainty. Long Range Plan. 2019, 52, 101841. [Google Scholar] [CrossRef]
- Osiyevskyy, O.; Dewald, J. Explorative versus exploitative business model change: The cognitive antecedents of firm-level responses to disruptive innovation. Strateg. Entrep. J. 2015, 9, 58–78. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Miller, D. The structural and environmental correlates of business strategy. Strateg. Manag. J. 1987, 8, 55–76. [Google Scholar] [CrossRef]
- Jansen, J.J.P.; Van Den Bosch, F.A.J.; Volberda, H.W. Exploratory innovation, exploitative innovation, and performance: Effects of organizational antecedents and environmental moderators. Manag. Sci. 2006, 52, 1661–1674. [Google Scholar] [CrossRef] [Green Version]
- Zott, C.; Amit, R. Business model design and the performance of entrepreneurial firms. Organ. Sci. 2007, 18, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Preacher, K.J.; Rucker, D.D.; Hayes, A.F. Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivar. Behav. Res. 2007, 42, 185–227. [Google Scholar] [CrossRef]
- Hayes, A.F. An index and test of linear moderated mediation. Multivar. Behav. Res. 2015, 50, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hajli, N. Exploring the path to big data analytics success in healthcare. J. Bus. Res. 2017, 70, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Corrales-Garay, D.; Mora-Valentín, E.M.; Ortiz-de-Urbina-Criado, M. Entrepreneurship through open data: An opportunity for sustainable development. Sustainability 2020, 12, 5148. [Google Scholar] [CrossRef]
- Yun, J.H.J.; Zhao, X.; Wu, J.; Yi, J.C.; Park, K.; Jung, W. Business model, open innovation, and sustainability in car sharing industry—Comparing three economies. Sustainability 2020, 12, 1883. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, P.; Mele, G.; Ndou, V.; Secundo, G. Open innovation and social big data for sustainability: Evidence from the tourism industry. Sustainability 2018, 10, 3215. [Google Scholar] [CrossRef] [Green Version]
- Pohlisch, J. Internal open innovation—Lessons learned from internal crowdsourcing at SAP. Sustainability 2020, 12, 4245. [Google Scholar] [CrossRef]
- Alvarez-Meaza, I.; Pikatza-Gorrotxategi, N.; Rio-Belver, R.M. Sustainable business model based on open innovation: Case study of Iberdrola. Sustainability 2020, 12, 10645. [Google Scholar] [CrossRef]
- Yun, J.J.; Zhao, X.; Park, K.B.; Shi, L. Sustainability condition of open innovation: Dynamic growth of alibaba from SME to large enterprise. Sustainability 2020, 12, 4379. [Google Scholar] [CrossRef]
- Yuana, R.; Prasetio, E.A.; Syarief, R.; Arkeman, Y.; Suroso, A.I. System Dynamic and Simulation of Business Model Innovation in Digital Companies: An Open Innovation Approach. J. Open Innov. Technol. Mark. Complex. 2021, 7, 219. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, S.; Yu, H.; Cao, G. Exploring the factors influencing business model innovation using grounded theory: The case of a Chinese high-end equipment manufacturer. Sustainability 2019, 11, 1455. [Google Scholar] [CrossRef] [Green Version]
- Peñarroya-Farell, M.; Miralles, F. Business model dynamics from interaction with open innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 81. [Google Scholar] [CrossRef]
- Fukawa, N.; Zhang, Y.; Erevelles, S. Dynamic Capability and Open-Source Strategy in the Age of Digital Transformation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 175. [Google Scholar] [CrossRef]
- Dayana, B.D.; Samanta, A.; Ranganathan, N.; Venkatachalam, K.; Jain, N.A. comprehensive approach to visualize industrial data set to meet business intelligence requirements using statistical models and big data analytics. Int. J. Recent Technol. Eng. 2019, 7, 1437–1443. [Google Scholar]
- Manikam, S.; Sahibudin, S.; Selamat, H. Big Data Analytics Initiatives Using Business Intelligence Maturity Model Approach in Public Sector. Adv. Sci. Lett. 2017, 23, 4097–4100. [Google Scholar] [CrossRef]
- Bojnec, Š.; Tomšič, N. Corporate sustainability and enterprise performance: The mediating effects of internationalization and networks. Int. J. Product. Perform. Manag. 2020, 70, 21–39. [Google Scholar] [CrossRef]
- Kamali Saraji, M.; Streimikiene, D.; Kyriakopoulos, G.L. Fermatean fuzzy CRITIC-COPRAS method for evaluating the challenges to Industry 4.0 adoption for a sustainable digital transformation. Sustainability 2021, 13, 9577. [Google Scholar] [CrossRef]
- Kim, T.Y.; Hon, A.H.Y.; Crant, J.M. Proactive personality, employee creativity, and newcomer outcomes: A longitudinal study. J. Bus. Psychol. 2009, 24, 93–103. [Google Scholar] [CrossRef]
- Chen, X.P.; Eberly, M.B.; Chiang, T.J.; Farh, J.L.; Cheng, B.S. Affective trust in Chinese leaders: Linking paternalistic leadership to employee performance. J. Manag. 2014, 40, 796–819. [Google Scholar] [CrossRef]
Enterprise Characteristics | Characteristics | ||||||
---|---|---|---|---|---|---|---|
Category | Classification | Samples | Percent (%) | Category | Classification | Samples | Percent (%) |
Industry category | Manufacturing | 125 | 39.3 | Position | Midlevel managers | 108 | 34 |
Service industry | 79 | 24.8 | Senior managers | 210 | 66 | ||
Retail industry | 28 | 8.8 | Sex | Male | 214 | 67.3 | |
Farming | 12 | 3.8 | Female | 104 | 32.7 | ||
Others | 74 | 23.3 | Education | Below college | 12 | 3.8 | |
Enterprise size | 200 people and below | 118 | 37.1 | College degree | 81 | 25.5 | |
201–500 people | 68 | 21.4 | Bachelor’s degree | 173 | 54.4 | ||
More than 500 people | 132 | 41.5 | Master’s degree | 50 | 15.7 | ||
Years of establishment | 3 years and below | 12 | 3.8 | Doctor’s degree | 2 | 0.6 | |
More than 3 years | 306 | 96.2 | Age | 25 years old and below | 20 | 6.3 | |
Headquaters | Northeast | 1 | 0.3 | 26–35 years old | 127 | 39.9 | |
East China | 168 | 52.8 | 36–45 years old | 138 | 43.3 | ||
North China | 18 | 5.7 | 46–55 years old | 27 | 8.5 | ||
South China | 118 | 37.1 | 56 years old and above | 6 | 1.9 | ||
Southwest | 10 | 3.1 | |||||
Northwest | 3 | 0.9 |
Model | χ2/df | CFI | RMR | NFI | RMSEA |
---|---|---|---|---|---|
Five-factor model (A, BDTS, RI, EU, NBMI) | 1.206 | 0.987 | 0.037 | 0.929 | 0.025 |
Four-factor model (BDTS, RI, EU, NBMI) | 1.302 | 0.924 | 0.044 | 0.915 | 0.031 |
Three-factor model (BDTS + RI, EU, NBMI) | 2.432 | 0.897 | 0.064 | 0.839 | 0.067 |
Two-factor model (BDTS + RI + EU, NBMI) | 3.311 | 0.830 | 0.071 | 0.777 | 0.085 |
one-factor model (BDTS + RI + EU + NBMI) | 4.128 | 0.769 | 0.084 | 0.720 | 0.099 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Industry | 1 | ||||||||||
YoE | −0.01 | ||||||||||
Position | 0.05 | 0.01 | |||||||||
Gender | −0.02 | −0.17 ** | −0.01 | ||||||||
LoH | 0.09 | −0.05 | −0.01 | −0.06 | |||||||
Education | −0.02 | 0.11 * | −0.04 | −0.06 | 0.12 * | ||||||
Age | −0.07 | 0.35 ** | 0.07 | −0.21 ** | 0.09 | 0.20 ** | |||||
NBMI | −0.06 | 0.05 | −0.04 | −0.04 | −0.08 | −0.11 * | 0.03 | (0.86) | |||
BDTS | 0.02 | 0.15 ** | 0.02 | −0.01 | −0.01 | −0.05 | 0.08 | 0.56 ** | (0.87) | ||
RI | 0.01 | 0.12 * | 0 | −0.06 | −0.06 | 0.03 | 0.07 | 0.56 ** | 0.55 ** | (0.88) | |
EU | −0.08 | 0.13 * | −0.10 | −0.13 * | −0.04 | −0.01 | 0.10 | 0.39 ** | 0.33 ** | 0.53 ** | (0.82) |
Mean | 2.47 | 3.35 | 2.33 | 1.33 | 2.93 | 2.84 | 2.60 | 3.95 | 3.89 | 3.88 | 4.046 |
Std. | 1.59 | 0.89 | 1.07 | 0.47 | 1.06 | 0.75 | 0.81 | 0.56 | 0.69 | 0.53 | 0.608 |
Category | Novel Business Model Innovation | Resource Integration | ||||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M18 | |
Industry | −0.023 | −0.029 | −0.031 | −0.028 | −0.010 | 0.003 | 0.016 | 0.015 |
NYE | −0.035 | −0.051 | −0.056 | −0.052 | −0.031 | 0.014 | −0.017 | −0.019 |
Position | −0.031 | −0.036 | −0.033 | −0.029 | −0.003 | −0.008 | 0.019 | 0.019 |
Gender | −0.055 | −0.065 | −0.036 | −0.016 | −0.070 | −0.080 | −0.006 | −0.013 |
Headquarter | −0.044 | −0.042 | −0.026 | −0.018 | −0.046 | −0.044 | −0.035 | −0.026 |
Education | −0.107 | −0.073 | −0.090 | −0.115 | 0.014 | 0.048 | 0.057 | 0.060 |
Age | 0.050 | −0.008 | 0.005 | 0.021 | 0.051 | 0.010 | −0.002 | −0.006 |
BDTS | 0.480 *** | 0.310 *** | 0.478 *** | 0.368 *** | 0.355 *** | |||
RI | 0.358 *** | 0.556 *** | ||||||
EU | 0.343 *** | 0.347 *** | ||||||
moderate | 0.100 * | |||||||
R2 | 0.028 | 0.342 | 0.433 | 0.342 | 0.014 | 0.316 | 0.447 | 0.456 |
ΔR2 | 0.028 | 0.314 | 0.091 | 0.314 | 0.014 | 0.302 | 0.131 | 0.009 |
F | 1.271 | 20.112 *** | 26.093 *** | 20.070 *** | 0.624 | 17.807 *** | 27.620 *** | 25.704 *** |
CIE | MV | Level | Effect | SE | Boot95%CI | INDEX | SE | Boot95%CI |
EU | Low | 0.0983 | 0.0281 | [0.0460,0.1557] | 0.0358 | 0.0205 | [−0.0009,0.0805] | |
High | 0.1558 | 0.0340 | [0.0962,0.2307] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, B.; Liang, W. The Impact of Big Data Technical Skills on Novel Business Model Innovation Based on the Role of Resource Integration and Environmental Uncertainty. Sustainability 2022, 14, 2670. https://doi.org/10.3390/su14052670
Dai B, Liang W. The Impact of Big Data Technical Skills on Novel Business Model Innovation Based on the Role of Resource Integration and Environmental Uncertainty. Sustainability. 2022; 14(5):2670. https://doi.org/10.3390/su14052670
Chicago/Turabian StyleDai, Bingqin, and Wenquan Liang. 2022. "The Impact of Big Data Technical Skills on Novel Business Model Innovation Based on the Role of Resource Integration and Environmental Uncertainty" Sustainability 14, no. 5: 2670. https://doi.org/10.3390/su14052670
APA StyleDai, B., & Liang, W. (2022). The Impact of Big Data Technical Skills on Novel Business Model Innovation Based on the Role of Resource Integration and Environmental Uncertainty. Sustainability, 14(5), 2670. https://doi.org/10.3390/su14052670