Public Transport COVID-19-Safe: New Barriers and Policies to Implement Effective Countermeasures under User’s Safety Perspective
Abstract
:1. Introduction
2. Background on COVID-19 in Public Transport
2.1. The Roles of Urban Public Transport: From High Risk to Essential Service
2.2. Making Transit Systems COVID-19-Safe
2.3. User’s Perception of Transport Quality and Transport Safety
3. Data
- The general impact of COVID-19: identification of respondents’ perceptions regarding: (i) belonging to the risk group, (ii) living with people from the risk group, (iii) fear of contagion, and (iv) the pandemic situation in the city of residence.
- Description of mobility patterns during the pandemic: assessment of changes in mobility pattern, including mode and the main reason for travel.
- Description of mobility patterns before the pandemic: analysis of the main reason for travel, transport mode, and PT users’ identification.
- Description of travel using PT: identifying the type of PT used and week and daily frequency and evaluating PT quality attribute perception—using a four-point Likert scale (strongly disagree, disagree, agree, strongly agree).
- Barriers to the use of PT (perception of risk): ordering from 1 to 7 of the barriers that make users feel unsafe regarding COVID-19 infections when using PT.
- Countermeasures to eliminate the barriers (perception of safety): ordering 1 to 7 the two groups of solutions that users perceived as the safest regarding virus transmission while using PT.
- Respondent profile: identification of socioeconomic characteristics of the individuals.
4. Method
5. Results and Their Implications for Transport Policies
5.1. Model 1: Barriers That Increase Risk Perception of Using PT during COVID-19 Pandemic
5.2. Model 2: Countermeasures That Increase the Perception of Safety on Using PT during COVID-19 Virus Pandemic—Group 1
5.3. Model 3: Countermeasures That Increase the Perception of Safety on Using PT during COVID-19 Virus Pandemic—Group 2
6. Countermeasure Implementation and Policy Implications for Public Transport in a COVID-19 Reality
7. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. WHO Coronavirus Disease (COVID-19) Dashboard. 2020. Available online: https://covid19.who.int (accessed on 28 January 2021).
- Nafees, M.; Khan, F. Pakistan’s Response to COVID-19 pandemic and efficacy of quarantine and partial lockdown: A review. Electron. J. Gen. Med. 2020, 17, em240. [Google Scholar] [CrossRef] [Green Version]
- Sangiorgio, V.; Parisi, F. A multicriteria approach for risk assessment of COVID-19 in urban district lockdown. Saf. Sci. 2020, 130, 104862. [Google Scholar] [CrossRef] [PubMed]
- Jenelius, E.; Cebecauer, M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transp. Res. Interdiscip. Perspect. 2020, 8, 100242. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, M.; Lindau, L.A.; Pereira, B.M.; Danilevicz, Â.D.M.F.; ten Caten, C.S. Inferindo a importância dos atributos do transporte coletivo a partir da satisfação dos usuários. Transportes 2017, 25, 36. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.H.M.; Gouveia, C.K.V.B.; Servo, L.M.; Serra, B.; Amaral, P.; Gouveia, N. Mobilidade Urbana e o Acesso ao Sistema de Saúde para Casos Suspeitos e Graves de COVID-19 nas Vinte Maiores Cidades do Brasil; Nota Técnica N.14; Instituto de Pesquisa Econômica Aplicada: Brasília, Brazil, 2020. [Google Scholar]
- Tirachini, A.; Cats, O. COVID-19 and public transportation: Current assessment, prospects, and research needs. J. Public Transp. 2020, 22, 1–34. [Google Scholar] [CrossRef]
- Dente, S.M.R.; Hashimoto, S. COVID-19: A pandemic with positive and negative outcomes on resource and waste flows and stocks. Resour. Conserv. Recycl. 2020, 161, 104979. [Google Scholar] [CrossRef]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. J. 2020, 5, 100121. [Google Scholar] [CrossRef]
- NTU. COVID-19 e o Transporte Público por Ônibus: Impactos No Setor e Ações Realizadas; Associação Nacional das Empresas de Transportes Urbanos: Brasília, Brazil, 2020. [Google Scholar]
- NTU. Anuário NTU 2018–2019; Associação Nacional das Empresas de Transportes Urbanos: Brasília, Brazil, 2019. [Google Scholar]
- Tavares, V.B.; Lucchesi, S.T.; Larrañaga, A.M.; Cybis, H.B.B. Influence of public transport quality attributes on user satisfaction of diferente age cohorts. Case Stud. Transp. Policy 2021, 9, 1042–1050. [Google Scholar] [CrossRef]
- Bishnoi, M.M.; Suraj, S. Sustainability of public transportation during the pandemic: A descriptive study. J. Green Eng. 2020, 10, 9472–9491. [Google Scholar]
- Kakar, K.A.; Prasad, C.S.R.K. Impact of Urban Sprawl on Travel Demand for Public Transport, Private Transport and Walking. Transp. Res. Procedia 2020, 48, 1881–1892. [Google Scholar] [CrossRef]
- Swianiewicz, P.; Brzóska, A. Demand Elasticity for Local Public Transport in Polish Cities: Do Local Policies Matter? Transylv. Rev. Adm. Sci. 2020, 16, 125–142. [Google Scholar] [CrossRef]
- Tembe, A.; Nakamura, F.; Tanaka, S.; Ariyoshi, R.; Miura, S. The demand for public buses in sub-Saharan African cities: Case studies from Maputo and Nairobi. IATSS Res. 2019, 43, 122–130. [Google Scholar] [CrossRef]
- Costa, G.; de Souza, L.; Stumpf, G.; de Carvalho, D. Incomplete contracts for bus service during the COVID-19 pandemic. Conseq. Propos. 2020, 54, 1–16. [Google Scholar]
- Kreetzer, A. The Future of Public Transport in A Post COVID-19 World—Iomob’s Scott Shepard. Auto Futures. 2020. Available online: https://www.autofutures.tv/2020/05/07/the-future-of-public-transport/ (accessed on 27 December 2021).
- Dzinamarira, T.; Murewanhema, G.; Musuka, G. Different SARS-CoV-2 variants, same prevention strategies. Public Health Pract. 2022, 3, 100223. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, S.S.V.; Kadali, R. Impact of COVID-19 pandemic lockdown on the public transportation system and strategic plans to improve PT ridership: A review. Innov. Infrastruct. Solut. 2021, 7, 97. [Google Scholar] [CrossRef]
- Mesgarpour, M.; Abad, J.M.N.; Alizadeh, R.; Wongwises, S.; Doranehgard, M.H.; Jowkar, S.; Karimi, N. Predicting the effects of environmental parameters on the spatio-temporal distribution of the droplets carrying coronavirus in public transport—A machine learning approach. Chem. Eng. J. 2022, 430, 132761. [Google Scholar] [CrossRef]
- Aghdam, F.B.; Sadeghi-Bazargani, H.; Shahsavarinia, K.; Jafari, F.; Jahangiry, L.; Gilani, N. Investigating the COVID-19 related behaviors in the public transport system. Arch. Public Health 2021, 79, 183. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ma, S.; Jia, N.; Tian, J. Understanding public transport satisfaction in post-COVID-19 pandemic. Transp. Policy 2021, 101, 81–88. [Google Scholar] [CrossRef]
- Ando, T.; Sato, T.; Hashimoto, N.; Tran, Y.; Konishi, N.; Takeda, Y.; Akamatsu, M. Variability in Human Mobility during the Third Wave of COVID-19 in Japan. Sustainability 2021, 13, 13131. [Google Scholar] [CrossRef]
- Campisi, T.; Basbas, S.; Skoufas, A.; Akgün, N.; Ticali, D.; Tesoriere, G. The Impact of COVID-19 Pandemic on the Resilience of Sustainable Mobility in Sicily. Sustainability 2020, 12, 8829. [Google Scholar] [CrossRef]
- Ismael, K.; Duleba, S. Investigation of the Relationship between the Perceived Public Transport Service Quality and Satisfaction: A PLS-SEM Technique. Sustainability 2021, 13, 13018. [Google Scholar] [CrossRef]
- Kłos-Adamkiewicz, Z.; Gutowski, P. The Outbreak of COVID-19 Pandemic in Relation to Sense of Safety and Mobility Changes in Public Transport Using the Example of Warsaw. Sustainability 2022, 14, 1780. [Google Scholar] [CrossRef]
- Monterde-i-Bort, H.; Sucha, M.; Risser, R.; Kochetova, T. Mobility Patterns and Mode Choice Preferences during the COVID-19 Situation. Sustainability 2022, 14, 768. [Google Scholar] [CrossRef]
- Nian, G.; Peng, B.; Sun, D.J.; Ma, W.; Peng, B.; Huang, T. Impact of COVID-19 on Urban Mobility during Post-Epidemic Period in Megacities: From the Perspectives of Taxi Travel and Social Vitality. Sustainability 2020, 12, 7954. [Google Scholar] [CrossRef]
- Petrov, A.I.; Petrova, D.A. Sustainability of Transport System of Large Russian City in the Period of COVID-19: Methods and Results of Assessment. Sustainability 2020, 12, 7644. [Google Scholar] [CrossRef]
- Roberts, B.H. Managing Systems of Secondary Cities; Cities Alliance/UNOPS: Brussels, Belgium, 2014. [Google Scholar]
- Vijayalakshmi, S. Recent developments in corona virus disease-2019 (COVID-19). Res. J. Biotechnol. 2020, 15, 159–169. [Google Scholar]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Gostic, K.M.; Gomez, A.C.R.; Mummah, R.O.; Kucharski, A.J.; Lloyd-Smith, J.O. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. ELife 2020, 9, e55570. [Google Scholar] [CrossRef]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Wang, X.; Zhao, K.; Ying, B.; Tang, S.; Zhang, J. Prevention and control of COVID-19 in public transportation: Experience from China. Environ. Pollut. 2020, 266, 115291. [Google Scholar] [CrossRef]
- Troko, J.; Myles, P.; Gibson, J.; Hashim, A.; Enstone, J.; Kingdon, S.; Packham, C.; Amin, S.; Hayward, A.; Van-Tam, J. NIs public transport a risk factor for acute respiratory infection? BMC Infect. Dis. 2011, 11, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.E. The Subways Seeded the Massive Coronavirus Epidemic in New York City; Working Paper 27021; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Zhao, F.; Gustafson, T.; Florida International University, M.; Federal Transit, A. Transportation Needs of Disadvantaged Populations: Where, When, and How? Federal Transit Administration: Washington, DC, USA, 2013; 91p. [Google Scholar]
- Wang, X.; Rodríguez, D.A.; Sarmiento, O.L.; Guaje, O. Commute patterns and depression: Evidence from eleven Latin American cities. J. Transp. Health 2019, 14, 100607. [Google Scholar] [CrossRef]
- CAF. Desarrollo Urbano y Movilidad en América Latina; Banco de Desarrollo de America Latina: Caracas, Venezuela; CAF: Dallas, TX, USA, 2011. [Google Scholar]
- Guzman, L.A.; Oviedo, D. Accessibility, affordability and equity: Assessing ‘pro-poor’ public transport subsidies in Bogotá. Transp. Policy 2018, 68, 37–51. [Google Scholar] [CrossRef]
- Mussel, C.; Avineri, E.; Susilo, Y. Editorial JTH 16–The Coronavirus Disease COVID-19 and implications for transport and health. J. Transp. Health 2020, 16, 100853. [Google Scholar] [CrossRef]
- Cash, R.; Patel, V. Has COVID-19 subverted global health? Lancet 2020, 395, 1687–1688. [Google Scholar] [CrossRef]
- Arellana, J.; Luis, M.; Cantillo, V. COVID-19 Outbreak in Colombia: An Analysis of Its Impacts on Transport COVID-19 Outbreak in Colombia: An Analysis of Its Impacts on Transport Systems. J. Adv. Transp. 2020, 2020, 16. [Google Scholar] [CrossRef]
- Fletcher, K.; Amarakoon, S.; Haskell, J.; Penn, P.; Wilmoth, M.; Matherly, D.; Langdon, N. A Guide for Public Transportation Pandemic Planning and Response, A Guide for Public Transportation Pandemic Planning and Response; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Australian Government. Principles for COVID-19 Public Transport Operations; Australian Government, Department of Health: Canberra, Australia, 2020.
- UITP. Public Transport Authorities and COVID-19: Responses from the Front Line; Australia/New Zealand, International Association of Public Transport: Brussels, Belgium, 2020. [Google Scholar]
- Romine, T.; Sgueglia, K. New York Transit Agency Launches UV Light Pilot Program in Effort to Kill COVID-19. CNN. 2020. Available online: https://edition.cnn.com/2020/05/20/us/new-york-transit-uv-light-trnd/index.html (accessed on 29 August 2020).
- Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1628–1631. [Google Scholar] [CrossRef]
- Wang, J.; Pan, L.; Tang, S.; Ji, J.S.; Shi, X. Mask use during COVID-19: A risk adjusted strategy. Environ. Pollut. 2020, 266, 1–6. [Google Scholar] [CrossRef]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; El-harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Parashar, L. “Standard Operating Procedures (SOPs)” for Bus Transp. Post COVID-19 Lockdown; Integrated and Sustainable urban Transport Systems in Smart Cities: New Delhi, India, 2020; Available online: https://sutp.org/publications/standard-operating-procedures-sops-for-bus-transport-post-covid19-lockdown/ (accessed on 29 August 2020).
- DOM—Diário Oficial do Município. Dispõe Sobre Medidas Voltadas à Prevenção da Disseminação da Epidemia de COVID-19 No Serviço Público de Transporte Coletivo de Passageiros por Ônibus do Município; Diário Oficial do Município: Belo Horizonte, Brazil, 2020.
- DOM—Diário Oficial do Município. Dispões Sobre Medidas Restritivas Regionalizadas para o Enfrentamento da COVID-19; Diário Oficial do Estadodo Paraná: Curitiba, Brazil, 2020.
- DOM—Diário Oficial do Município. Estabelece Medidas a Serem Adotadas pelo Transporte Coletivo Urbano e Metropolitano, Transporte Privado de Passageiros, Transporte Individual Público e Privado, Para Enfrentamento da Emergência de Saúde Pública de Importância Internacional Decorrente do n; Diário Oficial do Município: Porto Alegre, Brazil, 2020. [CrossRef]
- DOM—Diário Oficial do Município. Reconhece a Situação de Emergência na Saúde Pública do Estado do rio de Janeiro em Razão do Contágio e adota Medidas Enfrentamento da Propagação Decorrente do Novo Coronavírus (COVID-19); e dá Outras Providências; Diário Oficial do Estado: Rio de Janeiro, Brazil, 2020.
- Cabral, H.; Petzhold, G. Cidades Fazem Escalonamento de Horários por mais Segurança nos Ônibus durante a Pandemia. WRI Braz. 2020. Available online: https://wribrasil.org.br/pt/blog/cidades-escalonamento-de-horarios-seguranca-onibus-pandemia-covid-19#:~:text=Cidades%20fazem%20escalonamento%20de%20hor%C3%A1rios%20por%20mais%20seguran%C3%A7a%20nos%20%C3%B4nibus%20durante%20a%20pandemia,-por%20Henrique%20Cabral&text=A%20ado%C3%A7%C3%A3o%20do%20distanciamento%20social,frente%20do%20combate%20%C3%A0%20pandemia (accessed on 29 August 2020).
- Dublin City Council. Enabling the City to Return to Work: Interim Mobility Intervention Programme for Dublin City; Dublin City Council: Dublin, Ireland, 2020.
- Ben-Akiva, M.; McFadden, D.; Train, K.; Walker, J.; Bhat, C.; Bierlaire, M.; Bolduc, D.; Boersch-Supan, A.; Brownstone, D.; Bunch, D.S.; et al. Hybrid Choice Models: Progress and Challenges Massachusetts Institute of Technology. Mark. Lett. 2002, 13, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Dell Olio, L.; Angel, I.; de Ona, J.; de Ona, R. Public Transportation Quality of Service: Factors, Models, and Applications; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Machado-León, J.L.; de Oña, R.; Baouni, T.; de Oña, J. Railway transit services in Algiers: Priority improvement actions based on users perceptions. Transp. Policy 2017, 53, 175–185. [Google Scholar] [CrossRef]
- Kim, J.; Rasouli, S.; Timmermans, H. Hybrid Choice Models: Principles and Recent Progress Incorporating Social Influence and Nonlinear Utility Functions. Procedia Environ. Sci. 2014, 22, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Ben-Akiva, M.; Walker, J.; Bernardino, A.T.; Gopinath, D.A.; Morikawa, T.; Polydoropoulou, A. Integration of Choice and Latent Variable Models. In Perpetual Motion: Travel Behaviour Research Opportunities and Application Challenges; Pergamon: Oxford, UK, 2002. [Google Scholar]
- Ortúzar, J.D.D.; Willumsen, L.G. Modelling Transport; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- McFadden, D. The measurement of urban travel demand. J. Public Econ. 2011, 3, 303–328. [Google Scholar] [CrossRef]
- Luce, R.D.; Suppes, P. Preference, Utility and Subjective Probability, Handbook of Mathematical Psychology; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Arellana, J.; Saltarín, M.; Larrañaga, A.M.; Alvarez, V.; Henao, C.A. Urban walkability considering pedestrians’ perceptions of the built environment: A 10-year review and a case study in a medium-sized city in Latin America. Transp. Rev. 2020, 40, 183–203. [Google Scholar] [CrossRef]
- Arellana, J.; Saltarín, M.; Larrañaga, A.M.; Henao, C. Developing an urban bikeability index for different types of cyclists as a tool to prioritize bicycle infrastructure investments. Work. Pap. 2019, 139, 310–334. [Google Scholar] [CrossRef]
- Palma, M.A. Improving the prediction of ranking data. Empir. Econ. 2017, 53, 1681–1710. [Google Scholar] [CrossRef] [Green Version]
- Azolin, L.G.; Rodrigues da Silva, A.N.; Pinto, N. Incorporating public transport in a methodology for assessing resilience in urban mobility. Transp. Res. Part D Transp. Environ. 2020, 85, 102386. [Google Scholar] [CrossRef]
- Lima, G.C.L.S.; Schechtman, R.; Brizon, L.C.; Figueiredo, M.Z. Transporte público e COVID-19. O Que Pode ser Feito? 2020. Available online: https://ceri.fgv.br/sites/default/files/publicacoes/2020-05/covid_e_mobilidade_urbana_0.pdf (accessed on 29 August 2020).
- Koehl, A. Urban transport and COVID-19: Challenges and prospects in low- and middle-income countries. Cities Health 2020, 1–6. [Google Scholar] [CrossRef]
- Budd, L.; Ison, S. Responsible Transport: A post-COVID agenda for transport policy and practice. Transp. Res. Interdiscip. Perspect. J. 2020, 6, 100151. [Google Scholar] [CrossRef] [PubMed]
Variable Group | Variable | Frequency/Mean—Std. |
---|---|---|
Individual socioeconomic characteristics | Income | 0—Without income: 5 (3%) 1—Up to 1 Brazil minimum wage: 4 (3%) 2—Between 1 and 2 Brazil minimum wages: 21 (14%) 3—Between 2 and 5 Brazil minimum wages: 42 (28%) 4—Between 5 and 8 Brazil minimum wages: 33 (22%) 5—More than 8 Brazil minimum wages: 44 (30%) |
Explanatory variables | Risk group proximity | 1—Yes: 64 (43%) 0—No: 85 (57%) |
Pandemic controlled in the city | 1—Yes: 30 (20%) 0—No: 119 (80%) | |
PT use weekly frequency | 1—4 or more times a week: 101 (68%) 0—less than 4 times a week: 48 (32%) | |
PT use daily frequency | 1—3 or more times a day: 61 (41%) 0—less than 3 times a day: 88 (59%) | |
Latent indicators | PT is good | 1—Totally disagree: 21 (14%) 2—Disagree: 73 (49%) 3—Agree: 53 (36%) 4—Totally agree: 2 (1%) |
PT users are polite | 1—Totally disagree: 23 (15%) 2—Disagree: 68 (46%) 3—Agree: 57 (38%) 4—Totally agree: 1 (1%) | |
PT is comfortable | 1—Totally disagree: 24 (16%) 2—Disagree: 71 (48%) 3—Agree: 52 (35%) 4—Totally agree: 1 (1%) | |
PT is clean | 1—Totally disagree: 24 (16%) 2—Disagree: 70 (47%) 3—Agree: 54 (36%) 4—Totally agree: 1 (1%) | |
PT is usually empty | 1—Totally disagree: 68 (46%) 2—Disagree: 70 (47%) 3—Agree: 10 (7%) 4—Totally agree: 1 (≈0%) | |
I feel safe from robbery while I’m using PT | 1—Totally disagree: 74 (50%) 2—Disagree: 38 (26%) 3—Agree: 35 (23%) 4—Totally agree: 2 (1%) | |
I feel safe from traffic crashes while I’m using PT | 1—Totally disagree: 23 (16%) 2—Disagree: 33 (22%) 3—Agree: 78 (52%) 4—Totally agree: 15 (10%) |
Latent Model | |||
---|---|---|---|
Latent Variable | Indicators | Robust t-Ratio | |
SQP | PT is good. | −1.293 | −2.382 |
PT’ users are polite | −1.151 | −3.700 | |
PT is comfortable | −0.749 | −2.791 | |
OQP | PT is clean | 0.885 | 2.804 |
PT is usually empty | 1.440 | 3.090 | |
I feel safe from robbery while I’m using PT | 0.977 | 2.918 | |
I feel safe from road crashes while I’m using PT | 1.256 | 2.451 | |
Latent Variables | Indiv. Characteristics | Robust t-Ratio | |
SQP Indv. Characteristics | Income | 0.252 | 2.085 |
OQP | Income | −0.342 | −3.125 |
Choice Model—Utility Function | |||
Utility Function | Latent Variables | Robust t-Ratio | |
B1 | SQP Latent variable | 3.430 | 3.705 |
OQP Latent variable | 2.473 | 3.306 | |
B2 | SQP Latent variable | 4.024 | 5.670 |
OQP Latent variable | 3.090 | 4.833 | |
B3 | SQP Latent variable | 2.797 | 4.556 |
OQP Latent variable | 2.187 | 4.726 | |
B4 | SQP Latent variable | 1.939 | 4.011 |
OQP Latent variable | 1.436 | 3.372 | |
B5 | SQP Latent variable | 1.215 | 3.004 |
OQP Latent variable | 0.965 | 2.467 | |
B6 | SQP Latent variable | 1.035 | 3.815 |
OQP Latent variable | 0.767 | 3.355 | |
Choice Model—Choice Ranking Results | |||
Order | Choice Alternatives | Robust t-Ratio | |
1° | B2—Crowded vehicles | 3.835 | 2.592 |
2° | B1—Crowded stops and stations | 3.137 | 2.605 |
3° | B3—Circulation of many different people | 2.860 | 2.724 |
4° | B4—Vehicles are closed places | 2.312 | 3.039 |
5° | B6—Need to touch where other people have touched | 1.510 | 3.063 |
6° | B5—Air conditioning always on | 1.352 | 2.481 |
7° | B7—Need to stay a long time in the vehicle | 0.300 | Fixed |
Latent Model | |||
---|---|---|---|
Latent Variable | Indicator | Robust t-Ratio | |
SQP | PT is good. | −1.145 | −2.864 |
PT’ users are polite | −1.571 | −3.472 | |
PT is comfortable | −0.967 | −2.937 | |
OQP | PT is clean | 0.611 | 2.160 |
PT is usually empty | 1.200 | 3.253 | |
I feel safe from robbery while I’m using PT | 1.085 | 3.135 | |
I feel safe from road crashes while I’m using PT | 1.187 | 2.593 | |
Latent Variables | Indiv. Characteristics | Robust t-Ratio | |
SQP Indv. Characteristics | Income | 0.313 | 2.731 |
OQP Indv. Characteristics | Income | −0.290 | −3.044 |
Choice Model—Utility | |||
Utility Function | Latent Variables | Robust t-Ratio | |
C1.1 | SQP Latent variable | 1.730 | 2.594 |
OQP Latent variable | 1.734 | 2.086 | |
C1.2 | SQP Latent variable | 1.626 | 2.621 |
OQP Latent variable | 1.553 | 1.933 | |
C1.3 | SQP Latent variable | 1.464 | 2.304 |
OQP Latent variable | 1.051 | 1.171 | |
C1.4 | SQP Latent variable | 1.062 | 2.280 |
OQP Latent variable | 1.193 | 2.023 | |
C1.5 | SQP Latent variable | 0.210 | 0.310 |
OQP Latent variable | 0.056 | 0.071 | |
C1.6 | SQP Latent variable | 0.175 | 0.442 |
OQP Latent variable | 0.243 | 0.584 | |
Explanatory Variable (Is Fixed for All the Utility Functions) | Robust t-Ratio | ||
PT use weekly frequency | −1.020 | −2.456 | |
Choice Model—Choice Results | |||
Order | Choice Alternatives | Robust t-Ratio | |
1° | C1.3—Limit the number of people in vehicles | 4.793 | 4.994 |
2° | C1.5—Use of mask | 4.237 | 5.526 |
3° | C1.2—Vehicle hygiene | 3.830 | 4.090 |
4° | C1.4—Turn off the air conditioner | 3.018 | 3.842 |
5° | C1.1—Blocking and demarcation of places | 2.889 | 2.992 |
6° | C1.6—Availability of alcohol gel | 2.555 | 3.943 |
7° | C1.7—Temperature measurement | 0.300 | Fixed |
Latent Model | |||
---|---|---|---|
Latent Variable | Indicator | Robust t-Ratio | |
SQP Indicators | PT is good. | 1.106 | 3.076 |
PT’ users are polite | 1.298 | 3.181 | |
PT is comfortable | 0.882 | 3.131 | |
OQP Indicators | PT is clean | 0.887 | 3.332 |
PT is usually empty | 1.400 | 3.549 | |
I feel safe from robbery while I’m using PT | 1.103 | 3.570 | |
I feel safe from road crashes while I’m using PT | 1.242 | 3.004 | |
Latent Variables | Indiv. Characteristics | Robust t-Ratio | |
SQP | Income | 0.269 | 2.511 |
OQP | Income | 0.285 | 2.828 |
Choice Model—Utility | |||
Utility Function | Latent Variables | Robust t-Ratio | |
C2.1 | SQP Latent variable | 1.758 | 4.752 |
OQP Latent variable | −1.581 | −3.052 | |
C2.2 | SQP Latent variable | 1.546 | 4.857 |
OQP Latent variable | −1.755 | −3.898 | |
C2.3 | SQP Latent variable | 0.910 | 2.981 |
OQP Latent variable | −1.324 | −3.295 | |
C2.4 | SQP Latent variable | 0.536 | 1.902 |
OQP Latent variable | −1.293 | −3.736 | |
C2.5 | SQP Latent variable | 0.208 | 1.129 |
OQP Latent variable | −0.654 | −3.373 | |
C2.6 | SQP Latent variable | −0.057 | −0.222 |
OQP Latent variable | −0.429 | −1.465 | |
Explanatory Variables (Are Fixed for All the Utility Functions) | Robust t-Ratio | ||
Risk group proximity | 0.717 | 2.336 | |
Pandemic under control in the city | 0.863 | 2.300 | |
PT use daily frequency | −0.655 | −1.979 | |
Choice Model—Choice Results | |||
Order | Choice Alternatives | Robust t-Ratio | |
1° | C2.5—Operate with larger vehicles | 2.574 | 3.384 |
2° | C2.7—Increase offer | 2.480 | 2.550 |
3° | C2.2—Change activity start time | 2.289 | 6.034 |
4° | C2.3—Inform the number of passengers in vehicles | 2.145 | 5.109 |
5° | C3.6—Separation of seats with acrylic protection | 1.985 | 2.469 |
6° | C2.4—Seat reservation | 1.774 | 3.146 |
7° | C2.1—Discount for off-peak travel | 0.900 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, S.T.; Tavares, V.B.; Rocha, M.K.; Larranaga, A.M. Public Transport COVID-19-Safe: New Barriers and Policies to Implement Effective Countermeasures under User’s Safety Perspective. Sustainability 2022, 14, 2945. https://doi.org/10.3390/su14052945
Lucchesi ST, Tavares VB, Rocha MK, Larranaga AM. Public Transport COVID-19-Safe: New Barriers and Policies to Implement Effective Countermeasures under User’s Safety Perspective. Sustainability. 2022; 14(5):2945. https://doi.org/10.3390/su14052945
Chicago/Turabian StyleLucchesi, Shanna Trichês, Virginia Bergamaschi Tavares, Miriam Karla Rocha, and Ana Margarita Larranaga. 2022. "Public Transport COVID-19-Safe: New Barriers and Policies to Implement Effective Countermeasures under User’s Safety Perspective" Sustainability 14, no. 5: 2945. https://doi.org/10.3390/su14052945