The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing
Abstract
:1. Introduction
2. Literature Background
2.1. The Pandemic’s Consequences on the Food Purchasing Supply Chain
2.2. The Online Food Market
3. Methodology
3.1. Steps in Methodology
3.2. Questionnaire Design
3.3. Data Gathering
4. Results and Discussion
4.1. E-Commerce System Efficiency and Capacity for Digital Advertising (H1 and H1a)
4.2. E-Commerce Network Effectiveness and Expected Supply Chain Capabilities (H2 and H2a)
4.3. E-Commerce Network Effectiveness and Customer Feedback Rating (H3)
4.4. Client Evaluation Rating and Reported Digital Marketing Capabilities (H4 and H4a)
4.5. Customer Evaluation Ratings and Expected Supply Chain Capabilities (H5 and H5a)
4.6. Observed Supply Chain Capability and Estimated Digital Marketing Capabilities (H6)
5. Study Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, K.M.; Mohapatra, S.; Sharma, P.; Sharma, S.; Bhatia, D.; Mishra, A. Study and overview of the novel corona virus disease (COVID-19). Sensors Int. 2020, 1, 100037. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, R.; Mohanty, S.; Vishwakarma, K.; Nayak, S.K.; Samantaray, D.; Mohapatra, S. Update vision on COVID-19: Structure, immune pathogenesis, treatment and safety assessment. Sensors Int. 2021, 2, 100073. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behloul, N.; Baha, S.; Shi, R.; Meng, J. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Virus Res. 2020, 286, 198058. [Google Scholar] [CrossRef]
- Helm, D. The Environmental Impacts of the Coronavirus. Environ. Resour. Econ. 2020, 76, 21–38. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Johnson, M.C.; Lyddon, T.D.; Suarez, R.; Salcedo, B.; LePique, M.; Graham, M.; Ricana, C.; Robinson, C.; Ritter, D.G. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein. J. Virol. 2020, 94, e01062-20. [Google Scholar] [CrossRef]
- Lvov, D.K.; Alkhovsky, S.V. Source of the COVID-19 pandemic: Ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus). Vopr. Virusol. 2020, 65, 62–70. [Google Scholar] [CrossRef]
- Ma, Q.; Chang, C.-C.; Lin, C.-T. Detecting the Crisis of Supply Chain Management on E-Commerce for Sustainability Using Q-Technique. Sustainability 2021, 13, 9098. [Google Scholar] [CrossRef]
- Mohapatra, S.; Priyanka, V.; Mohapatra, S.; Kohli, I.; Mishra, R.K. Impact of corona virus covid-19 on the global economy. Int. J. Agric. Stat. Sci. 2020, 16, 771–778. [Google Scholar]
- Mohapatra, S.; Mishra, Y.; Dash, L. COVID-19: Analysing the Legal Nuances of the Lockdown Order. Indian J. Forensic Med. Toxicol. 2020, 14, 612–616. [Google Scholar] [CrossRef]
- Rosenbloom, D.; Markard, J. A COVID-19 recovery for climate. Science 2020, 368, 447. [Google Scholar] [CrossRef] [PubMed]
- Rugani, B.; Caro, D. Impact of COVID-19 outbreak measures of lockdown on the Italian Carbon Footprint. Sci. Total Environ. 2020, 737, 139806. [Google Scholar] [CrossRef] [PubMed]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [Green Version]
- FAO. COVID-19 and Smallholder Producers’ Access to Markets; FAO: Rome, Italy, 2020; ISBN 978-92-5-132414-1. [Google Scholar]
- Tan, H.W.; Xu, Y.; Lau, A.T.Y. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Rev. Med. Virol. 2020, 30, e2122. [Google Scholar] [CrossRef]
- University, J.H. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE). Available online: https://coronavirus.jhu.edu/map.html (accessed on 26 January 2020).
- Sharma, S.K.; Mohapatra, S.; Sharma, R.C.; Alturjman, S.; Altrjman, C.; Mostarda, L.; Stephan, T. Retrofitting Existing Buildings to Improve Energy Performance. Sustainability 2022, 14, 666. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, R.C.; Lee, J. Effect of Rail Vehicle–Track Coupled Dynamics on Fatigue Failure of Coil Spring in a Suspension System. Appl. Sci. 2021, 11, 2650. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, R.C.; Lee, J. In situ and experimental analysis of longitudinal load on carbody fatigue life using nonlinear damage accumulation. Int. J. Damage Mech. 2021, 105678952110460. [Google Scholar] [CrossRef]
- Bhardawaj, S.; Sharma, R.; Sharma, S. Ride Analysis of Track-Vehicle-Human Body Interaction Subjected to Random Excitation. J. Chin. Soc. Mech. Eng. 2020, 41, 229–238. [Google Scholar] [CrossRef]
- Bhardawaj, S.; Sharma, R.C.; Sharma, S.K. Development of multibody dynamical using MR damper based semi-active bio-inspired chaotic fruit fly and fuzzy logic hybrid suspension control for rail vehicle system. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2020, 234, 723–744. [Google Scholar] [CrossRef]
- Sharma, S.K.; Lee, J. Design and Development of Smart Semi Active Suspension for Nonlinear Rail Vehicle Vibration Reduction. Int. J. Struct. Stab. Dyn. 2020, 20, 2050120. [Google Scholar] [CrossRef]
- Lin, Y.; Marjerison, R.K.; Choi, J.; Chae, C. Supply Chain Sustainability during COVID-19: Last Mile Food Delivery in China. Sustainability 2022, 14, 1484. [Google Scholar] [CrossRef]
- Wang, S. Assessing the Food Safety and Quality Assurance System during the COVID-19 Pandemic. Sustainability 2022, 14, 1507. [Google Scholar] [CrossRef]
- Tort, Ö.Ö.; Vayvay, Ö.; Çobanoğlu, E. A Systematic Review of Sustainable Fresh Fruit and Vegetable Supply Chains. Sustainability 2022, 14, 1573. [Google Scholar] [CrossRef]
- Hyland, J.J.; Macken-Walsh, Á. Multi-Actor Social Networks: A Social Practice Approach to Understanding Food Hubs. Sustainability 2022, 14, 1894. [Google Scholar] [CrossRef]
Steps | Process | Description |
---|---|---|
1 | Establish Q-opinion parent group | This process is used, along with expert consultation, to obtain information used to construct a draft questionnaire for subsequent expert discussion. |
2 | Take Q samples | The parent group statement is collected to accurately reflect the COVID-19 impact on crisis detection for the imported food industry’s e-commerce supply chain. |
3 | Flat sort | The final declarative sentences chosen, after expert consultation, followed the balance: positive = 18, negative = 18, and neutral = 11. Professionals rated the placement of the Q-sample statements as 2-3-5-8-11-8-5-3-2, accordingly (see Figure 2; for example, 11 signifies a neutral place in the middle of 11 statements), and we increased the Q-classification dispersion table to fit nearly normally distributed criteria. |
4 | Q-sort data analysis | Respondent data was coded after expert classification, where score = +4, +3,…, 4, corresponds to points = 9, 8,…, 1, respectively. Our goal is to obtain the Q-sample categorization ranking chart for a professional Q-sort so that it can determine the impact of the COVID-19 crisis on the purchased food product supply chain. |
End Consumer Frequency | End Consumer % | Seller Frequency | Seller % | ||
---|---|---|---|---|---|
Gender | Male | 10 | 11 | 15 | 29 |
Female | 70 | 85 | 34 | 64 |
Prior to COVID | Seller before | |
---|---|---|
Component Matrix | Component Matrix | |
CDA 1 | 0.814 | |
CDA 2 | 0.742 | 0.741 |
CDA 3 | 0.785 | 0.845 |
CDA 4 | 0.842 | 0.774 |
CDA 5 | 0.751 | 0.810 |
Prior to COVID | Seller before | |
---|---|---|
Component Matrix | Component Matrix | |
SCC 1 | 0.574 | 0.579 |
SCC 2 | 0.704 | 0.628 |
SCC 3 | 0.665 | 0.745 |
SCC 4 | 0.478 | 0.664 |
SCC 5 | 0.527 | 0.540 |
Prior to COVID | Seller before | |
---|---|---|
Component Matrix | Component Matrix | |
SCE 1 | 0.492 | 0.752 |
SCE 2 | 0.823 | 0.807 |
SCE 3 | 0.575 | 0.564 |
SCE 4 | 0.589 | 0.758 |
SCE 5 | 0.712 | 0.632 |
Pridor to COVID | After COVID | Seller before | After COVID | |
---|---|---|---|---|
Component Matrix | Component Matrix | Component Matrix | Component Matrix | |
EEP 1 | 0.780 | 0.889 | 0.621 | 0.850 |
EEP 2 | 0.601 | 0.744 | 0.545 | 0.740 |
EEP 3 | 0.689 | 0.854 | 0.756 | 0.825 |
EEP 4 | 0.790 | 0.851 | 0.542 | 0.721 |
EEP 5 | 0.809 | 0.954 | 0.700 | 0.832 |
Items | Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C19 | 0.655 | 0.152 | 0.260 | 0.015 | −0.104 | 0.025 | 0.104 | −0.025 | 0.101 | 0.207 |
c21 | 0.25 | 0.054 | 0.107 | −0.104 | −0.028 | 0.254 | 0.271 | −0.058 | 0.171 | −0.105 |
c16 | 0.541 | 0.350 | 0.107 | 0.125 | −0.150 | 0.354 | −0.125 | 0.204 | 0.057 | 0.109 |
c20 | 0.525 | 0.056 | 0.191 | 0.182 | −0.085 | 0.157 | 0.144 | −0.018 | 0.148 | 0.153 |
c22 | 0.582 | 0.167 | 0.125 | 0.148 | 0.126 | −0.157 | 0.416 | 0.159 | 0.150 | 0.140 |
c17 | 0.542 | 0.145 | 0.194 | 0.295 | 0.174 | −0.155 | 0.192 | 0.118 | −0.159 | −0.270 |
b15 | 0.425 | 0.254 | 0.170 | 0.149 | −0.059 | 0.142 | −0.274 | 0.290 | 0.102 | −0.047 |
d24 | 0.414 | 0.247 | 0.159 | 0.121 | 0.178 | 0.108 | 0.213 | 0.141 | 0.371 | 0.159 |
b14 | 0.495 | 0.192 | 0.157 | 0.257 | 0.148 | 0.252 | −0.211 | 0.425 | −0.048 | −0.047 |
c23 | 0.461 | 0.226 | 0.341 | −0.171 | 0.144 | 0.109 | 0.121 | 0.141 | 0.201 | −0.141 |
c18 | 0.230 | 0.121 | 0.210 | 0.252 | 0.157 | −0.135 | 0.182 | 0.124 | −0.107 | −0.107 |
b9 | 0.152 | 0.716 | 0.150 | 0.255 | 0.150 | 0.295 | 0.105 | 0.107 | 0.214 | 0.120 |
b10 | 0.252 | 0.541 | 0.270 | −0.110 | 0.104 | 0.194 | 0.115 | −0.117 | −0.125 | −0.115 |
b8 | 0.251 | 0.532 | 0.146 | 0.174 | 0.104 | 0.170 | −0.275 | 0.107 | 0.125 | 0.141 |
b11 | 0.215 | 0.454 | −0.154 | 0.135 | −0.157 | 0.134 | −0.145 | 0.170 | 0.158 | 0.125 |
e34 | 0.112 | 0.275 | 0.152 | 0.174 | 0.019 | 0.145 | 0.270 | 0.254 | 0.147 | −0.115 |
f46 | 0.185 | 0.107 | 0.472 | 0.207 | −0.120 | 0.157 | −0.146 | 0.109 | −0.101 | 0.124 |
f47 | 0.271 | 0.205 | 0.615 | −0.152 | 0.145 | 0.274 | 0.156 | 0.157 | −0.125 | 0.104 |
f45 | 0.254 | 0.147 | 0.710 | 0.174 | 0.145 | 0.225 | −0.073 | 0.107 | 0.101 | −0.110 |
f44 | 0.142 | 0.157 | 0.421 | 0.151 | 0.342 | 0.451 | 0.247 | 0.256 | 0.171 | −0.215 |
f43 | 0.142 | 0.405 | 0.421 | 0.452 | 0.212 | 0.152 | 0.054 | 0.074 | 0.144 | −0.105 |
f42 | 0.115 | 0.154 | 0.275 | 0.115 | 0.114 | 0.222 | 0.256 | 0.144 | 0.244 | −0.142 |
f41 | 0.142 | 0.242 | 0.345 | 0.560 | 0.242 | 0.175 | 0.247 | 0.164 | 0.252 | 0.147 |
f40 | 0.071 | 0.093 | 0.297 | 0.745 | 0.179 | 0.141 | 0.286 | 0.130 | 0.187 | 0.170 |
b13 | 0.215 | 0.154 | −0.105 | 0.254 | 0.273 | 0.342 | −0.178 | 0.126 | −0.213 | −0.147 |
b12 | 0.342 | 0.243 | −0.125 | 0.456 | 0.195 | 0.141 | 0.155 | 0.175 | −0.146 | 0.107 |
a1 | −0.129 | −0.155 | −0.126 | 0.255 | 0.414 | 0.235 | 0.246 | 0.125 | 0.485 | −0.142 |
a2 | 0.115 | −0.124 | 0.162 | 0.145 | 0.517 | 0.256 | 0.105 | 0.124 | 0.155 | 0.114 |
a3 | 0.246 | 0.155 | 0.256 | 0.150 | 0.525 | 0.126 | 0.135 | 0.156 | 0.125 | −0.155 |
b5 | 0.252 | 0.256 | 0.252 | 0.105 | 0.558 | 0.162 | −0.167 | 0.106 | 0.158 | 0.149 |
b7 | 0.255 | 0.235 | −0.244 | −0.125 | 0.525 | 0.156 | 0.154 | −0.156 | −0.121 | −0.156 |
b6 | −0.161 | 0.177 | 0.264 | −0.163 | 0.541 | 0.255 | −0.125 | −0.245 | −0.140 | 0.141 |
a4 | 0.105 | 0.241 | 0.255 | 0.160 | 0.526 | 0.260 | 0.277 | 0.125 | −0.361 | −0.123 |
e38 | 0.252 | 0.256 | 0.252 | 0.105 | 0.558 | 0.162 | −0.167 | 0.106 | 0.158 | 0.149 |
e37 | −0.129 | −0.155 | −0.126 | 0.255 | 0.414 | 0.235 | 0.246 | 0.125 | 0.485 | −0.142 |
e39 | 0.142 | 0.242 | 0.345 | 0.560 | 0.242 | 0.175 | 0.247 | 0.164 | 0.252 | 0.147 |
e36 | 0.185 | 0.107 | 0.472 | 0.207 | −0.120 | 0.157 | −0.146 | 0.109 | −0.101 | 0.124 |
d30 | 0.125 | −0.124 | −0.135 | 0.154 | 0.102 | 0.245 | 0.426 | 0.125 | −0.126 | 0.155 |
d31 | 0.252 | 0.256 | 0.252 | 0.105 | 0.558 | 0.162 | −0.167 | 0.106 | 0.158 | 0.149 |
d25 | 0.215 | 0.532 | 0.146 | 0.174 | 0.104 | 0.170 | −0.275 | 0.107 | 0.125 | 0.141 |
e32 | 0.105 | 0.241 | 0.255 | 0.160 | 0.526 | 0.260 | 0.277 | 0.125 | −0.361 | −0.123 |
e33 | 0.185 | 0.107 | 0.472 | 0.207 | −0.120 | 0.157 | −0.146 | 0.109 | −0.101 | 0.124 |
e35 | −0.161 | 0.177 | 0.264 | −0.163 | 0.541 | 0.255 | −0.125 | −0.245 | −0.140 | −0.141 |
d27 | 0.325 | 0.055 | 0.224 | 0.189 | 0.173 | 0.195 | 0.143 | 0.293 | 0.562 | 0.148 |
d26 | 0.185 | 0.107 | 0.472 | 0.207 | −0.120 | 0.157 | −0.146 | 0.109 | −0.101 | 0.124 |
d29 | 0.404 | 0.293 | 0.055 | 0.224 | 0.189 | 0.173 | 0.195 | 0.143 | 0.177 | 0.410 |
d28 | 0.325 | 0.055 | 0.224 | 0.189 | 0.173 | 0.195 | 0.143 | 0.293 | 0.562 | 0.415 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, A.U.; Han, H.; Ariza-Montes, A.; Vega-Muñoz, A.; Raposo, A.; Mohapatra, S. The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing. Sustainability 2022, 14, 3074. https://doi.org/10.3390/su14053074
Din AU, Han H, Ariza-Montes A, Vega-Muñoz A, Raposo A, Mohapatra S. The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing. Sustainability. 2022; 14(5):3074. https://doi.org/10.3390/su14053074
Chicago/Turabian StyleDin, Ashraf Ud, Heesup Han, Antonio Ariza-Montes, Alejandro Vega-Muñoz, António Raposo, and Shruti Mohapatra. 2022. "The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing" Sustainability 14, no. 5: 3074. https://doi.org/10.3390/su14053074
APA StyleDin, A. U., Han, H., Ariza-Montes, A., Vega-Muñoz, A., Raposo, A., & Mohapatra, S. (2022). The Impact of COVID-19 on the Food Supply Chain and the Role of E-Commerce for Food Purchasing. Sustainability, 14(5), 3074. https://doi.org/10.3390/su14053074