Does High-Speed Rail Operation Reduce Ecological Environment Pressure?—Empirical Evidence from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Indicator System
2.3. Model Construction
2.3.1. Model Setting of EEP Calculation
Index Weight Determination Based on Analytic Hierarchy Process
TOPSIS Model Based on Analytic Hierarchy Process
2.3.2. Difference-in-Difference Method
2.3.3. Propensity Score Matching Method
3. Results
3.1. Temporal and Spatial Evolution Characteristics of EEP
3.2. Impact Analysis of HSR Construction on EEP
3.3. Heterogeneity Analysis of HSR on EEP
3.4. Analysis on the Impact Mechanism of HSR Operation on EEP
4. Discussion
4.1. Analysis on the Impact of HSR Operation on EEP
4.2. Analysis on the Impact Mechanism of HSR Operation on EEP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, K.M. A Study on the Industrial Design Direction by the Near-Future Civilized Society. J. Cult. Prod. Des. 2021, 65, 93–104. [Google Scholar]
- Mohring, H. Optimization and scale economies in urban bus transportation. Am. Econ. Rev. 1972, 62, 591–604. [Google Scholar]
- Jerrett, M. Atmospheric science: The death toll from air-pollution sources. Nature 2015, 525, 330–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.D.; Chen, Z.G.; Wang, D.Y. Can Land Marketization Help Reduce Industrial Pollution? Int. J. Environ. Res. Public Health 2019, 16, 2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-P.; Hu, Z.-H.; Wei, X.-J.; Huang, Y.-W. Study on Identification of Key Areas for Ecological Protection and Restoration in Resource-exhausted Region: Take Dayu County, Jiangxi as an Example. J. Ecol. Rural Environ. 2021, 37, 1031–1040. [Google Scholar]
- Dai, X.H.; Li, W.C. Impact of Education, Medical Services, and Living Conditions on Health: Evidence from China Health and Nutrition Survey. Healthcare 2021, 9, 1122. [Google Scholar] [CrossRef] [PubMed]
- Nickelsburg, J.; Ahluwalia, S.; Yang, Y. High-speed Rail, Urbanisation, and Housing Affordability Evidence from the Shinkansen System. J. Transp. Econ. Policy 2020, 54, 267–288. [Google Scholar]
- Giannakos, K. Comparison of Magnitude of Actions on Track in High-Speed and Heavy-Haul Railroads Influence of Resilient Fastenings. Transp. Res. Rec. 2012, 2289, 70–77. [Google Scholar] [CrossRef]
- Dalkic, G.; Balaban, O.; Tuydes-Yaman, H.; Celikkol-Kocak, T. An assessment of the CO2 emissions reduction in high speed rail lines: Two case studies from Turkey. J. Clean. Prod. 2017, 165, 746–761. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Peng, J.Y. Life Cycle Cost, Energy and Carbon Assessments of Beijing-Shanghai High-Speed Railway. Sustainability 2020, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.J. World development report 2009: Reshaping economic geography. World Environ. 2008, 9, 1269–1277. [Google Scholar] [CrossRef]
- Sasaki, K.; Ohashi, T.; Ando, A. High-speed rail transit impact on regional systems: Does the Shinkansen contribute to dispersion? Ann. Reg. Sci. 1997, 31, 77–98. [Google Scholar] [CrossRef]
- Murakami, J.; Cervero, R. California high-speed rail and economic development: Station-area market profiles and public policy responses. In Symposium in University of California, Berkeley Faculty Club; University of California: Berkeley, CA, USA, 2010. [Google Scholar]
- Chen, Z.H.; Xue, J.B.; Rose, A.Z.; Haynes, K.E. The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis. Transp. Res. Part A-Policy Pract. 2016, 92, 232–245. [Google Scholar] [CrossRef]
- Liu, K.; Lin, B.Q. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 2019, 206, 356–364. [Google Scholar] [CrossRef]
- Wang, Q.W.; Chiu, Y.H.; Chiu, C.R. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis. Energy Econ. 2015, 51, 252–260. [Google Scholar] [CrossRef]
- Chen, K.L.; Liu, X.Q.; Ding, L.; Huang, G.Z.; Li, Z.G. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in China. Int. J. Environ. Res. Public Health 2016, 13, 1221. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Q.; Guo, Y.S.; Su, H.N.; Ma, X.J.; Zhang, Z.Y.; Chang, B.S. Empirical analysis of energy consumption transfer in China’s national economy from the perspective of production and demand. Environ. Sci. Pollut. Res. 2021, 28, 19202–19221. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Yu, B.L.; Pan, Y.L. Examining the synergistic effect of CO2 emissions on PM2.5 emissions reduction: Evidence from China. J. Clean. Prod. 2019, 223, 759–771. [Google Scholar] [CrossRef]
- Li, X.F.; Cheng, B.D.; Hong, Q.L.; Xu, C. Can a Win-Win Situation of Economy and Environment Be Achieved in Cities by the Government’s Environmental Regulations? Sustainability 2021, 13, 5829. [Google Scholar] [CrossRef]
- Wang, J.N.; Yin, P.Z.; Li, D.J.; Zheng, G.Q.; Sun, B.J. Quantitative Relationship between Urban Green Canopy Area and Urban Greening Land Area. J. Urban Plan. Dev. 2021, 147, 05021016. [Google Scholar] [CrossRef]
- Song, J.H.; Cui, S.; Han, Q.; Li, P.; Zhang, Q.K.; Li, M.R.; Jiang, C.J. Biochemical Treatment of Municipal Sewage in Northeast China in Winter. In Proceedings of the 4th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE), Chengdu, China, 7–9 December 2018. [Google Scholar]
- Hou, J.; Teo, T.S.H.; Zhou, F.L.; Lim, M.K.; Chen, H. Does industrial green transformation successfully facilitate a decrease in carbon intensity in China? An environmental regulation perspective. J. Clean. Prod. 2018, 184, 1060–1071. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Cui, D.H.; Zhang, X.Y. Application of Gray Analytic Hierarchy Process in Project Risk Evaluation. In Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 7–8 November 2009; pp. 592–594. [Google Scholar]
- Elhassouny, A.; Smarandache, F. Neutrosophic-simplified-TOPSIS Multi-Criteria Decision-Making using combined Simplified-TOPSIS method and Neutrosophics. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) Held as Part of IEEE World Congress on Computational Intelligence (IEEE WCCI), Vancouver, BC, Canada, 24–29 July 2016; pp. 2468–2474. [Google Scholar]
- Yang, T.; Zhang, Q.; Wan, X.H.; Li, X.P.; Wang, Y.Y.; Wang, W. Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model-a case study of Wei River Basin, China. Sci. Total Environ. 2020, 719, 137502. [Google Scholar] [CrossRef]
- Li, J.; Jia, L.; Liu, Y.; Yang, Y.; Jiang, N. Measuring model of rural transformation development path in Fuping County of Beijing-Tianjin-Hebei region. Habitat Int. 2018, 74, 48–56. [Google Scholar] [CrossRef]
- Caniglia, E.C.; Murray, E.J. Difference-in-Difference in the Time of Cholera: A Gentle Introduction for Epidemiologists. Curr. Epidemiol. Rep. 2020, 7, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Shi, D.Q. The impact of government-enterprise collusion on environmental pollution in China. J. Environ. Manag. 2021, 292, 112744. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zeng, F.E.; Liu, S.H.; Yang, M.A.; Xu, F. The effects of China’s sustainable development policy for resource-based cities on local industrial transformation. Resour. Policy 2021, 71, 101940. [Google Scholar] [CrossRef]
- Song, Y.M. Research on industrial transformation and upgrading based on low-carbon economic environment. Fresenius Environ. Bull. 2021, 30, 6988–6995. [Google Scholar]
- Guo, W.; Dai, H.J.; Liu, X.R. Impact of different types of environmental regulation on employment scale: An analysis based on perspective of provincial heterogeneity. Environ. Sci. Pollut. Res. 2020, 27, 45699–45711. [Google Scholar] [CrossRef]
- Wang, C.Y.; Meng, W.D.; Hou, X.S. The impact of high-speed rails on urban economy: An investigation using night lighting data of Chinese cities. Res. Transp. Econ. 2020, 80, 100819. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.D. Impacts of high-speed rail development on urban land expansion and utilization intensity in China. J. Transp. Land Use 2021, 14, 583–601. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Z.H.; Yang, Y. Agglomerating or dispersing? Spatial effects of high-speed trains on regional tourism economies. Tour. Manag. 2021, 87, 104392. [Google Scholar] [CrossRef]
- Albalate, D.; Bel, G. (Eds.) Evaluating High-Speed Rail: Interdisciplinary Perspectives, 1st ed.; Routledge: London, UK, 2016. [Google Scholar]
- Li, J.; Jiang, C.; Xing, Z. Multi-dimensional influence measurement of urbanization on the quality of natural living environment in China. Environ. Dev. Sustain. 2021, 23, 12151–12168. [Google Scholar] [CrossRef]
- David, B.; Peter, H.; Stephen, M. High-Speed Rail Shrinking Spaces, Shaping Places. Built Environ. 2013, 39, 321–323. [Google Scholar]
- Agaton, C.B.; Collera, A.A.; Guno, C.S. Socio-Economic and Environmental Analyses of Sustainable Public Transport in the Philippines. Sustainability 2020, 12, 4720. [Google Scholar] [CrossRef]
- Cartenì, A.; Henke, I.; Molitierno, C.; di Francesco, L. Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy). Sustainability 2020, 12, 7033. [Google Scholar] [CrossRef]
Target Layer | Index Layer | Average | S.D | Min | Max | Weight | Action Direction |
---|---|---|---|---|---|---|---|
EEP | Soot emission (10 thousand tons) | 254 | 343 | 0.34 | 5360 | 0.0647 | + |
Carbon dioxide emissions (10 thousand tons) | 25.35 | 23.22 | 1.53 | 230.71 | 0.0613 | + | |
Wastewater discharge (10 thousand tons) | 7082.35 | 9430 | 7 | 110,763 | 0.0613 | + | |
Social electricity consumption (KW·h) | 89.87 | 150 | 0.23 | 1600 | 0.0360 | + | |
PM2.5 (μg/m3) | 36.15 | 16.43 | 2.18 | 90.85 | 0.1803 | + | |
Comprehensive utilization rate of industrial solid (%) | 78.30 | 23.17 | 0.24 | 100 | 0.1791 | − | |
Greening area (hm2) | 36.74 | 9 | 0.38 | 95.25 | 0.0360 | − | |
Sewage treatment rate (%) | 69.40 | 25.75 | 0.16 | 100 | 0.1060 | − | |
Degree of employment structure (%) | 52.91 | 13.17 | 9.91 | 94.81 | 0.1060 | − | |
Degree of industrial transformation (%) | 37.87 | 9.21 | 8.58 | 85.34 | 0.1693 | − |
Variables | Average | S.D | Min | Max |
---|---|---|---|---|
Ecological Environment Pressure | 3.28 | 0.64 | 0.88 | 4.78 |
Local government service capacity | 2.24 | 3.25 | 0.05 | 48.19 |
Highway traffic passenger volume | 7.62 | 11.83 | 0.06 | 165.45 |
Proportion of industrial employed population | 43.84 | 14.10 | 4.46 | 84.4 |
Gross local product of the current year | 1633.26 | 2574 | 31.04 | 33,244.8 |
Local average slope | 2.42 | 1.97 | 0.04 | 11.82 |
Var | OLS | FE | Robustness Check | |||
---|---|---|---|---|---|---|
EEP | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
Treat × Time | −0.067 ** (0.024) | −0.096 *** (0.001) | −0.067 ** (0.013) | −0.104 *** (0.001) | −0.097 *** (0.001) | −0.105 ** (0.031) |
GSC | −0.125 *** (0.000) | −0.099 *** (0.001) | −0.389 *** (0.000) | −0.117 *** (0.006) | −0.160 ** (0.016) | |
HTPV | 0.213 *** (0.000) | 0.013 (0.322) | 0.198 *** (0.000) | −0.005 *** (0.000) | 0.232 *** (0.000) | |
IEPP | 0.469 *** (0.000) | 0.298 *** (0.000) | 0.659 *** (0.000) | 0.412 *** (0.000) | 0.465 *** (0.000) | |
GDP | −0.159 *** (0.000) | 0.079 *** (0.002) | 0.120 *** (0.000) | 0.131 *** (0.001) | −0.283 *** (0.000) | |
AVERSL | −0.084 *** (0.000) | −0.046 *** (0.002) | 0.562 *** (0.001) | −0.032 (0.825) | −0.053 ** (0.011) | |
year | N | Y | Y | N | Y | N |
id | N | Y | N | Y | Y | N |
R-squared | 0.101 | 0.494 | 0.324 | 0.361 | 0.506 | 0.107 |
EEP | C | Std.Err. | p |
---|---|---|---|
_D_F3 | 0.004 | 0.053 | 0.946 |
_D_F2 | 0.050 | 0.050 | 0.323 |
_D_F1 | 0.062 | 0.042 | 0.151 |
HSR | −0.077 ** | 0.032 | 0.017 |
_D_L1 | −0.069 * | 0.042 | 0.010 |
_D_L2 | −0.052 | 0.034 | 0.124 |
_D_L3 | −0.117 ** | 0.046 | 0.012 |
Parallel Trend—‘leads’ | Prob > F = 0.3386 (RESULT: ‘Parallel-trend’ passed) |
Var | Location Heterogeneity | Industrial Heterogeneity | ||||
---|---|---|---|---|---|---|
EEP | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 |
Treat × Time | −0.082 ** (0.049) | −0.103 ** (0.044) | 0.069 (0.388) | −0.103 *** (0.009) | −0.075 (0.215) | −0.266 *** (0.003) |
GSC | −0.067 (0.355) | −0.122 * (0.089) | −0.210 *** (0.010) | −0.017 (0.795) | −0.164 ** (0.048) | 0.350 *** (0.001) |
HTPV | −0.009 (0.718) | −0.035 (0.302) | 0.024 (0.272) | −0.021 (0.411) | −0.008 (0.780) | −0.043 (0.324) |
IEPP | 0.683 *** (0.000) | 0.116 (0.155) | 0.513 *** (0.000) | 0.497 *** (0.000) | 0.176 * (0.100) | 0.119 (0.368) |
GDP | 0.083 (0.122) | −0.028 (0.728) | 0.216 *** (0.004) | 0.05 (0.353) | 0.124 (0.129) | 0.081 (0.421) |
AVERSL | 10.98 ** (0.013) | 25.1 *** (0.005) | −0.137 (0.403) | 9.382 ** (0.035) | −0.834 (0.269) | 3.042 (0.391) |
year | Y | Y | Y | Y | Y | Y |
id | Y | Y | Y | Y | Y | Y |
R-squared | 0.508 | 0.520 | 0.529 | 0.533 | 0.4406 | 0.476 |
Var | Benchmark Regression | |
---|---|---|
EEP | Model 13 | Model 14 |
Treat × Time × DET | −0.004 ** (0.034) | |
Treat × Time × DIT | −0.005 ** (0.050) | |
Treat × Time | −0.037 (0.243) | −0.153 *** (0.000) |
DET | −0.012 *** (0.000) | |
DIT | −0.041 *** (0.000) | |
Control Variable | Y | Y |
year | Y | Y |
id | Y | Y |
R-squared | 0.679 | 0.501 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Liu, X. Does High-Speed Rail Operation Reduce Ecological Environment Pressure?—Empirical Evidence from China. Sustainability 2022, 14, 3152. https://doi.org/10.3390/su14063152
Jiang C, Liu X. Does High-Speed Rail Operation Reduce Ecological Environment Pressure?—Empirical Evidence from China. Sustainability. 2022; 14(6):3152. https://doi.org/10.3390/su14063152
Chicago/Turabian StyleJiang, Changjun, and Xiaoxuan Liu. 2022. "Does High-Speed Rail Operation Reduce Ecological Environment Pressure?—Empirical Evidence from China" Sustainability 14, no. 6: 3152. https://doi.org/10.3390/su14063152
APA StyleJiang, C., & Liu, X. (2022). Does High-Speed Rail Operation Reduce Ecological Environment Pressure?—Empirical Evidence from China. Sustainability, 14(6), 3152. https://doi.org/10.3390/su14063152